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Abstract

The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by
undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on
its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed,
ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and
the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment
of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence
of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of
their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the
disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC
pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour
the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional
chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC
component.

Background
Ovarian cancer
Epithelial ovarian carcinoma (OC) is the most lethal gy-
naecological neoplasm. Approximately 240,000 new
cases of OC are diagnosed every year, with 140,000 pa-
tients succumbing to the disease [1]. The 5-year overall
survival is below 45% and it decreases to 25% among pa-
tients with advanced OC [2]. There are several factors
that contribute to the high death-to-incidence ratio of
this disease. First, due to the fact that early-stage OC is
not associated with specific symptoms, 70% of the cases
are diagnosed when the tumor has already spread into
the abdominal cavity [3]. Second, even after primary
debulking surgery and adjuvant chemotherapy with car-
boplatin/paclitaxel (see below), the vast majority of pa-
tients with advanced OC experience tumor recurrence,
in many cases within 2 years from the diagnosis [4].
Third, in contrast to the primary tumor, recurrent dis-
ease often develops resistance to conventional

chemotherapy, resulting in a very poor cure rate and ac-
counting for the high lethality of OC.
The definition of OC encompasses a wide range of

neoplasms that are very distinct for their histopatho-
logical traits as well as for their origin, clinical evolution
and response to treatment. These different histotypes
can be grouped into two main classes: Type I and Type
II. The former group, characterized by an indolent clin-
ical course and general confinement to the ovary, in-
cludes low-grade and borderline serous, low-grade
endometrioid, clear cell, mucinous and transitional
(Brenner) carcinomas. These tumors often exhibit muta-
tions in specific genes that include KRAS, BRAF, PTEN,
PIK3CA, CTNNB1, ARID1A, and are characterized by
microsatellite instability and genomic stability. Type II
OC, instead, includes high-grade serous carcinoma, un-
differentiated carcinoma and carcinosarcoma, present at
advanced stage and exhibit highly aggressive behaviour.
These tumors almost invariably have TP53 mutations,
frequent inherited and somatic mutations in BRCA1 and
BRCA2 genes, and genomic (chromosomal) instability
[5, 6]. The most frequent form of type II OC is high-
grade serous carcinoma (HGSC), which accounts for
about 75% of all OC cases. HGSC is also very aggressive
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and causes 70–80% of all deaths among OC patients [7],
thus representing the most outstanding clinical chal-
lenge in gynaecological oncology.
Following primary cytoreduction, patients with Type II

tumors undergo adjuvant treatments with platinum-
based compounds, often in combination with taxanes.
Cyclophosphamide and liposomal doxorubicin are add-
itional chemotherapeutics used in OC treatment. While
these drugs have represented the standard of care for
the last 40 years (platinum-based therapy was intro-
duced in the late 1970s), other approaches are being in-
tensively investigated especially in combination
regimens. For example, the anti-angiogenic agent bevaci-
zumab, an antibody that antagonizes vascular endothelial
growth factor, has entered the clinical practice as a first-
line therapy in combination to carboplatin/paclitaxel as
well as maintenance therapy. Other anti-angiogenic
compounds with different mechanisms of action are
under clinical investigation [8] and the tyrosine kinase
inhibitor cediranib, in particular, prolongs significantly
the progression-free survival in platinum-sensitive ovar-
ian cancer [9].
Other therapies that are currently being tested include

poly-ADP-ribose polymerase (PARP) inhibitors, which
gave promising results in homologous recombination-
deficient OC [10, 11], and inhibitors of immune check-
points (CTLA-4, PD-1, PD-L1) that, however, so far have
shown only limited efficacy [12].

