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Abstract: Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur
during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease
stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify
the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the
molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to
compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
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Background
Neuroblastoma (NB) is the most frequent extracranial
solid tumour in children, accounting for 7 to 8% of all
childhood malignancies and 15% of all cancer-related
deaths in this population. It is the most frequently diag-
nosed cancer during infancy, the median age at diagnosis
being about 19 months. While 90% of the patients are
younger than 5 years, NB is very rare after the age of 10.
NB originates from embryonal sympathoadrenal lineage
of the neural crest and can arise anywhere along the
sympathetic nervous system chain, with the majority of
tumours occurring in the abdomen (65%), more particu-
larly in the adrenal gland. The other common sites in-
volved are chest, neck and pelvis. Regional lymph nodes,
bone marrow, bone, liver and subcutaneous tissue are the
most frequently observed metastatic localizations [1, 2].
NB is a complex and heterogeneous disease, with a
marked variability in prognosis depending of the age,
stage and biological characteristics at diagnosis. The
clinical course ranges from spontaneous regression to
inexorable progression and death despite multimodal
treatments. NB differentiation into benign ganglioneur-
oma is not uncommon and known for a long time.
While NB maturation occurs spontaneously or after
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chemotherapeutic treatments, multiple chemical modifiers
were shown to suppress tumorigenicity and to induce NB
differentiation in cell lines [3, 4].

Metastatic disease is present in approximately 50% of
cases. Other biological factors associated with poor
prognosis are: age at onset of more than 18 month at
diagnosis, unfavourable histology, diploid DNA contents,
MYCN amplification (MNA), and specific segmental
chromosomal aberrations (SCA) such as 11q deletion,
1p deletion and 17q gain [1, 5, 6]. In contrast, an excellent
overall (OS) and event-free survival in NBs with only nu-
merical chromosome alterations is reported [7, 8]. In
2009, the International Neuroblastoma Risk Group Task
Force published a classification system in order to stratify
patients in different subgroups regarding the risk of death
[9]. Recently, Matthay et al. proposed a modified version
of this system taking into account the most recent gen-
omic data and treatment approaches. Using clinical
staging, image-defined risk factors for surgery, age at
diagnosis, histology, tumour differentiation, MYCN
status, genomic profile and ploidy, it is possible to
stratify patients into four subgroups regarding the risk
of death (very low, low, intermediate and high-risk).
Whereas children in the very low-risk subgroup have
an expected OS rate of 99-100%, patients in the high-
risk subgroup have a rate of long-term survival of less
than 50% despite dose-intensive, multimodal therapy
including surgery, high dose chemotherapy with au-
tologous bone marrow transplantation, radiotherapy
and immunotherapy [10]. In regard to this poor
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outcome, it is obvious that new therapeutic strategies are
required to improve the outcome and decrease the tox-
icity (for a more general review of Neuroblastoma authors
recommend the recent review of Matthay et al.) [10].

For more than two decades, 11q deletion is known to
be a recurrent genetic alteration and suspected to con-
tain NB suppressor gene(s) [11-13]. While 11q deletion
is more frequently detected than MNA (35-45% vs. 20—
25%, respectively), both alterations are almost mutually
exclusive [1, 5, 14—17]. Interestingly, 70 to 80% of stage
4 NBs have MNA or 11q deletion [18-20] and the poor
prognosis significance of 11q deletion approaches that of
MNA [5]. In this article, we will review the data concern-
ing 11q deletion in order to have a deeper understanding
of its role in the development and/or progression of NB.
In addition, the signature of 11q-deleted genes will be
analyzed using QIAGEN’s Ingenuity Pathway Analysis
software (IPA, QIAGEN Redwood City) in order to
understand potentially affected cellular processes and
to position them in frequently dis-regulated networks
of MYCN, MAPK and TP53 pathways.

Clinical implication of 11q aberrations in neuroblastoma
11q aberration is reported in 20 to 45% of NBs depend-
ing on the genetic alterations analysed and the screening
method used [5, 15-17, 21-23]. While 11q23 is the most
frequent 11q region found to be deleted, different stud-
ies screened allelic status of chromosome 11q using
microsatellite markers [15, 21] and found 11q loss of
heterozygosity (LOH) in approximately 34 to 44% of the
NB samples. Nevertheless, a subgroup of these patients
presented an unbalanced 11qLOH (unbl11qLOH) de-
fined as LOH at markers on 11q with retention of 11p
material. Attieh et al. reported unbl11qLOH in 17% of
the whole NB group representing 50% of the LOH
11923 NB, a proportion that increased with clinical risk.
In this study, 11q23 LOH and unbl1qLOH were both
associated with high-risk features, but only unb11qLOH
was independently associated with a decreased 3-year
EFS (50% vs. 74%) [21]. These results confirmed previ-
ous published data, which have all suggested an associ-
ation between LOH at 11q23, and high-risk NB features
at stage 4 and unfavourable histology [11, 15, 17, 24—26)].
Similar results were found by using fluorescence in
situ hybridization (FISH). Spitz et al. reported 11q23 al-
terations in 26% of the 611 NB samples analysed with
18% displaying a deletion resulting in monosomy of dis-
tal 11q and 8% showing an imbalance with at least two
intact copies of 11q23 with additional centromere cop-
ies. Interestingly, it was shown that the proportion of
11q alterations increased with stage (8% in stage 1, 10%
in stage 2, 11% in stage 4S, 21% in stage 3 and 52% in
stage 4) but also with age at diagnosis, proportion of 11q
alteration increasing to more than 50% after the age of
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2.5 years. As in other studies, 11q status was found
prognostic for EFS and strongly correlated with occur-
rence of metastatic relapse [21, 27].

