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Abstract

Background: Proteogenomic characterization and integrative and comparative genomic analysis provide a
functional context to annotate genomic abnormalities with prognostic value.

Methods: Here, we analyzed the proteomes and performed whole exome and transcriptome sequencing and
single nucleotide polymorphism array profiling for 2 sets of triplet samples comprised of normal colorectal tissue,
primary CRC tissue, and synchronous matched liver metastatic tissue.

Results: We identified 112 CNV-mRNA-protein correlated molecules, including up-regulated COL1A2 and BGN
associated with prognosis, and four strongest hot spots (chromosomes X, 7, 16 and 1) driving global mRNA
abundance variation in CRC liver metastasis. Two sites (DMRTB1R202H and PARP4V458I) were revealed to frequent
mutate only in the liver metastatic cohort and displayed dysregulated protein abundance. Moreover, we confirmed
that the mutated peptide number has potential prognosis value and somatic variants displayed increased protein
abundance, including high MYH9 and CCT6A expression, with clinical significance.

Conclusions: Our proteogenomic characterization and integrative and comparative genomic analysis provides a
new paradigm for understanding human colon and rectal cancer liver metastasis.

Trial registration: ClinicalTrials, NCT02917707. Registered 28 September 2016, https://clinicaltrials.gov/ct2/show/
NCT02917707.
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Background
Colorectal cancer (CRC) is a significant contributor of
cancer morbidity and mortality [1]. Almost half of CRC
patients die within 5 years of diagnosis due to the develop-
ment of recurrent disease and metastasis [2]. Therefore, it
is important to illuminate the molecular basis of CRC liver
metastasis (CLM) in hopes of developing new effective
treatment modalities.

The Cancer Genome Atlas (TCGA) has characterized the
genomic features of many types of human cancers, includ-
ing CRC [3–5] and The Clinical Proteomic Tumor Analysis
Consortium has also performed CRC-integrated proteomic
analyses [6]. However, the primary genetic basis of CLM
has not been fully elucidated. Understanding the genetic
and proteogenomic differences between primary colon can-
cer and associated metastases to the liver is essential for
discovering metastasis-specific molecular biomarkers and
for devising a better therapeutic approach for this disease.
In the present work, we report a comprehensive molecu-

lar characterization of human CLM. Multi-platform integra-
tion revealed that CRC metastatic to the liver is driven by
diverse alterations affecting multiple genes and pathways.
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Proteogenomic characterization and integrative and com-
parative genomic analysis provides a functional context to
annotate genomic abnormalities with prognostic value, as
well as a new paradigm for understanding human colon
and rectal cancer liver metastasis.

Methods
Patient specimen acquisition
The study was examined and approved by the Ethics Com-
mittee of the Shanghai Tenth People’s Hospital, Tongji Uni-
versity School of Medicine (SHSY-IEC-PAP-16-24). This
study was registered with ClinicalTrials.gov, number
NCT02917707. Each participant provided their written in-
formed consent to participate in this study. The inclusion
criteria included: age ≤ 75 years with histologically proven
CRC, no severe major organ dysfunction, WHO perform-
ance status of 0 or 1, or no prior cancer chemotherapy. The
exclusion criteria included: age ≥ 76, severe major organ
dysfunction, World Health Organization (WHO) perform-
ance status of > 1, or prior cancer chemotherapy. The
morphology of primary CRC and paracarcinoma normal
colorectal tissues was confirmed by two independent pa-
thologists using cryostat frozen sections stained with
hematoxylin and eosin. Follow-up data and statistics were
recorded for all patients through Dec. 31, 2017.

DNA and RNA extraction
Using a co-isolation protocol, DNA and RNA were puri-
fied simultaneously using the QIAGEN All Prep DNA/
RNA Micro Kit (Qiagen, CA, USA) according to the
manufacturer’s instructions. The nucleic acid concentra-
tion was determined using a Nanodrop1000 spectropho-
tometer (Thermo Fisher Scientific; Waltham, MA, USA),
and the RNA purity was verified using 1.5% denaturing
agarose gels.

Protein extraction and analysis by LC-MS/MS
Fresh CRC tissues and para-tumor normal colorectal tissues
(PN) were used for proteogenomic analysis. Three different
parts of the same lesions for every sample were compared
for data analysis and measurement of the variation caused
by random biological effects. The samples were cut into
small pieces (about 1 mm3) and rinsed in PBS to remove
the blood. Then the tissues were homogenized in 4% SDS
and 0.1 M DTT in 0.1 M Tris-HCl, pH 7.6 on ice, sonicated
10 times (80 w; 10 s sonication/5 s suspension), incubated
for 3 min at 95 °C, and briefly sonicated. The protein con-
centrations of clarified lysates were determined using a
fluorescence assay and then 200 μg of clarified lysates were
proteolyzed on a 10 kDa filter (PALL Life Sciences, Shang-
hai, China) using the filter-aided sample preparation
method [7]. The peptide samples were then desalted onto a
solid-phase extraction cartridge. The lyophilized peptide
mixture was re-suspended in water with 0.1% formic acid