Main text
Ovarian cancer: biological challenges
As mentioned above, OC defines a number of diseases
with different clinical evolution. Such heterogeneity is
the result of sharp differences in the biology that under-
lies the development and the natural history of the OC
variants. First, in contrast to the classical view that the
different OC hystotypes derive from metaplastic changes
of one single tissue, the ovarian surface epithelium
(OSE) [13, 14], it has become increasingly clear that only
a subset of epithelial OC actually develops within the
OSE, while most OC variants originate in non-ovarian
districts [15]. As outlined in greater detail below (see
“The normal counterpart of OCSC”), this is best exem-
plified by HGSC, for which clinical, pathological, and ex-
perimental evidence supports the fallopian tube as a
frequent site of origin [16–19].
OC poses outstanding challenges also with regard to

its genomic profile. Indeed, besides the inherent molecu-
lar heterogeneity associated with the different tumor his-
totypes (for example the genomic stability of low-grade
serous OC vs. the striking instability of HGSC [3]), the
picture is quite fuzzy also within the single variants.
Again, HGSC offers a prototypical example in this con-
text: indeed, with the exception of TP53 that is mutated

in virtually all HGSC, there are no mutations in onco-
genes or tumor suppressor genes that occur frequently
enough to be considered as a hallmark of the disease
[20]. Rather, HGSC displays high rate of copy number
variations and chromosomal instability which can then
result in the inactivation of tumor suppressing pathways
as well as in the acquisition of chemoresistance [21].
These and other challenges reflect the difficulties in

developing reliable and faithful experimental models of
OC. While this has been particularly evident with regard
to animal models, as comprehensively reviewed else-
where [22], recent data have also questioned most of the
cell lines that have been used for decades in OC re-
search. Indeed, a number of studies have shown that the
majority of classical OC cell lines perform poorly in re-
capitulating either the molecular pathogenesis and/or
the histopathological traits of their supposed tumor of
origin [23–26]. Therefore, while these cell lines have
provided useful experimental platforms (and are still
employed as OC models), the data obtained should be
re-interpreted in the light of these re-classification ef-
forts, elucidating in particular to what extent the know-
ledge acquired can be transferred to the real disease.
The studies mentioned above also highlighted a number
of OC-derived cell lines that, in spite of their limited use
in the past, do recapitulate the genomic profile of their
tumor of origin. However, xenograft experiments on
some of the cell lines with the highest genomic fidelity
highlighted their poor tumor take in recipient mice [27],
which may become an issue for their use as preclinical
models.
All these challenges related to the OC biology and to

its representation should be taken into account when
OC models (either in vivo or in vitro) are employed for
the identification and characterization of cancer stem
cells, and they underscore the requirement for careful
validation of the results in clinically relevant settings.

Cancer stem cells: general concepts
Cancer stem cells (CSC) share several biological features
with normal SC, including self-renewal, resistance to
apoptosis induced by loss of anchorage, and ability to
undergo differentiation through asymmetric cell division.
In addition, a defining property restricted to CSC is their
ability, upon transplantation into a recipient organism,
to generate a tumor in which the hierarchical
organization and the heterogeneity of the original dis-
ease are recapitulated. Based on this function, CSC are
also commonly called tumor-initiating cells [28]. In this
review, we will refer to tumor initiation as the ability of
a single CSC to form a xenograft representative of the
parental tumor. Notwithstanding such a tumorigenic
capacity, it should be clarified that the CSC concept is
distinct from that of the cell-of-origin. The latter, indeed,
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refers to the cell from which a tumor has derived, that is
the cell type that was first hit by an oncogenic alteration,
an event that does not necessarily entails the acquisition
of CSC traits [29].
CSC are often resistant to chemotherapeutic and radi-

ation treatments, mainly due to their quiescent state and
to the expression of molecular pumps that efflux the
drugs and of intracellular scavengers such as ALDH1
(see below). While chemoresistance per se is not a defin-
ing feature of CSC, it has outstanding implications for
the clinical evolution of tumors, for example with regard
to recurrence after treatment [30].
Finally, another feature that has been frequently re-