More recently, whole genome screening methods such
as single nucleotide polymorphism (SNP) arrays and
array based comparative genomic hybridization (CGH)
have been used to detect large genomic gains or losses.
High-resolution arrays were also able to detect recurrent
small, interstitial, genomic alterations, possibly involved
in the development of NB. While whole (or numerical)
chromosome changes without segmental alterations
(NCA) [8] are frequently observed in low risk NBs with
good outcome, SCA defined by gains or losses of partial
chromosome material are associated with poor prognosis
in most cases [7, 8, 28, 29]. With losses of 1p, 3p, 4p and
gains of 1q, 2p and 17q; 11q loss is one of the most fre-
quent SCA observed, reported in 13 to 68% of the samples
depending of the cohort analysed [5, 7, 8, 28, 30, 31]. As
previously reported, 11q loss was more frequently found
in NBs with high-risk (HR) features (47 to 68% of the HR
vs. 47 to 50% for MNA) [30, 31], and regularly found asso-
ciated with poor prognosis [5, 7, 8, 29, 32]. Schleiermacher
et al. reported that in 147 NBs without MNA, a SCA
profile was the strongest independent prognosis factor.
In this cohort, 76% of NBs with SCAs showed an 11q
deletion [8].

Interestingly, in the cohort studied by Caren et al., the
median age at diagnosis was significantly higher in the
11q deletion group compared to NCA, MNA and 17q
gain groups (42 months vs 3, 21 and 21 months, respect-
ively). While the prognosis were similarly poor in MNA
and 11q deletion groups (8 years OS ~35%), the median
survival time after diagnosis was longer in 11q deleted
NBs compared to MNA NBs (40 vs 16 months) [5]. Simi-
lar results concerning the age were recently reported in
the Swedish cohort of unfavourable NBs where the me-
dian age at diagnosis was 58.5 months in NBs with 11q
deletion vs 18 months in the MNA group [30]. While 11q
alteration is detected mostly in older patients, over
18 months of age at diagnosis [31], recent analysis of
the INRG database showed that in the youngest patients
(< 18 months) with stage 3 NB, 11q deletion is the only
factor found independently associated with poor EFS and
OS [32].

Different studies, which analysed correlations between
11q deletion and other genetic abnormalities, reported
not only an anti-correlation with MNA, but also a positive
association with 17q gain and loss of 3p [5, 8, 16, 17, 31, 33].
More recently, 11q loss was found positively correlated with
4p loss and 7q gain but not with 17q gain [14]. Usually
recognized as mutually exclusive, MNA and 11q deletion
tumours were rarely reported [5, 15, 22, 27, 31, 34-36]. In
these infrequent cases, the prognosis seems to be
highly dramatic [27, 34, 35]. The clinical significance
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of intra-tumour heterogeneity of MNA (hetMNA) de-
fined by the coexistence of MNA cells as well as non-
MNA cells detected by FISH in the same tumour, was
recently studied by Bogen et al. [34]. In older patient
(> 18 months), tumours were mostly found di- or
tetra-ploid containing lower number of MNA cells but
higher number of SCA, including 11q deletion (4/10),
and chromosomal breakpoints. Clinically, these patients
often present an aggressive disease with tumour progres-
sion and relapse [34].

In the particular subgroup of NBs occurring in ado-
lescent and young adults [30], representing less than
5% of NBs and characterized by a high prevalence of
SCA (35-85%) and very low incidence of MNA, the
prevalence of 11q loss is high, ranging between 30 to
60% [37-39]. In this particular subgroup where ALK and
ATRX alterations are also more frequent and the outcome
very poor [37-40], ATRX mutated NBs showed a higher
number of SCA including 11q deletions (Fig. 1) [37].