(v/v), and its content was estimated by ultraviolet light spec-
tral density at 280 nm [8]. Then, 3 μg of the digest sample
was analyzed by nano-liquid chromatography-tandem mass
spectrometry on a LTQ Orbitrap Velos Pro mass spectrom-
eter as previously described [9].
The acquired data from mass spectrometry runs were

combined and searched against the UniProt Human data-
base (05/2016, 153,652 entrys) using Maxquant software
(version 1.3.0.5; http://maxquant.org/) as described [10].
Proteins were identified using the Andromeda peptide
search engine integrated into the Maxquant platform.
Trypsin-digested fragments were analyzed, allowing for a
maximum of 2 missed cleavages. Carbamidomethyl cysteine
was set as a fixed modification, with protein N-acetylation
and methionine oxidation as variable modifications. Precur-
sor ion tolerances were 20 ppm for first search and 6 ppm
for a second search. The MS/MS peaks were de-isotoped
and searched using a 20 ppm mass tolerance. The required
minimum peptide length for identification was 7 amino
acids, and the false discovery rate at the protein level, pep-
tide level and site were set to 0.01. The normalized spectral
protein intensity (label-free quantification) values were cal-
culated for each protein group.
The Maxquant peptide and protein quantification result

files were imported into Perseus software (version 1.5.1.6)
to identify the differentially expressed proteins. After
importing the quantitative data from ProteinGroups.txt
into Perseus, a filtering criterion is set to keep the identi-
fied proteins with the quantified values of all ten reporter
ions (no missing value) in the final identification list. The
protein intensities are log2-transformed and normalized
by subtracting the median intensity in each column/sam-
ple. Principal component analysis is performed based on
protein intensities to differentiate groups. Two-samples
tests coupled with Benjamini–Hochberg (FDR cutoff of
0.05) correction are performed to identify the differentially
expressed proteins.

RNA sequencing analysis
Six specimens from 2 CRC patients with metastasis (com-
prised of triplet sets of PN, primary CRC tumor samples
with liver metastasis (MT), and synchronously matched
liver metastasis focus tissues (LM)) and 3 specimens from
3 CRC patients without liver metastasis (NM) were ob-
tained for RNA sequencing analysis. The mRNA libraries
were separately generated from total RNA and con-
structed according to the standard Illumina RNA library
preparation protocol (Illumina Inc., USA). Sequencing
was performed on the Illumina Nextseq 500 platform ac-
cording to the manufacturer’s instructions. Images gener-
ated by Nextseq 500 were converted into nucleotide
sequences using a base call pipeline and stored in FASTQ
format, and the raw reads were filtered prior to analyzing
the data. Clean reads were mapped to reference Homo
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sapiens transcriptome sequences from the UCSC website
(hg19) using Bowtie2 and Tophat 2.0.1 software. To anno-
tate gene expression, reads per kilobases per million read
values of each gene were calculated, and differentially
expressed genes were extracted using this value. The for-
mula for calculating these values was defined as: reads per
kilobases per million read values = total exon reads /
(mapped reads [millions] × exon length [kbp]).

Chromosome microarray analysis and whole exome
sequencing
Six specimens from 2 patients (including 2 triplet sets of
primary MT, matched CLM and PN) were used for
chromosome microarray analysis and whole exome se-
quencing analysis. DNAs and cRNAs were hybridized to
the Affymetrix CytoScan HD Array as described and re-
current genomic regions with DNA copy gain and loss
were identified using GISTIC, version 2.0 [11]. Genomic
DNA was enriched for exonic regions using the SureSelect
Biotinylated RNA Library. The sequences of captured li-
braries were generated as 90-bp pair-end reads on an Illu-
mina Hiseq2000. Sequencing reads were processed and
mapped to the reference GRCh37/hg19 human genome
assembly using the Burrows-Wheeler Aligner as described
[12]. Further processing, including duplicate removal,
local realignment, base quality recalibration, and filtering,
as well as the identification of SNVs and indels, was per-
formed using the Genome Analysis Toolkit [13], SAM
[14], and Picard tools (http://picard.sourceforge.net).
Then, filters were applied to obtain higher confidence, and
annotation and classification were performed using
ANNOVAR [15]. The variant collection was excluded
from positions reported in the 1000 Genomes Project and
dbSNP. The mean sequencing depth in the target regions
was 80.28× (range 71.5 to 92.85).

Validation of point mutations by PCR and sanger
sequencing
The reliability of the exome analysis and somatic variant
identification strategies was assessed using PCR and
Sanger sequencing. PCR was performed using the Gen-
eAmp PCR System 9700 (Applied Biosystems, Foster City,
CA, USA). About 20 ng template DNA from each sample
was used per reaction. The products were sequenced, and
all sequences were analyzed with the Sequencing Analysis
Software Version 5.2 (Applied Biosystems).

Assay design, PCR amplification and genotyping
A panel comprising 120 positive sites identified by
Sanger sequencing were selected. These single nucleo-
tide polymorphisms were located within genes of differ-
ent functional categories. For the PCR amplification and
single base extension reaction, primer pairs and exten-
sion primers were designed using Assay design suite

v2.0. These primers were multiplexed and genotyped
using the Sequenom MassARRAY platform integrating
the iPLEXSBE reaction and MassARRAY technology
(Agena Bioscience, San Diego, CA, USA) based on the
MALDI-TOF MS assay [16].