ported in CSC is their acquisition of mesenchymal traits
through the so-called epithelial-mesenchymal transition
(EMT). EMT was initially characterized as a process that
confers migratory and invasive properties to cells [31].
Thereafter, it was found that EMT also endows epithelial
cells with stemness-associated properties and, in the case
of cancer cells, with increased tumorigenic potential and
chemoresistance [32, 33], as it has also been proposed in
OC [34]. After the pioneering studies in mammary cells
[35], the relationship between EMT and CSC has re-
ceived further support in several experimental models.
In particular, EMT as well as its reversal (mesenchymal-
epithelial transition, MET) have been found to be highly
dynamic processes in tumor cells, and cancer stemness
seems associated with a “partial EMT” phenotype rather
than full-blown EMT [33, 36, 37]. This concept is tightly
linked with that of CSC plasticity, which postulates that
CSC can switch between different states (including non-
stem states) [38]. Along this line, partial EMT would
represent one of such transitional phenotypes that is
compatible with (and may contribute to) the function of
CSC.
Biological properties such as self-renewal, asymmetric

division, EMT, cancer initiation and differentiation cap-
acity are intrinsically difficult to assess within the ori-
ginal tumor. Therefore, a number of surrogate assays
have been developed [39]: for instance, sphere formation
under non-adherent conditions reflects the clonogenic
potential of CSC (and of normal SC as well) and, upon
serial sphere propagation, their self-renewal. Xenotrans-
plantation of immunodeficient recipient mice with a low
number of putative CSC allows to determine their tumor
initiation ability and their multipotency. While these ex-
perimental strategies have obvious limitations and are
inherently prone to artifacts, they have been instrumen-
tal to elucidate, at least to a certain extent, the complex
biology of CSC and their functional implications in a
number of tumor types.
Thanks to these research tools, in fact, it has been pos-

sible to unravel various signal transduction pathways
that play a key role in cancer stemness. These include

Wnt/β-catenin, NOTCH, IL6/JAK/STAT3, Hedgehog,
NFκB and PI3K/AKT, as outlined in recent and exhaust-
ive reviews [40, 41].
Regarding CSC in ovarian carcinoma (OCSC), other

pathways have been found in addition to the ones listed
above, and implicated in essential stemness-related pro-
cesses such as self-renewal, tumor initiation and che-
moresistance. These include TLR2-MyD88-NFκB [42],
HMGA1 [43], PKCι/Ect2/ERK [44], YAP/TEAD [45],
hypoxia/NOTCH1/SOX2 [46] and others that, as dis-
cussed below, may also represent useful OCSC markers.

Cancer stem cells in ovarian cancer: clinical relevance
There are many aspects of the biology and clinical evo-
lution of OC which support the hypothesis that this dis-
ease is driven and sustained by CSC. For example, OC is
often associated with peritoneal ascites where tumor cell
spheroids survive and proliferate even in the absence of
adhesion to a substrate. The ability to resist anoikis (the
apoptotic program triggered by the loss of anchorage) is
a key property of CSC. In fact, the most widely used in
vitro assay for cell stemness, namely sphere formation in
suspension cultures (Fig. 1), relies on such a property
[47]. Accordingly, ascites is enriched in tumor cells with
stem-like properties and has been exploited as a rich
source of OCSC [48–54].
CSC frequently exhibit a slow cycling rate which

makes them inherently resistant to standard chemother-
apy and radiotherapy [55–57] that, by definition, target
actively proliferating cells. Thus, the high frequency of
OC relapse despite optimal cytoreduction and adjuvant
chemotherapy might be accounted for by a subpopula-
tion of quiescent OCSC that survive the treatments.
These cells would then “wake up” in a later phase, there-
fore fueling tumor recurrence. Along the same line, the
chemoresistance that develops in most relapsed OC, as
opposed to the chemosensitivity found in the majority of
primary OC, would depend on the higher frequency of
CSC. This hypothesis has received support from various
studies: Meng et al., for example, reported the correl-
ation between the relative abundance of OC cells with
stem-like traits (CD44+/CD24-) and the higher likelihood
of recurrence as well as shorter progression-free survival
[58]. Gao et al. screened a series of paired primary,
metastatic and recurrent OC samples for the levels of
CD44, a putative CSC marker. A remarkable increase
was observed in metastatic and relapsed tumors,
toghether with the association with poor outcome. Of
note, CD44 was found overexpressed in drug-resistant
OC cell lines and up-regulated in mouse models of
tumor recurrence following chemotherapy [59]. Similar
results were obtained with CD133, another surface mol-
ecule frequently associated with CSC, including OCSC:
the expression of CD133, indeed, correlated not only
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with the clinico-pathological parameters of advanced
disease, but also with a decreased response rate to
chemotherapy and shorter survival [60]. Other studies
which have investigated the prognostic power of differ-
ent OCSC-related markers, such as ALDH1A1 and
CD117, have given similar results [61, 62].
Further evidence in support of the clinical implications