In 2010, Schleiermacher et al., reported genomic profil-
ing of paired tumour samples obtained at the time of diag-
nosis and relapse from 17 patients with NBs. In 4 cases,
11q loss was found as an additional segmental change only
present in the relapse sample. Interestingly, 2 of these 4
patients were only treated by surgery at diagnosis, suggest-
ing that these alterations were not directly linked to the ef-
fects of the chemotherapy or irradiation. Despite many
efforts, it was not possible to determine if the 11q loss ob-
served at relapse occurred secondarily during tumour
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progression conferring a selective advantage to the
tumour cells or was already present in a sub-clone at
diagnosis [41]. More recently, a relapse-specific 11q
loss was detected in 3 out of 23 NB samples by Eleveld
et al., while this specific alteration was not found in 16
paired samples by Schramm et al. [42, 43].

It is now well recognized that 11q deleted NBs consti-
tute a distinct subgroup of aggressive malignancies, but
with distinct features compared to the MYC(N)-driven
subset [5]. A high frequency of chromosomal breaks sug-
gestive of a chromosomal instability [3] is one of the main
features of 11q deleted NBs, reported by different groups
[5, 30]. This finding suggests that one or more genes lo-
cated on 11q could be involved in the chromosomal in-
stability (CIN) phenotype, by haplo-insufficiency or by
inactivation of the second allele by mutation or epigenetic
modification. To address this point studies of clonal evo-
lution on NB with 11q deletion are needed.

11q chromosomal deletion mapping studies

Since the first recognition that 11q deletion is an import-
ant event, many studies have focused on identifying the
smallest region of overlap (SRO) aiming to pinpoint the
location of the gene(s) responsible for the change in cell
behaviour. The main conclusion from early studies by
Guo et al., Maris et al. and Schleiermacher et al. (combin-
ing in total 183 NBs) was that the majority of NBs with
11q loss have large chromosomal deletions roughly ran-
ging from 11q14.1 to the 1lqter [8, 11, 15]. The shortest
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Fig. 1 Molecular networks between genes involved in NB development by the data mining IPA software. Nine genes (red and green) on 11q
recognized in regulatory networks involving MYCN, MAPK, PGE2, ATM and p53 (experimentally described interaction only). All genes presented in this
figure are highly associated with cancer (27/36 molecules, p-value = 241E-18). Where appropriate, proteins (white) were added by IPA software to
complete the pathway. Legend contains description of basic protein functions, nature of interaction and relation to commonly mutated genes in NB
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deletion was reported by Schleiermacher et al. that
spanned from 11q23.1 to 11qgter [8]. Both Maris and Guo
reported the shortest region from 11q21 to llqter. In
addition, 12 NB patients were found with intact 11lqter
having interstitial 11q deletion. Out of these 12 samples, 7
retained only a minor part of 11qter close to microsatellite
marker D11S968 and for the remaining 5 cases, the
SRO was proposed between D11S1340 (11q23.3) and
D11S1299 (11q23.3) [15]. Later, after acknowledging
the small number of samples used for determining the
SRO, a broader SRO between D1151358 (11q14.3) and
D11S1345 (11q24.1) was proposed (Fig. 2a) [11]. More re-
cently, segmentation data from SNP arrays obtained from
the TARGET data matrix (https://target-data.nci.nih.gov/
Public/NBL/copy_number_array/L3/) highlight the differ-
ences between non-MNA and MNA SCA profiles (Fig. 2b
and c respectively) and spotlight a breakpoint rich region
at 11q13.

Further evidence for localizing the SRO came from
precise identification of constitutional 11q deletions in
NB patients. A few cases of germline hemizygous partial
deletion of 11q associated with NB were reported in the
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literature (11q23 [44]; 11q14-q22 [45]; 11q14-23 [46, 47]
and 11q14.1-23.3 [48]) and seem to support the broader
SRO. Interestingly, in one of these cases, the NB was
multifocal [45] and in another case the NB was associated
with a ganglioneuroma (GN) [47]. Using the European
Cytogeneticist Association Register of Unbalanced Chromo-
some Aberrations database (ECARUCA database http://
umcecaruca0l.extern.umcn.nl:8080/ecaruca/ecaruca.jsp,
date of analysis: 15.7.2016), we reviewed 132 cases with
any kind of deletion between 11q14 and 1lqter but no
cases of NB were found. The most common abnormal-
ities in these children were mental retardation and
cranio-facial abnormalities. 11q deletions ranging from
11q24 or 11q25 to llqter resulted in Jacobsen syn-
drome (OMIM 147791) but these patients did not de-
velop NB. These data point to the conclusion that 11q
deletions apparently do not have a high penetrance for
NB and are not sufficient to cause it, but must be ap-
parently accompanied by other genetic events. Add-
itional support of such a conclusion came from early
chromosomal transfer experiments carried out by Bader
et al. showing that genes on 11q25 are only responsible
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Fig. 2 Location of deletions on 11g arm in NB tumors. a Location of deletions on 11qg arm in NB tumors. b Copy number segmentation plot of
chromosome 11 of 214 non-MNA high-risk tumors; horizontal lines represent single tumor dosages represented as the base 2 logarithm (y axis)
of the copy number along the chromosome; vertical lines indicate breakpoints associated with gain (red) and loss (blue) of genomic regions.
¢ Analogously to b, segmentation plot of chromosome 11 in 103 MNA tumors
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for NB differentiation but not of proliferation capability
of tumour cell lines [49].