Hierarchical clustering, gene ontology (GO) and Kyoto
encyclopedia of genes and genomes (KEGG) pathway
analysis
Hierarchical clustering was performed using MEV soft-
ware (http://mev.tm4.org/, v4.7.0, TIGR). The matrix was
presented graphically by colouring each expression result
on the basis of measured colour range: lower limit ‘0.0’
was coloured green, upper limit ‘369.5’ was coloured red
and midpoint value ‘37.5’ was coloured black. Pearson cor-
relation was used as distance metric and the complete
linkage method was used. To identify genes/proteins that
are specifically dysregulated in CLM, we fixed the cutoff
at 2-fold with a P value less than 0.05. Dysregulated
genes/proteins were subjected to GO analysis and KEGG
pathway analysis by DAVID (http://david.ncifcrf.gov).
Pathway analysis is used to map genes to KEGG pathways.
The P value denotes the significance of the pathway corre-
lations (P value < 0.05 is recommended).

TCGA data acquisition and processing
We downloaded RNA-sequencing data from 379 CRC
patients from TCGA portal (https://cancergenome.nih.
gov/), 12 of which had liver metastasis at the time of
diagnosis or during the five-year follow-up period, and
367 of which had CRC without metastasis to the liver.
The mRNA expression levels were investigated in 379
CRC tissues and 32 PN tissues in TCGA datasets by Illu-
mina HiSeq 2000 RNA Sequencing Version 2 analysis
and normalized by the RSEM algorithm. Whole-exome
sequencing mutation datasets were downloaded from
TCGA data set to create a customized CRC mutation
database. The clinical information recorded, including
the patient’s characteristics, tumor characteristics, and
overall and progression-free survival was assessed.

Cell lines and transfection
Human CRC cell line SW480 were purchased from the
Cell Bank of the Chinese Academy of Sciences (Shang-
hai, China) and cultured in DMEM media (Invitrogen,
Carlsbad, USA) and supplemented with 10% (v/v) fetal
bovine serum, 100 U/ml penicillin, and 100 mg/ml
streptomycin. SW480 cell lines were routinely tested for
mycoplasma contamination, and have been authenti-
cated with short-tandem repeat analysis. Cell culture
was conducted at 37 °C in a humidified 5% CO2 incuba-
tor. For COL1A2 and BGN over-expression, the human
full length cDNA with or without point mutation were
cloned into the pMSCV-hygro vector. The SW480 cells
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with stable over-expression were polyclonal derivatives
with hygromycin selection to avoid clonal variations in
functional assays.

Scratch-wound assay
The human CRC SW480 cells were conducted at 37 °C
in a humidified 5% CO2 incubator and cells were grown
into confluency in 6-well plates. The monolayer was arti-
ficially injured by scratching across the plate with a 200
ul pipette tip. The wells were washed 3 times to remove
detached cells or cell debris. After 12 h, digital images
were captured using a camera-equipped, inverted micro-
scope (Carl Zeiss, Inc., Thorwood, NY, USA) and wound
width measurements were subtracted from wound width
at time zero to obtain the net wound closure.

In vitro invasion assays
Corning Costar Transwell 24-well plates with
8-um-pore-size polycarbonate membrane filters (Costar,
Cambridge, MA) coated with BD Matrigel matrix (Becton
Dickinson, Bedford, MA) were maintained for 1 h at 37 °C,
followed by the addition of 1 × 105 transfected cells sus-
pended in 200 μl medium with 1% serum into the top of
each well insert. Normal growth medium was added to the
bottom wells. The cells were allowed to migrate for 24 h at
37 °C. The migrated cells were fixed with 10% methanol for
15 min. The invading cells on the lower surface of the

membrane were stained with 0.5% crystal violet for 5 min
at room temperature. Random fields were photographed
and the stained cells were counted under a microscope
(Nikon Corporation).

Statistical analysis
Data were expressed as means ± standard deviations. Cat-
egorical data were reported as numbers and percentages.
F tests were used to assess the equality of variances for
comparable groups. Paired t test, One-way analysis of
variance (ANOVA), Kruskal-Wallis test, and χ2 tests were
used to analyze mRNA expression. Forty four paired fresh
CRC and PN tissues were used for survival analysis
(Table 1). OS was measured from the date the patient
underwent surgery until the date of death resulting from
any cause or last known follow-up for patients still alive.
DFS analysis was measured from the date the patient
underwent surgery to the date of disease recurrence, death
from any cause (ie, noncancer deaths were not censored),
or until last contact with the patient. For time-to-event
analyses, survival estimates were calculated by the
Kaplan-Meier analysis, and groups were compared with
the log-rank test. Clinical variables that were considered
for single variable analyses were previously identified as
confounding variables with impact on the prognosis of pa-
tients with colorectal cancer: age at diagnosis (continu-
ous), sex, primary site (colon vs. rectum), pathological

Table 1 Summary of colorectal cancer patients demographic and clinical characteristics (N = 44)