of OCSC came from functional genomics studies which,
based on their gene expression profiles, identified dis-
tinct tumor subtypes enriched in stemness-associated
genes and associated with poor prognosis [63, 64].
Moreover, several groups have used individual CSC-
related biomarkers, including surface antigens, enzymes
and transcription factors, to interrogate OC cohorts, and
in most cases a correlation with clinico-pathological
signs of aggressiveness and/or unfavourable outcome
could be established [48, 52, 60, 65–73].

Phenotype and biology of OCSC: the markers
Surface markers
A fraction of cells with clonogenic and self-renewing
ability was identified in early studies based on semi-solid
supports such as soft agar and methylcellulose [74, 75].
However, the first indication of in vivo validated OCSC
came from pioneering studies of Bapat and colleagues

who identified cell clones with tumorigenic activity from
the ascites of a patient with HGSC, and showed that the
tumors obtained in xenotransplanted mice recapitulated
the histopathological features of the original disease [48].
Thereafter, several reports described the isolation and
characterization of OCSC from patient-derived samples,
mouse models of OC, or established OC cell lines. Many
of those studies relied on the use of surface markers for
the purification of OCSC, as outlined below. Table 1
summarizes some of the information on surface proteins
proposed as OCSC markers.

CD44 CD44 has been found associated to the sphere-
forming, self-renewing and tumor-initiating fraction of
OC cells in different experimental models. Zhang et al.
obtained spheroids from primary OC cultures and found
sphere-derived cells to be tumorigenic at as few as 102

cells/mouse, while 105 cells were required with the bulk
cell population. Spheroids were enriched in CD44-
expressing cells, and the authors could reproduce the
results obtained with sphere-derived cells by simply
xenotransplanting 100 cells with the CD44+/CD117+

phenotype [76]. Of note, CD44+/CD117+ cells exhibited
also higher resistance to chemotherapeutics [77], thus
supporting their CSC-like nature. It is interesting that,

Table 1 Cell-surface markers of OCSC

Marker Biological function Lowest number of
tumorigenic OCSC

References

CD44 HA receptor. Stimulates EGFR-Ras-ERK. Cell proliferation, differentiation,
motility, chemoresistance.

102 (CD44+/CD117+) [76–85]

CD24 Transmembrane glycoprotein. Activates STAT3. Stemness, cell adhesion,
tumor cell malignancy, metastasis.

5x103 (CD24+) [98–103, 105]

CD117 Receptor tyrosine kinase. Regulates PI3K/Akt, Ras/ERK, Src and JAK/STAT
pathways. Cell signaling, apoptosis, cell differentiation, proliferation,
cell adhesion.

103 (CD117+) [107–112]

CD133 Transmembrane glycoprotein. Induces PI3K/Akt pathway.
CSC maintenance, tumor formation, chemoresistance.

102(CD133+) [71, 121–124, 131–136]