Functional studies and sequencing of genes at 11q

Based on the knowledge described above, different
groups have used functional testing of candidate genes
to try to identify the gene(s) responsible for driving the
tumourigenesis. Several candidates such as CADM]I
(11q23.3, also known as TSLCI or IGSF4) [50-52], ATM
(11q22.3) [53] and H2AFX (11q23.3) [5] were probed by
different groups (Fig. 1). Analysis of these genes for add-
itional alteration(s), to satisfy Knudson’s two hit hypoth-
esis, showed no second mutation or hyper-methylation
for CADM1 [50-52], ATM [53] and H2AFX (personal
unpublished data). Although clear functionality (CADMI
and ATM) and associations (CADM1I1, ATM, H2AFX) of
these genes were established, their relevance to the de-
velopment of NB in vivo remains under question given
the lack of mechanism of their complete inactivation.
Recently, our lab explored the possibility that 11q could
be a substitute for direct amplification of MYCN by up-
regulating its expression. Results obtained on ATM
knock down NB cell lines showed that MYCN upregula-
tion was inconsistently found, and when detected, it was
not as strong as in the case of MYCN amplification, nor
was the molecular profile similar [53]. Another reason
against such hypothesis is that MNA NBs and 11q-deleted
NBs appear to be 2 different molecular entities as demon-
strated by mRNA expression profiling [22, 23, 54] and
they appear to be mutually exclusive [11]. The reason for
the latter is not yet fully understood, but it is interesting
that a higher frequency of chromosomal breaks are ob-
served in such tumours [36] perhaps pointing to the possi-
bility of unsustainable chromosomal instability.

An additional interesting candidate frequently located
near the 11q deletion breakpoints (11q13.4) is PHOX2A
[55], a transcription factor involved in the maintenance
of noradrenergic neuronal differentiation in the locus
coeruleus during embryogenesis [56]. This gene is under
transcriptional regulation by its homolog PHOX2B
(4p13) [57, 58], one of the gene involved in the majority
of the familial NB cases and known to be a master regu-
lator of neural crest development [59-61]. After exten-
sive search, no mutations in PHOX2A were found but
authors reported lower expression of this gene in un-
favourable NB [55]. Unfortunately, PHOX2A was not
screened for hyper-methylation or small deletions for ex-
ploring other possibilities of gene inactivation.

SDHD (11q23.1) is a well-known tumour-suppressor
gene frequently mutated in familial paraganglioma and
pheochromocytoma. Both tumours derive from the sym-
pathetic nervous system, providing dePreter et al. with a
good reason for exploring the possibility that SDHD is
the target of 11q loss. Upon detailed analysis of 31 NB

Page 5 of 12

cell lines and 67 NB tumours, two point mutations
(frame shift and missense) were found in NB cell lines
but no hyper-methylation or homozygous deletions were
detected. SDHD mRNA expression was significantly re-
duced in NBs with 11q loss but functional analysis did
not point to its influence on NB phenotype, prompting
the group to conclude that SDHD is probably of lesser
significance to NB development [62].

Santo et al. hypothesized that microdeletions, fusions
and rearrangements of 11q23 could be involved in dys-
regulation of important genes. By combining SNP arrays
with comparative genomic hybridization and gene expres-
sion data, they were able to identify overexpression of
FOXRI (11q23.3) due to micro rearrangements in 3 out of
362 NB cases. Additional functional studies showed that
over-expression of this gene could functionally replace
MYCN and drive proliferation of JoMal cells, while re-
pression of FOXRI by RNAi in HOS cells strongly inhib-
ited proliferation and triggered apoptosis [63].

Recently, two projects using DNA exome sequencing
were performed aimed at pinpointing the responsible
genes in 11q deletion for the more aggressive tumour
behaviour. These groups [64, 65], provided similar find-
ings to that published by Pugh et al. where it is shown
that there is a low mutation rate in the genes located at
11q and across the genome [66]. No obvious gene with
second hit mutations along with 11q deletion was identi-
fied [66]. This result is in agreement with the global view
of the NB mutation profile, which exhibits surprisingly
only a low number of point mutations, suggesting that
tumorigenesis is more reliant on larger chromosomal
rearrangements. In addition there is a lack of functional
studies for many of these 11q genes making proper
conclusions based on gene function harder.

