Skip to main content
Fig. 5 | Molecular Cancer

Fig. 5

From: The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells

Fig. 5

Combined antitumor strategies based on neoantigens. The diagnosis and routine treatment of tumor patients (Step 1). The formation of tumor cells initiates the immune function of T cells, and the tumor cells die and lyse, resulting in the release of neoantigens (Step 2). Neoantigens produced by tumors are released and captured by DCs. The DC transmits the collected neoantigens on the MHC-I and MHC-II molecules to the T cells (Step 3). Immunotherapies targeting neoantigens (neoantigen-based adoptive cell therapy) mainly include TCR-T cells, TILs, CAR-T cells, CAR-NK/NKT cells, CAR-γδ T cells and bispecific antibodies (Step 4). Adoptive back transport of ACT cells and chemotaxis into the tumor play an antitumor role (Step 5). Neoantigen-based DC vaccine therapy is also initiated (Step 6). Immune cells are primed and activated in the lymph node (Step 7). Effector cells develop into effector memory cells through lymphatic homing (Step 8). Effector memory ACT cells target and kill tumor cells (Step 9). After a series of treatments, clinical evaluation and efficacy monitoring are performed (Step 10). In brief, the “Cancer-Immunity Cycle” includes enhancing neoantigen release by chemotherapy, radiation therapy and oncolytic viruses, increasing the quantity and quality of tumor-reactive T cells through cancer vaccines and ACTs, and boosting the infiltration and cytotoxicity efficacy of immune cells via checkpoint inhibitors

Back to article page