Factor Variables Non-metastatic (N = 21) Metastatic to liver (N = 23)

Number (%) Number (%)

Age ≥ 60 14 (66.7%) 11 (47.8%)

< 60 7 (33.3%) 12 (52.2%)

Gender Male 11 (52.4%) 10 (43.5%)

Female 10 (47.6%) 13 (56.5%)

Primary site Colon 9 (42.9%) 14 (60.9%)

Rectum 12 (57.1%) 9 (39.1%)

Differentiation Well 0 (0.0%) 0 (0.0%)

Moderately 16 (76.2%) 16 (69.6%)

Poorly 5 (23.8%) 7 (30.4%)

Completeness of colorectal resection R0 21 (100.0%) 23 (100.0%)

R1 0 (0.0%) 0 (0.0%)

Diameter ≥ 5 cm 10 (47.6%) 10 (43.5%)

< 5 cm 11 (52.4%) 13 (56.5%)

Number of foci Multiple 8 (38.1%) 9 (39.1%)

Single 13 (61.9%) 14 (60.9%)

TNM stage I-II 5 (23.8%) 5 (21.7%)

III-IV 16 (76.2%) 18 (78.3%)

Necrosis Yes 11 (52.4%) 10 (43.5%)

No 10 (47.6%) 13 (56.5%)

Ma et al. Molecular Cancer  (2018) 17:139 Page 4 of 14



differentiation (well to moderate vs. poor), completeness
of colorectal resection (R0 vs. R1), tumor size (≥ 5 cm vs.
< 5 cm), number of primary foci (multiple vs. single) and
necrosis (yes vs. no). The Spearman’s correlation coeffi-
cient was used to test the relationship of two independent
groups. To identify genes/proteins that are specifically
dysregulated in CLM, we fixed the cutoff at 2-fold with a
P value less than 0.05. All calculations were performed
with SPSS 20.0 software (SPSS Inc., Chicago, IL, USA).

Results
Identification of peptides and proteins associated with
CLM
Genomic features and proteomic analyses of CRC have
been characterized; however, the primary genetic basis of
CLM has not been fully elucidated, which is essential for
discovering metastasis-specific molecular biomarkers and
for devising a better therapeutic approach for this disease.
To address these issues, we performed a nano-liquid
chromatography-tandem mass spectrometry (LC-MS/

MS)-based shotgun proteomics profiling of 2 sets of triplet
samples comprised of para-tumor normal colorectal tissue
(PN), primary CRC tissue (MT), and synchronous matched
liver metastatic tissue (LM) (Fig. 1). Three different parts
of the same lesions for every sample were compared for
data analysis and measurement of the variation caused by
random biological effects. A total of 596,234 spectra were
used in the Andromeda engine search, and 26,375 unique
peptides were identified in an assembly of 4198 protein
groups with a protein-level false discovery rate of 1.0%. In-
genuity pathway analysis with all 4198 identified proteins
showed that about 51% of the proteins were from the cyto-
plasm, 26% were from the nucleus, 9% were from the
plasma membrane and 5% were from the extracellular
space, whereas 9% of proteins remained unclassified
(Fig. 2a). The random predicted cellular distribution of the
proteins supports the quality of the sample preparation.
A scatter plot of protein abundance (label-free quantifi-

cation intensity) between CRC and PN tissues showed that
there was a great variation between the MT or LM tumors

Fig. 1 Mass-spectrometry-based proteomics workflow. Protein was extracted from fresh CRC and paired PN tissues and was used to generate
tryptic digests. The resulting tryptic peptides were fractionated using off-line bRPLC Collected fractions were pooled and used with a Thermo
Orbitrap-Velos MS instrument. Raw data were processed by Perseus software and then used for database and spectral library evaluation using the
Andromeda peptide search engine. Identified peptides were assembled using Maxquant software. bRPLC, basic reverse-phase (high-pressure)
liquid chromatography; CRC, colorectal cancer; PN paracarcinoma normal tissue
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and PN tissue (Fig. 2b and c). However, the protein ex-
pression between the MT and LM group was positively
correlated (R2 = 0.78) (Fig. 2d). These results suggest that
liver metastasis focus and primary focus share similar pro-
tein profiles and that there are common molecular alter-
ations at each stage of tumor development.

Identification of significantly dysregulated proteins in
CLM
To identify proteins that are specifically dysregulated in
CLM, we fixed the cutoff at 2-fold with a P value less than
0.05. Among the 4198 proteins, a total of 1041 proteins
were significantly altered between MT and PN tissue, 636
(61.09%) of which were down-regulated and 405 (38.91%)
of which were up-regulated (Fig. 2a, left bars). There were
754 proteins with significantly difference in LM tissues
when compared with PN tissues and 632 proteins with sig-
nificantly difference in LM tissues when compared with

MT tissues (Fig. 2d). Among that, 656 (47.33%) of which
were down-regulated and 730 (52.67%) of which were
up-regulated (Fig. 2a, middle and right bars) and 198 signifi-
cantly differential expression proteins (DEproteins) (14.28%)
involved in metabolic pathways (P = 3.28E-14) (Fig. 2e).
These results suggest that metabolism-related pathways
may play important roles in the liver metastasis of CRC.
To explore the functions of proteins that are dysregu-

lated in CLM, we used DAVID analysis software to clas-
sify the Gene Ontology of the 1386 significantly altered
proteins in LM tissues according to their molecular
functions and cellular components and ranked them ac-
cording to their biological processes (Fig. 2f ). The
top-ranked biological function was metabolites and en-
ergy, organonitrogen compound, cellular respiration,
ATP metabolic process, localization, which suggests that
metabolism-related biological function is associated with
CLM (Fig. 2b).