Although 11q has been investigated with the intent on
finding tumour suppressor genes, it also harbours several
oncogenes that appear to play a role in the development
of NB and could present themselves as interesting targets
for therapy. Cyclin D1 (CCNDI) (11q13.3) maps into the
retain side of 11q breakpoint region. Rearrangements and
copy number gains resulting in over-expression have been
described in both tumours and cell lines [67, 68]. CCND1
in complex with CDK4/CDK6 regulates G1/S transition
and its oncogenic role in cancer has been largely associ-
ated with the inactivation of pRB. In NB, inhibition of
CCND1 and its targets CDK4/CDK®6 resulted in reduced
cell proliferation, cell cycle arrest and neuronal differenti-
ation [69]. Targeting CCND1 in NB through CDK4/CDK6
inhibition has attracted attention and is currently in pre-
clinical studies [70, 71].

NCAM (11q23.2) is a well-known tumour marker
expressed on NB whose higher expression is associated
with increased metastasis at diagnosis and advanced dis-
ease [72]. Further studies in vitro and in animal models
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suggested that poly-sialinization of NCAM promotes
dissemination of tumour cell lines by reducing the ad-
hesiveness of cells [73]. Two enzymes, ST8Sialll and
ST8SiallV, carry out poly-sialinization of NCAM. Inter-
estingly, expression of ST8SiallV but not ST8Sialll is
induced by retinoic acid and leads to increase in
NCAM poly-sialinization [74]. In line with these obser-
vations, Al-Saraireh et al. reported that inhibition of
ST8Siall by cytidine monophosphate decreases surface
poly-sialinization and migration of cells in vitro [75]
suggesting that NCAM or poly-sialinization enzymes
could be alternative specific targets for NB treatment.
Mouse model of 7 NB xenografts treated with the
IMGN901 showed an objective response in 3 cell lines
all having high and homogenous IHC staining for NCAM
(CD56) [76] providing further evidence that NCAM could
be interesting target for NB treatment.

An interesting candidate investigated was CHKI (11q24.2)
for which pharmacological inhibitors exist and could present
a novel avenue for treatment of NB [77]. Simultaneously
inhibiting both Weel and Chk1 resulted in a marked effect
on tumour size [78]. Further investigation of CHKI showed
that its inhibition induces PP2A tumour suppressor activity
resulting in de-phosphorylation of MYC and impaired
cancer survival [79]. Additional studies investigating
cell cycle demonstrated S phase arrest and progression
towards apoptosis after CHK1 inhibition [80]. Although
CHK1 seems to play oncogenic role in NB, it also acts
as a tumour suppressor as demonstrated in other can-
cers. CHK1 is well known to be involved in cell cycle
control and chromosomal stability [81, 82]. In NB, 11q
deletion could lead to haplo-insufficiency of this func-
tion proving beneficial for development of more aggres-
sive phenotype but complete inhibition of CHK1 might
prove too detrimental as it could cause mitotic catas-
trophe and ultimate cell death [83, 84].

Methylation pattern of 11q

Dedicated studies exploring methylation of 11q chromo-
some are sparse. The most current and probably most
thorough dataset is that produced by Decock et al. [85].
Although the dataset does not specifically study samples
with 11q deletion, researchers excluded NBs with MNA.
In addition stage 4 NBs were separated in two groups:
stage 4S (NBs known to have good prognosis despite
metastatic disease and low frequency of 11q deletions
(4%)) and stage 4 (high risk NBs) which would further en-
rich the cohort for NBs with 11q deletion. Stage 4 NBs
were compared to stage 4S or stage 1/2 disease [85].

Only 3 different 11q hyper-methylation sites were
found when comparing HR stage 4 to stage 1 and 2 NBs
and only 2 were in the vicinity of genes. One is located
within 11q23 close to miR4492 whose function is un-
known. The other near USP35 (11q14) which could be
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another candidate gene but the significance of this
finding is questionable as its location is not frequently
affected by 11q deletion.

Comparing HR stage 4 to stage 4S yielded 11 hyper-
methylated genes. Perhaps the most interesting of these
targets is HepaCAM (11q24.2), a gene already known to
play a tumour suppressor role in different cancers [86, 87]
and already found hyper-methylated in these neoplasias
[86]. Even though methylation identified only a few poten-
tial genes undergoing second hit, it is of particular interest
that changes in methylation appears to affect 11q chromo-
some surprisingly little. These results are supported by the
above-mentioned methylation and functional studies of
particular genes [52, 88], where researchers were not able
to find indices of hyper-methylation. Fisher et al. also
obtained similar result where no major difference in ex-
pression of dysregulated genes between favourable or un-
favourable NBs with 11q deletions was observed [22].