See the main text for details and additional references

a b

Fig. 1 OC-derived sphere. a Primary tumor cells were isolated from the ascites of a high-grade serous OC, cultured under adherent conditions, and
stained for cytokeratin-8 (CK-8, green), a common marker of OC. Original magnification, 10X. b Single cells were then cultured under low-attachment
conditions at low cell density and allowed to form clonal spheres. A representative image of a clonal sphere is shown. Sphere-forming cells retained
the expression of CK8. Original magnification, 40X
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in addition to its putative role as OCSC biomarker,
CD44 seems also to be involved in OCSC pathobiology,
as demonstrated by experiments based on its genetic or
functional inactivation [78, 79]. In this context, the mo-
lecular mechanisms that underlie the causal role of
CD44 in OCSC function could entail its activity as a re-
ceptor for hyaluronan (HA), a component of the extra-
cellular matrix. Indeed, the interaction between HA and
CD44 triggers a variety of signal transduction pathways.
Intriguingly, the binding of HA stimulates the recruit-
ment to CD44 of Nanog, a transcription factor that reg-
ulates stemness and chemoresistance in many tumors.
The interaction with CD44 induces the activation and
the nuclear translocation of Nanog, resulting in the ex-
pression of its target genes [80]. The HA-CD44 inter-
action also promotes the formation of signalling
domains at the plasma membrane, which leads to the ac-
tivation of receptor tyrosine kinase-mediated signalling
such as the EGFR-Ras-ERK pathway [81]. This, in turn,
may contribute to the proliferation and/or invasiveness
of CSC. Finally, CD44 has long been established as a co-
receptor for c-Met, the hepatocyte growth factor recep-
tor [82, 83]. While c-Met has been implicated in CSC
from different tumor types [84], no information is avail-
able on its role in OCSC. On the other hand, c-Met pro-
motes ovarian cancer progression [85]. On these
premises, it is conceivable that the CD44/c-Met signal-
ling unit plays a role in OCSC function, thus represent-
ing a potential therapeutic target.
The screening of OC sample cohorts lent further sup-

port to the association of CD44 with stemness traits and
with the clinical course of the disease. As mentioned
above, recurrent OC expressed higher levels of CD44 as
compared to matched primary tumors [59], and CD44
levels correlated with poor outcome in several studies
[73, 86, 87], including a recent meta-analysis on 957
cases [72]. The latter study, however, reported no associ-
ation with the response to chemotherapy, which is
somehow counterintuitive for a CSC marker. In
addition, a number of studies either found no correlation
of CD44 with patients’ survival [88, 89] or even reported
CD44 to be associated with better outcome [90–92].
While there might be several reasons that account for
such a discrepancy, including different experimental ap-
proaches and molecular tools (e.g., CD44 antibodies),
different inclusion criteria between the patient cohorts
and different degrees of tumor heterogeneity within the
individual cohorts, it appears that the clinical value of
CD44 as an OCSC biomarker remains controversial. A
possible solution would be to focus on alternatively
spliced variants of this molecule. Indeed, CD44 exists in
various isoforms, depending on ten exons that can be
added in different combinations to the standard form of
the molecule [93]. While the functional and clinical

implications of CD44 variants have been investigated in
various tumor types, only limited information is available
on their role in CSC [94, 95]. In OC, in particular,
CD44v6 was recently shown to be up-regulated in peri-
toneal metastasis and, more important, a fraction of
CD44v6+ tumor cells displayed metastasis-initiating ac-
tivity [96], pointing to this variant as a putative marker
of OCSC.

CD24 The heat-stable antigen CD24, a
glycosylphosphatidylinositol-anchored membrane glyco-
protein, has been extensively used as a negative or posi-
tive marker of CSC in various cancer types. For example,
the low or absent expression of CD24, in combination
with high CD44, marks breast cancer stem cells [97].
Data obtained in various laboratories are consistent with
the role of CD24 as a positive marker of CSC in OC.
Using a mouse model of OC based on the tissue-specific
deletion of Trp53, Pten and Apc, Burgos-Ojeda et al.
identified CD24+ cells as the tumor-initiating cells. Gao
et al. isolated the subset of CD24+ cells from OC speci-
mens and demonstrated that this cell subpopulation dis-
played higher expression of stemness-associated genes
and, more important, was endowed with high tumor-
initiating potential [98]. Li et al. supported these obser-
vations with experiments on established OC cell lines,
showing not only that the expression of CD24 increased
in sphere-forming cells, but also that neutralizing CD24
interferes with their ability to overcome anoikis and gen-
erate spheres [99]. Accordingly, tumor cells in OC peri-
toneal effusions were reported to express higher levels of
CD24 than solid tumors, which was proposed as a sign
of enrichment in CSC traits [100].
While the functional role of CD24 in OCSC (and in