Fig. 2 Differentially expressed proteins identified from 2 triplet sets of PN, MT and LM tissues. a The cellular distribution is shown for 4198
proteins identified by mass spectrometry, with a false discovery rate of 1.0%. Correlation analysis of the expression of 4198 proteins from MT/LM
vs. PN (b) and LM vs. MT (c) samples from mass-spectrometry analysis. d Numbers of differently expressed proteins (≥2-fold difference; P value
≤0.05). e KEGG pathway analysis of the 1386 differentially expressed proteins. f Gene Ontology using STRING online analysis software classified
the 1386 differentially expressed proteins in CLM according to their biological process, cellular components and molecular functions
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Identification of significantly dysregulated mRNAs in CLM
Next, we performed RNA sequencing to identify differen-
tially expressed mRNAs (DEmRNAs) that are specifically
dysregulated in CLM. Unsupervised hierarchical clustering
of the expression data showed that the MT and LM tissues
had closely related expression profiles when compared to
para-tumor normal tissue or primary CRC tissue from
CRC patients without liver metastasis (NM), suggesting
clonal and genetic similarity for these pairs (Fig. 3a). We
identified a total of 2136 genes significantly changed in LM
(Fig. 3b) when compared to PN or NM groups, in which
462 genes (21.6%) were enriched in metabolism pathways
(P = 1.58E-17) (Fig. 3c). Among them, 256 (55.41%) of
which were down-regulated and 206 (44.59%) of which
were up-regulated.
Moreover, analysis from TCGA sequencing dataset

identified a total of 6585 significantly changed genes in
CLM (Fig. 3d). A total of 5632 genes were significantly

changed (3788 down-regulated and 1844 up-regulated)
in the MT group compared to the PN group; and 1709
genes were significantly changed (1697down-regulated
and 12 up-regulated) in the MT group compared to the
CRC tumor samples without liver metastasis (NM)
group. Among that, 1254 genes were in common with
DEmRNAs identified in our study (58.7%).

mRNA versus protein abundance in CLM
When compared with the 1386 DEproteins identified
by LC-MS/MS, 362 DEmRNAs showed significant
positive mRNA-protein correlation (Fig. 3e, left and
middle panels). To determine whether the concord-
ance between protein and mRNA variation is related
to the biological function of the gene product, we
performed KEGG enrichment analysis, which indi-
cated that among the 362 significantly deregulated
genes/proteins, 48 are enriched in metabolic

Fig. 3 RNA sequencing and mRNA-protein correlation analysis. a Hierarchical clustering for RNA-sequencing data of 8 samples. b Significantly
changed genes among three groups (MT vs. PN, MT vs. NM, and LM vs. MT) from RNA-sequencing data of 8 samples. c KEGG pathway
classification enrichment analysis of 2136 differentially expressed genes in CLM. d Significantly changed genes among two groups (MT vs. PN and
MT vs. NM) from TCGA RNA-sequencing data. e 362 significantly changed genes showed significant mRNA-protein correlation, with a mean
Spearman’s correlation coefficient of 0.55. Among these, 48 genes were enriched in metabolism pathways
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pathways (P = 4.59E-5) (Fig. 3e, right panel). These
findings further verify the role of metabolic pathway
genes in CLM.

Impact of copy number alterations in CLM
We further performed global copy number variation
(CNV) analysis to identify likely gene targets of focal al-
terations and to explore the impact of CNVs on mRNA
and protein abundance and the potential correlation
with LM. PN samples displayed scarcely any gains or
losses, however, relative to the PN group, the LM and
MT groups had 321 regions of significant focal amplifi-
cation and 209 regions of significant focal deletion
(Fig. 4a, b). In addition to several previously well-defined
arm-level changes associated with carcinogenesis of

CRC17, gains of 2q, 5p, 6p, 10q, 11p and 16p/q and de-
leted 18p/q were identified to contain the mRNA abun-
dance variation (Fig. 4a, b). When compared with the
correlation of the protein-CNV correlation (Spearman’s
correlation coefficient 0.41; P < 0.05), the correlation be-
tween protein level and mRNA expression was much
stronger (Spearman’s correlation coefficient 0.53; P < 0.01)
(Fig. 4c). These results suggest that the mRNA transcript
abundance is a relatively reliable predictor of protein
abundance differences, but that copy number alterations
showed little consistency with the protein level.
To further examine the potential role of CNV, we cal-

culated the number of genes/proteins that also had CNV
alteration. When compared with the 362 significantly
changed genes/proteins, 112 were found with changed