mRNA expression profiling by DNA microarrays

The advent of DNA microarrays brought about a new ap-
proach to finding potential candidates genes associated
with 11q deletion and NB aggressiveness. However, only a
few dedicated mRNA expression profiling studies on NB
with 11q deletion have been performed. Early results un-
covered specific expression patterns associated with 11q
deletion that were different to gene expression pattern of
MNA or low risk NBs [54], supporting the view that NBs
with 11q deletion represent a separate molecular entity.
Wang et al. similarly showed that NBs with 11q deletion
have a specific mRNA expression profile, distinct from
NBs with normal 11q. Different genes located in the
11q13-11qter region were proposed as candidate genes,
possibly implicated in the aggressive phenotype of this
subgroup of NBs, but no functional analysis was per-
formed [23]. A more detailed analysis published by Fischer
et al. showed that within NBs with 11q deletion, two dis-
tinct groups with different prognosis could be established
[22]. Interestingly, while favourable tumours with and
without 11q deletion showed similar mRNA profiles,
major downregulation of the genes located in 11q was
detected only in unfavourable NBs with 11q deletion.
In order to identify possible differences in the size of
11q deletion between the 11q favourable NB and 11q
unfavourable groups, CGH analysis was performed
showing no major difference between both groups.
Altogether, these results indicate that NB with 11q loss
comprises two biological and clinical distinct sub-
groups, they also indicate that in the unfavourable
group, 11q deletion affects the expression levels of
many genes located in 11q. Unfortunately, no func-
tional studies were performed in this study thus poten-
tially responsible gene were not identified [22].
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miRNAs of 11q

Four genes, encoding for miR4301, miR-125b-1, let-7a and
miR-100 are located in the 11q23.3 SRO region (Fig. 2).
MiR-125b-1, let-7a and miR-100 are clustered together and
the whole cluster is evolutionary conserved [89, 90]. In
addition, miR-100 and miR-125b-1 show considerable
sequence homology [89, 90]. MiR-125 is known to be
implicated in the differentiation of neurons [91] and as-
trocytes [92] as well as in the plasticity of synapses [93].
In addition, Laneve et al. showed that miR-125 is also
implicated in regulating NB cell growth through repres-
sion of truncated isoform of the neurotrophin receptor
tropomyosin-related kinase C [94].

The let-7 miRNA family has been shown to repress
clonogenic growth of NB cell lines by targeting MYCN
mRNA, suggesting that loss of chromosome 11q could
increase levels of MYCN [95]. Further investigation by
Molenaar et al. confirmed these results and expanded
the experiments to an animal model showing that lin28B
is able to repress let-7 miRNA and increase MYCN pro-
tein levels inducing the development of NB [96]. This
result is in accordance with observations obtained in
other cancers showing that let-7a has tumour suppressor
capabilities [97-100]. Closer investigation of let-7 miRNA
family on chick sympathetic ganglia confirmed 1lin28B and
let-7a functional roles described above but in contrast
lin28B did not affect let-7a expression [101]. A recent
study by Powers et al. again confirmed the above de-
scribed observations but they further demonstrated that
MYCN gene is able to sponge the expression of let-7 fam-
ily members thereby relieving selective pressure to lose
let-7 miRNA through 11q and 3p chromosomal deletions,
giving possible explanation of why MYCN and 11q-
deletions are rarely found together [102]. Association
studies found correlation between SNP rs17065417 in
lin28B with susceptibility to NB and expression of let-7
[103, 104]. Important targets include oncogene RAN and
convergence of 1in28B/RAN signalling on Aurora kinase
A activity [104] and HACE1 [103]. In addition to MYCN,
let-7a also binds and modulates expression of K-RAS, an-
other important oncogene frequently mutated in NBs
[105]. The importance of losing let-7a as a result of 11q
deletion may be related to the modulation of K-RAS
however this hypothesis remains questionable as no as-
sociation of 11q deletion and expression of K-RAS has
been found (R2, ID: GSE3960, R2 internal identifier:
ps_avgpres_xtnbmaris101_u95a).

Although there is no publication describing the role of
miR-100 in NBs, its association with tumour develop-
ment is well established but controversial. In breast can-
cer, silencing of miR-100 initiated apoptosis [106] and
the same effect was also observed in gastric tumour
[107]. High miR-100 expression in renal carcinoma cells
was associated with poorer prognosis [108], but not in
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hepatocellular carcinoma where downregulation of
miR-100 was associated with poorer cell differentiation
and shorter recurrence-free survival, while activation of
miR-100 repressed metastasis [109]. In oesophageal
squamous cell carcinoma [110], colorectal cancer [111],
bladder carcinoma [112] and ovarian cancer [113] miR-100
downregulation was generally found to be associated with
a poorer prognosis. In addition, miR-100 was shown to
downregulate ATM and by this way, sensitize glioma cell
lines to irradiation [114].