CSC in general) remains poorly defined, recent data
have provided novel insights. In particular, CD24 has
been shown to enhance the activation of signal trans-
ducer and activator of transcription 3 (STAT3) in dif-
ferent tumor types [101–103]. STAT3 activity is a
well-established player in cancer stemness and, in-
deed, CD24-induced STAT3 activation in nasopharyn-
geal carcinoma cells triggers their reprogramming
towards a CSC state [103]. While the causal role of
the STAT3 pathway in OCSC has been described
[104], its regulation by CD24 remains to be explored.
In agreement with the hypothesis of a CD24/STAT3
interplay in ovarian cancer stemness, CD24+ OCSC
exhibit increased levels of STAT3 phosphorylation
and of STAT3-dependent expression of stemness fac-
tors such as Nanog and c-Myc [105].
It should be mentioned, however, that there are studies

which found no evidence for the association of CD24 ex-
pression in OC cells with stem cell phenotype or che-
moresistance [68]. In fact, other groups including ours
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(Lupia and Cavallaro, unpublished observation) attrib-
uted CSC properties to subsets of OC cells with no or
low expression of CD24 [58, 106].

CD117 The c-KIT proto-oncogene codes for a receptor
tyrosine kinase called CD117, which acts as the receptor
for stem cell factor. The role of CD117 as a marker of
OCSC has been proposed by several groups. Higher ex-
pression of CD117 was described in OC-derived spheres
as compared to their adherent counterpart, both in fresh
tumor tissue [107] and in OC cell lines [108]. The side
population (i.e., a putative stem cell subset; see the sec-
tion “Side population” below) of a cell line derived from
a transgenic mouse model of HGSC was also found
enriched in CD117-positive cells, while this was not the
case for a cell line established from a mouse model of
endometrioid OC [109]. This might imply that different
OC subtypes express a different repertoire of surface
CSC markers.
Furthermore, as mentioned above, the combined ex-

pression of CD117 and CD44 defined a subpopulation
of OC cells endowed with tumor-initiating capacity
and chemoresistance [76, 77]. CD117 was also effi-
cient in the isolation of OCSC as a single marker:
Luo et al., indeed, showed that the <2% fraction of
CD117+ cells isolated from OC xenografts had a
tumorigenic potential 100-fold higher than CD117-

cells. Tumors derived from CD117+ cells, in addition,
recapitulated the heterogeneity of the original disease
and could be serially transplanted, confirming the dif-
ferentiation and self-renewal abilities of these cells
[110]. In other experimental systems, however, CD117+

OC cells failed to show increased tumor initiation with re-
spect to CD117- cells [105].
The receptor tyrosine kinase activity of CD117 regu-

lates a wide spectrum of signalling cascades, including
PI3K/Akt, Ras/ERK, Src and JAK/STAT [111], all of
which are plausible candidates as functional effectors of
this surface protein in OCSC. Unfortunately, despite the
numerous studies that capitalized on CD117 as an
OCSC marker, very little knowledge is available on its
biological role in these cells. Functional experiments
conducted in two OC cell lines revealed that both gene
silencing and pharmacological inhibition of CD117 kin-
ase activity with imatinib reduced significantly their
sphere-forming potential [112], pointing to CD117 as a
possible therapeutic target in the context of OCSC. The
same study implicated the Wnt/β-catenin signalling cas-
cade as an effector of CD117 in the regulation of stem-
ness function [112].
Several multi-kinase inhibitors which have CD117

among their targets have been investigated as therapeu-
tics in ovarian cancer [113–115]. Nevertheless, none of
these studies has studied whether such drugs affect the

OCSC subpopulation. Future efforts should be devoted
to understanding the biological role of CD117 in OCSC
and to testing CD117-targeted compounds as OCSC-
directed therapies.