Fig. 4 Effects of copy number alterations on mRNA and protein abundance. a Copy number alterations in 6 specimens from 2 patients, including
2 sets of primary MT, matched LM and PN, were identified by chromosome microarray analysis. Blue represents amplification, red represents
deletion, and purple represents loss of heterozygosity. Red boxes indicate chromosomes that contain hot spots driving global mRNA variation
abundance. b Chromosomal location of 321 regions (including 8424 genes) with significant focal amplification and 209 regions (including 2560
genes) with significant focal deletion in the LM or MT groups compared with the PN group. c Correlation analysis of the CNV-mRNA-protein
abundance. The 1386 significantly changed proteins showed significant mRNA-protein correlation (multiple-test adjusted P < 0.01), with a mean
Spearman’s correlation coefficient of 0.53 and CNV-protein correlation (multiple-test adjusted P < 0.05), with a mean Spearman’s correlation
coefficient of 0.41. d Chromosomal location of 112 copy-number changed genes with positive CNV, mRNA and protein correlation
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copy-number (Fig. 4d). Among those, chromosomes 1,
6, 7, 8, 12, 16, 19 and X contained the strongly hot spots
driving global mRNA abundance variation (Fig. 4d),
which highlights the importance of these regions in
CLM.

Evaluation the prognostic and biological power of
significantly dysregulated proteins in CLM
We next evaluated the clinical significance of 286 CRC
patients from TCGA database for the 112
CNV-mRNA-protein correlated molecules. Our results
showed that 4 up-regulated genes (HSP90AB1, COL1A2,
FABP5 and BGN), which located in CNV hotspots (lo-
cated in 6p21.1, 7q21.3, 8q21.13 and Xq28, respectively)
were associated with prognosis of CRC patients (Fig. 5a).
Kaplan-Meier survival analysis confirmed that high ex-
pression of HSP90AB1, COL1A2, FABP5 or BGN was
significantly associated with a shorter overall survival

(P < 0.05) (Fig. 5b). Among those, high expression of
COL1A2 and BGN was extremely significantly associated
with a shorter overall survival (P < 0.01) (Fig. 5b). More-
over, high expression of COL1A2 or BGN was positively
associated with disease-free survival (P < 0.05) as deter-
mined by Kaplan-Meier survival analysis.
To investigate the biological role of these

CNV-mRNA-protein correlated genes, which associated
with the prognosis in CRC progression and liver metastasis,
we established the CRC cell line SW480 to stably overex-
press COL1A2 or BGN to perform the gain-of-function
studies in vitro (Fig. 5c). We then tested the effect of cell
migration by COL1A2 or BGN overexpression via
wound-healing assay and observed significant improvement
of cell motility by COL1A2 or BGN (P < 0.01) (Fig. 5d). By
two-chamber transwell assays, we also showed that forced
expression of COL1A2 or BGN markedly enhanced the
transwell invasiveness of SW480 (P < 0.01) (Fig. 5e).

Fig. 5 Two genes display significant focal amplification and increased mRNA-protein abundance with clinical significance and biological function.
a Significant focal amplification and increased mRNA-protein abundance of 4 CNV-mRNA-protein correlated molecules in the MT group
compared to the PN group. b The association of the expression levels of 4 CNV-mRNA-protein correlated molecules with overall and disease-free
survival by Kaplan-Meier survival analysis. c Western blot analyze for COL1A2 or BGN overexpression in CRC cell line SW480. Wound-healing assay
(d) and migration abilities (e) of the parental and COL1A2 or BGN overexpressed SW480 cells
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Somatic coding mutations in primary and metastatic CRC
To provide a comprehensive understanding of genetic ab-
normalities occurring in CLM, we used massively parallel
paired-end sequencing technology to perform whole-exome
solution-based hybrid capture sequencing of 2 triplet sample
sets. The mean sequencing depth in the target regions was
80.28× (range 71.5 to 92.85). Analysis of the whole-exome
sequencing data identified 27,778.5 mean point mutations
(range 26,323 to 29,126). There were a variety of types of
mutations identified, with T >A transversion being the most
common nucleotide substitution (Fig. 6a). The distribution
of CLM-related SNVs is shown in Fig. 6b. After filter
analysis and exclusion of synonymous mutations, the num-
bers of indels and non-synonymous SNVs were calculated
(Fig. 6c). In addition to some previously reported mutations,
such as those in TP53, APC, KRAS, and PIK3CA [5], we
identified 97 MT and LM-shared point mutations and 701
point mutations only existed in MT (Fig. 6d).
We further assessed the somatic gene mutations in an ex-

tended validation group of 44 paired normal colorectal tis-
sues and CRC tissues by Sanger sequencing and nucleotide
polymorphism genotype analysis. Subsequently, 175 nonsy-
nonymous mutations within 171 genes were further verified.

In addition to the expected APC, TP53, SMAD4,
PIK3CA and KRAS mutations, we found some new muta-
tions that have not been reported to be involved in CLM
including the TLL2A302S mutation, which was identified in
both the MT and LM groups (Fig. 6e), and the KLF11D19N

mutation, which was specific for the LM cohort (Fig. 6f).
Moreover, our single nucleotide polymorphism genotype
analysis revealed that 2 sites (FABP5A2T and HSP90A-
B1E299N) were frequent mutated only in the MT cohort,
with mutation rates of 4.55% (2/44) (Fig. 6g) and 15.9% (7/
44) (Fig. 6h), which suggest their potential roles in CLM.