Other miRNAs located on 11q that have been studied in
association with tumour biology include miR708 (11q14.1),
miR34b (11q23.1) and miR34c (11q23.1). Similar to
miR-100, evidence on miR708 is conflicting, with some
studies reporting tumour suppressor properties in glio-
blastoma [115], renal cancer [116], ovarian cancer [117]
and hepatocellular carcinoma [118] and others reporting
oncogenic properties in bladder [119] and non-small cell
lung cancers [120]. One of the most downregulated
miRNAs in NB cell lines compared to normal adrenal
glands was miR34b/c. Similar results were also found in
a mouse NB progression model. Furthermore, treatment
with 5'-AZA demethylation agent successfully re-established
expression of miR34b/c, while miRNA mimic successfully
decreased NB proliferation rate [121]. In support of
these results in NB, it was shown that epigenetic inactiva-
tion in multiple myeloma and restoration of their expres-
sions led to reduced cell proliferation and enhanced
apoptosis [122]. Interestingly, both miRNAs appear to be
under transcriptional control of p53 as they are upregu-
lated when p53 is activated by Nutlin3a, inducing senes-
cence [123]. Polymorphisms in the promoter region of
miR34b/c are also implicated in higher risk for develop-
ment of cancer [124].

Other validated or provisonal miRNAs genes located
on 11q include: miR5579, miR3166, miR1261, miR4300,
miR4490, miR1304, miR1260B, miR3920, miR4693,
miR4491, miR4301, miR4492, miR4493, miR3167 but
their functions are unknown.

Investigations on expression of global miRNA profile
in NB with 11q loss showed a similar picture with that
of mRNA profile. Buckley et al. showed that NBs pa-
tients with 11q-deleted could be divided into high and
low risk groups based on their expression profile of only
15 miRNAs. Interestingly, the miRNA profile of higher
risk patients also correlated with more chromosomal ab-
normalities, but no other chromosomal abnormality was
significantly associated with it [14].

Haplo-insufficiency

Due to the lack of concrete findings of the above-
described efforts for identifying gene(s) responsible for
the increased NB aggressiveness, it was proposed that
11q deletion may be a case of haplo-insufficiency. In
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order to understand which pathways might be affected
by haplo-insufficiency when 11q is lost, we have ex-
tracted a list of genes located on 11q14 — llqter and a
list of genes located in the SRO broad region (Fig. 2).
Then using gene enrichment analysis (IPA software), we
were able to identify molecular pathways most exten-
sively affected by 11q deletion (Table 1). Certain genes
identified in these pathways include: matrix metallopro-
teinases (known to be an important re-modellators of
extracellular proteins), genes involved in bladder cancer
signalling and HIFla signalling, genes involved in im-
mune response such as granulocyte and agranulocyte ad-
hesion and diapedesis, leukocyte extravasation signalling
and inflamasome pathway were also present. Interest-
ingly 11q seems to also hold a high number of genes in-
volved in apoptosis and cell death of kidney cell lines,
lipid metabolism and uptake of potassium ions.

The timing of the 11q and its location in the different
cellular components of neuroblastic tumours

Precise timing of 11q deletion is not yet fully under-
stood. It’s increasing frequency with stage, being 8% in
stage 1 and 52% in stage 4 [27] and older age of NB on-
set [5], could suggest a late stage event. Other hypothesis
of being early stage event persisting after birth is pos-
sible as well. Interestingly, a recent research analysing of
stage 4 and 4S NB, suggests that 11q loss might appear
at early stages of metastatic tumorigenesis, preceding 3p
loss [125]. CGH analysis of ganglioneuroblastoma (GNB)
showed no 11q deletion, suggesting that this event
might occur rarely in this less aggressive NB subgroup
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[126]. Similar results were obtained by Coco et al. and
Bourdeaut et al. where CGH did not show any abnormal-
ities at chromosome 11 in ganglioneuroma (GN) and GNB
intermixed, while 11q loss was detected in NB [127, 128].

Although neuroblastic tumours are very heterogeneous
tumours composed of variable proportion of neuroblastic
and Schwannian stromal cells, the common origin of both
component and the neoplastic nature of Schwann cells were
highly debated [127-132]. In 2008, Bourdeaut et al. were
able to show by using X-linked inactivation and CGH, that
neuroblastic and Schwannian stromal cells develop from the
same GNB progenitor but later undergo separate develop-
ment [128]. In this study, while all neuroblastic components
showed chromosomal imbalance (4/6 with 11q loss), no al-
teration was observed in the Schwann cells area, pointing to
the likely possibility that 11q is acquired at the stage where
the neuroblastic component is already differentiated from
Schwann cells stroma [128]. More recently, Angelini et al.
reported that ganglion cells, but not Schwann cells, of nodu-
lar GNB showed similar genetic alterations detected in the
neuroblastic component. In this study, 5 of 8 nodular GNB
showed 11q loss in neuroblastic cells. When tested, 11q loss
was also detected in the ganglioneuromatous component of
the tumour, but not in Schwann cells. Altogether, the results
obtained from using SNP arrays and FISH suggest that
Schwann cells have a different origin and are not clon-
ally related to the other compounds [133].