Single amino acid variants (SAAVs) in CRC
A fundamental goal of proteogenomics is to identify protein
coding alterations that are expressed at the protein level.
However, standard database search approaches cannot iden-
tify variant peptides from MS/MS data. Therefore, we cre-
ated a customized mutation database to search for SAAVs
in CRC. A SAAV library was prepared using 113,844 mu-
tated sites in CRC tissues from cBioport and our whole ex-
ome sequencing data, and 16,581 mutated proteins were
identified, which constitute 82.08% of 20,201 proteins in the
CRC standard protein library (Fig. 7a).

Fig. 6 Somatic coding mutations in paired normal colorectal samples, metastatic CRC and hepatic metastatic focus. a Mutation types in 6
specimens from 2 patients, including 2 sets of PN, primary MT, and synchronous matched LM. T > A transversions were the most common
nucleotide substitution. b Distribution of SNVs in exonic, intronic, UTR and splicing regions based on our RNA-sequencing data. c Distribution of
indels and non-synonymous SNVs in 6 samples from 2 patients, including 2 sets of PN, primary MT, and synchronous matched LM specimens. d
Numbers of MT-specific, LM-specific and MT & LM-shared indels and nonsynonymous SNVs. Mutations involved in CLM including the TLL2A302S

mutation, which was identified in both the MT and LM groups (e) and the KLF11D19N mutation, which was specific for the LM cohort (f). Two
frequently mutated sites (DMRTB1R202H and PARP4V458I) in the MT cohorts were identified by SNP genotype analysis, with separate mutation rates
of 5.26% (2/38) (g) and 17.5% (7/40) (h)
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We determined the total numbers of mutated and
non-mutated peptides and tumor-specific mutant pep-
tides and found that mutated peptide numbers in MT
samples were significantly increased (Fig. 7b), which
indicates that the mutated peptide number has poten-
tial predictive value for CRC liver metastasis. Among
those, 12 SAAVs in 8 proteins occurred only in NM
patients (Fig. 7c; Table 2); and 13 proteins in 18 MT
patients had 26 SAAVs; of which, 26 SAAVs in 6 pro-
teins occurred in both NM and MT samples (Fig. 7d;
Table 3), and 11 SAAVs in 5 proteins only occurred
in MT samples (Fig. 7e; Table 4).

To further evaluate the potential role of SAAVs,
we examined the expression levels of the proteins
with SAAVs. The expression of 6 NM & MT-shared
(Fig. 8a) and 8 MT-specific mutated proteins was
upregulated in CRC. The sites of the most fre-
quently mutated three proteins, MYH9A769T,
HSPA9K555N and CCT6AI423N, are shown (Fig. 8c).
Furthermore, high MYH9 and CCT6A expression
were each associated with shorter overall survival
and disease-free survival (P < 0.05; Fig. 8d), which
indicates that they have potential predictive values
for CRC liver metastasis.

Fig. 7 Numbers of SAAVs in paired PN, NM or MT samples. a The proportion of mutated proteins and amino acids in CRC samples were
calculated by comparing LC-MS/MS data for the standard protein library and SAAV library. b Numbers of SAAVs in 21 NM, 23MT and their PN
colorectal tissues. Numbers of NM-specific (c), MT-specific (d) and NM & MT-shared SAAVs (e).The mutated pepides were identified by comparing
LC-MS/MS data for the standard protein library and SAAV library

Table 2 SAAVs in NM-specifical sample

Protein name Accession number Wild Type peptide Mutant peptide Site of peptide Site of SAAV No. of SAAVs

RAB2A P61019 IQEGVFDIDNEANGIK IQEGVFDINNEANGIK P61019_171_186 D179N 4

CKAP4 Q07065 ITIQAITEK IAIQAITEK Q07065_347_355 T348A 2

VIM P08670 IIEEMIQR IQEEMIQR P08670_189_196 I190E 1

PABPC1 P11940 GFGFVCFSSPEDATK GFGFVCFSSPEEATK P11940_334_348 D345E 1

UQCRC1 P31930 ICTSVTESEVAR ICTSATESEVAR P31930_379_390 V383A 1

HNRNPM P52272 INDIISNAIK INEIISNAIK P52272_372_381 D374E 1

ACTG2 P63267 CEEETTAPVCDNGSGICK CEEETTAIVCDNGSGICK P63267_2_19 P9I 1

LRG1 P02750 NAITGIPSGIFQASATIDTIVIK NAITGIPPGIFQASATIDTIVIK P02750_126_148 S133P 1
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Discussion
CRC is the third most common malignancy and the sec-
ond leading cause of cancer deaths in many countries. It
develops from a benign adenomatous polyp into an inva-
sive cancer, and nearly 50% of CRC patients develop CLM
[17]. Without treatment, patients with colorectal hepatic
metastases have a median survival of only 5–10 months,
with less than 0.5% surviving beyond 5 years [18].
The molecular pathogenesis of CRC is associated