Conclusions
During the past 25 years, substantial efforts have been
invested in trying to understand the molecular changes

Table 1 Comparison of differences in enrichment analysis between different 11q deletion segments

Diseases and Biological pathways Toxicological functions

Upstream regulators Canonical pathways

e g3
Ida Ido
69 =5 = 1 T = =
refractory adult Philadelphia chromosome ne. familial atrial fibrillation [ |
relapsed adult Philadelphia chromosome neg. long-QT syndrome 10
secretion of triacylglycerol nephronophthisis 15
quantity of vitamin A familial atrial fibrillation type 14
osteoarthritis - apoptosis of kidney cell lines -
Hypertriglyceridemia increased uptake of K+
homeostasis of triacylglycerol hydronephrosis
homeostasis of cholesterol cell death of kidney cell lines [
transport of molecule S5 | non-rheumatic aortic stenosis
catabolism of protein | early-onset premature coronary artery disease
concentration of triacylglycerol | i fondice

fflux of phospholipid i i
efflux of phospholipi atrial fibrillation

™ familial arrhythmia
long QT syndrome type 13

brugada syndrome type 7

Romano-Ward syndrome

myoclonic dystonia
early-onset breast cancer
import of cholesterol
familial amyloidosis
tauopathy

proteolysis [ ]

efflux of cholesterol

Andersen’s syndrome

11q14.1-gter
11q14.3-24.1
119233

THRB
APOC3
(53
PPARA
ETV1
OCLN
NR1H4
FOSLL
NR1H3
RAF1
PRSS2
UBAL
kb
RORA
SMARCA4

FOS
AEAL Nur77 Signaling in T Lymphocytes

UsP19 0X40 Signaling Pathway
ABL2 Role of Osteoblasts, Osteoclasts and Chondro...
HTRAL Clathrin-mediated Endocytosis Signaling

PRKGL

Inhibition of Matrix Metalloproteases
Granulocyte Adhesion and Diapedesis
Atherosclerosis Signaling

Bladder Cancer Signaling

HIF1a Signaling

Leukocyte Extravasation Signaling
Agranulocyte Adhesion and Diapedesis
LXR/RXR Activation

Cytotoxic T Lymphocyte-mediated Apoptosis..

LT

Inflammasome pathway
Amyotrophic Lateral Sclerosis Signaling

T Cell Receptor Signaling

Hematopoiesis from Pluripotent Stem Cells
Colorectal Cancer Metastasis Signaling
CTLA4 Signaling in Cytotoxic T Lymphocytes

Calcium-induced T Lymphocyte Apoptosis
CCRS Signaling in Macrophages

For the bioinformatics analysis IPA software was used. Annotated genes located on the most frequent 11q deleted region (11q14.1-qter from PAK to SNX), broad
SRO (11q14.3-24.1 from miR-4490 to miR-100) and narrow SRO region (11g23.3 from CADM1 to TRIM29) was used. All three gene sets were ranked for Disease and
Biological pathways, Toxicological Functions, Upstream regulators and Canonical pathways (in table only significant are shown). Fisher exact test was used for
determination of enrichment and p-value less than 0.05 was used as significant. The rank score represents the ratio of 11q deleted genes contained in a specific
network in comparison to the whole list of genes involved in the same specific network
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that lead to more aggressive NB tumours. As very few
mutations have been detected despite large international
efforts, recurrent patterns of NCA or SCA suggest that
NB is most probably a cancer driven by copy number ra-
ther than by specific mutations. Using classical cytological
methods, 11q deletion was identified as one of the main
events associated with poorer prognosis. Further molecu-
lar characterization using LOH and microarrays CGH or
SNPs, pinpointed a possible SRO within 11q. The ob-
servation that 11q is never lost on both chromosomes
lead to the suggestions that vitally important genes
must be present on the remaining 11q, but that the sec-
ond hit needed would logically be caused by a smaller
localized mutation or methylation event. However, research
aimed at pinpointing the culprit gene through sequencing
and methylation has yielded unsubstantial results.

Due to the unsuccessful efforts despite using the latest
sequencing technologies, it seems unlikely that classic
single unifying tumour suppressor gene explanation exists
for 11q deletion. Because of that, it has been proposed
that 11q deletion might be a case of haplo-insufficiency.
An alternative approach for identifying the 11q locus(i) re-
sponsible for the 11q loss phenotype might be possible
with CRISPR/Cas9 genomic editing. Although only a few
publications exist for this application, it has demonstrated
that creating gross deletions using a two guided RNA
system is possible. A deletion of up to 1 Mbp has an ef-
ficiency of around 1 to 2%, sufficient for the generation
of such clones with proper automatization equipment.
It was demonstrated that deletions of up to 60 Mbp are
possible. Such technology could prove a powerful tool
for studying haplo-insufficiency by deleting progressively
narrower regions and determining their contribution to
tumorigenesis or aggressiveness at every stage by standard
cytological methods. Developing such models of 11q
deletions would be an essential first step to defining
therapeutic vulnerabilities for this group of patients.
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