with a variety of genetic changes that lead to the ab-
errant activation of proto-oncogenes and inactivation
of tumor suppressor genes [19]. Characterization of
CRC genomes has been elaborated by large-scale
next-generation sequencing, which has yielded im-
portant insights into the genes and mechanisms that
contribute to cancer development and progression. A
handful of recurrently mutated genes, including APC,
KRAS, TP53, and SMAD4, have been discovered by
this method [20]. According to the classical tumor
progression model of sporadic CRC proposed by
Fearon and Vogelstein, APC mutation is involved in
adenoma formation, followed by KRAS oncogenic
mutation that promotes the transition from inter-
mediate adenomas to carcinomas, with TP53 inactiva-
tion as a late event [21]. Subsequently, mutations in
individual genes (including SMAD4) facilitate CRC
metastasis [22]. Leveraging the next generation se-
quencing technology, TCGA Network has reported
the common occurrence of mutations in additional
genes, such as ARID1A, SOX9 and FAM123B, which
also demonstrate that CRC is a highly genetically het-
erogeneous disease at the population level [5].

Understanding the genetic differences between primary
colon cancer and their metastases to the liver is essential for
devising a better therapeutic approach for this disease [23].
Therefore, research efforts have shifted from identifying
driving mutations of carcinogenesis to genetic abnormalities
during CRC progression in order to provide valuable in-
sights into the clonal relationship and genetic differences
between primary CRCs and matched colorectal liver metas-
tasis [24]. A recent study reported high genomic concord-
ance between primary colorectal carcinoma and metastases,
which indicate that somatic mutations may accumulate
within the microenvironment of a primary cancer before
disseminating to their metastatic sites [25]. Consistent with
this hypothesis, in this study, we employed primary CRC
tumor samples from patients with liver metastasis to trace
progressive disease and combined CNV, mRNA and protein
profiling data to identify potentially relevant genes in ampli-
fied chromosomal regions. Our results revealed the import-
ance of chromosomes X, 7, 16 and 1, which contain the
four strongest hot spots driving global mRNA abundance
variation. These results also provided new insights into the
potential roles of PFDN4 and COL1A2 in CLM. We also
created a customized mutation database of CRC to identify
SAAVs that occur during CRC metastases to the liver. The
results indicate that the mutated peptide number has poten-
tial prognosis value, which can be broadly extended to
understand roles of SAAVs in other cancers.

Conclusions
To the best of our knowledge, this is the first comprehen-
sive study to use proteogenomic profiling of primary
CRCs from patients with or without liver metastasis to

Table 3 SAAVs in NM & MT-share sample

Protein name Accession number Wild Type peptide Mutant peptide Site of peptide Site of SAAV No. of SAAVs

MYH9 P35579 AGVIAHIEEER AGVITHIEEER P35579_765_775 A769T 8

HSPA9 P38646 EQQIVIQSSGGISKDDIENMVK EQQIVIQSSGGISNDDIENMVK P38646_542_563 K555 N 8

HSP90AB1 P08238 NPDDITQEEYGEFYK NPDDITQDEYGEFYK P08238_292_306 E299N 3

ATP2A2 P16615 DIVPGDIVEIAVGDK DIVPGDNVEIAVGDK P16615_144_158 I150N 3

FABP5 Q01469 ATVQQIEGR TTVQQIEGR Q01469_2_10 A2T 2

XPO1 O14980 NVDIIKDPETVK NVDIIQDPETVK O14980_675_686 K680Q 2

Table 4 SAAVs in MT-specifical sample

Protein
name

Accession
number

Wild Type peptide Mutant peptide Site of peptide Site of
SAAV

No. of
SAAVs

CCT6A P40227 NAIDDGCVVPGAGAVEVAMAEAIIK NAIDDGCVVPGAGAVEVAMAEAINK P40227_400_424 I423N 4

CAT P04040 NISVEDAAR NISVEDVAR P04040_244_252 A250V 2

ACTN1 P12814 VGWEQIITTIAR VGWEQIITTITR P12814_715_726 A725T 1

JUP P14923 TMQNTSDIDTAR TMQNTNDIDTAR P14923_192_203 S197 N 1

ARF4 P18085 HYFQNTQGIIFVVDSNDR HYFQNTQGIIFVVDSDDR P18085_80_97 N95D 1

FAM3D Q96BQ1 AFDMYSGDVMHIVK SFDMYSGDVMHIVK Q96BQ1_118_131 A118S 1

HLA-B P01889 FISVGYVDDTQFVR FIAVGYVDDTQFVR P01889_46_59 S48A 1
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define the dominant events of metastatic lesions in terms
of their expression and mutation. Our comprehensive in-
tegrative analysis of 44 colorectal tumor and normal pairs
provides a number of insights into the biology of CLM
and identifies potential therapeutic targets. Moreover, our
characterization of the annotated metastatic CRC prote-
ome clarifies the power of integrating genomics (SNVs)
and proteomics (SAAVs). This approach provides new in-
sights into the roles of these protein alterations in CLM,
which can be broadly extended to understand the roles of
protein mutation in other cancers.
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