CD133 After the initial characterization as a CSC marker
in glioblastoma [116, 117], the surface protein CD133
(also known as prominin-1) was utilized in the identifica-
tion and/or isolation of CSC in a wide spectrum of solid
tumors. However, while harnessing CD133 has allowed
significant progress in our understanding of CSC biology,
a number of limitations and conflicting data have emerged
calling for more caution in the use of CD133 as a wide-
spread CSC marker [118, 119]. OC has not been an excep-
tion in this regard. A recent meta-analysis of over 1000
cases has shown a significant correlation between CD133
expression and shorter survival and tumor stage, while no
correlation was found with tumor grade or response to
therapy [120]. Various groups have detected CD133 in
OC-derived subpopulation of cells endowed with proper-
ties of tumor initiation, self-renewal and/or chemoresis-
tance [71, 121–124]. Interestingly, the expression of
CD133 was silenced by epigenetic mechanisms in the
CD133- progeny of CD133+ OCSC [125], implicating
chromatin modifications in the switch towards a more
committed state. Nevertheless, a number of studies did
not support the association of CD133 with OCSC. For ex-
ample, OCSC identified in two cell lines through the ex-
pression of ALDH1 (as discussed below) showed
inconsistent expression of CD133 [106]. More important,
CD133+ cells isolated from primary OC cultures failed to
prove more spherogenic or tumorigenic than their
CD133- counterpart, and in fact they only displayed a
slower proliferation rate [126, 127]. Some of the data
published point to the phenotypic heterogeneity and/
or plasticity of OCSC with regard to the expression
of CD133 [67, 128], which may, at least in part, ac-
count for the controversial findings discussed above.
In this context, also the different pattern of immuno-
reactivity of different anti-CD133 antibodies [129]
could underlie discrepancies in the identification of
OCSC. The inconsistent data on CD133 as a surface
marker in OCSC could also be accounted for by its
dynamic subcellular localization, as shown in other
tumor types. For example, cytosolic CD133 is a hall-
mark of highly aggressive gastric cancer [130] and
CD133 was found to interconvert between cytosolic
and plasma membrane localization in glioblastoma
stem cells [131]. Finally, CD133 has been proposed to
mark a subset of cells that contribute to OC
vascularization, either by entering an endothelial dif-
ferentiation program [126] or through a paracrine,
pro-angiogenic function [132].
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The functional contribution of CD133 to the patho-
physiology of CSC, including OCSC, is poorly defined.
Nevertheless, various lines of evidence suggest that
CD133 is not only a surface marker but it also plays a
causal role in CSC. For example, CD133 is required for
the maintenance of glioblastoma stem cells [131] and
confers stem-like properties and chemoresistance to
other cancer cell types [133–135]. Experimental data im-
plicated the PI3K/Akt pathway as a CD133 effector [133,
134, 136]. Akt pathway inhibitors, are being actively in-
vestigated in ovarian cancer therapy [137]. It would be
worthwhile, therefore, to study the involvement of Akt
downstream of CD133 in ovarian cancer and, in particu-
lar, to assess whether targeting Akt signalling affects the
self-renewal and tumorigenic potential of CD133-
positive OCSC.

Functional markers
The definition of “functional markers” refers to
stemness-associated biological activities or functional
states that have been exploited for the prospective isola-
tion of OCSC.

ALDH1 Aldehyde dehydrogenases (ALDH) are enzymes
that promote the oxidation of aldehyde substrates to
their corresponding carboxylic acids. Within the ALDH
family, the ALDH1 subgroup is particularly active in
normal and cancer stem cells. In particular, among the
ALDH1 isozymes (ALDH1A1, ALDH1A2 and
ALDH1A3), ALDH1A1 is prominently expressed in
CSC. Therefore, ALDH activity and ALDH1A1 expres-
sion have been exploited for the identification and puri-
fication of CSC across many different cancer types [138].
While the specific role of ALDH1A1 in CSC has not
been completely elucidated yet, the protective function
of its detoxifying machineries against different insults
(preventing for example the accumulation of reactive
oxygen species and of reactive aldehydes) is certainly in-
volved in CSC maintenance. In this context, ALDH1 also
confers resistance to chemotherapeutics and to radiation
[138]. Notably, the widespread use of ALDH1 activity as
a CSC marker is largely due to the possibility of deter-
mining this activity in live cells and of isolating ALDH1-
positive cells with a fluorescence-based assay (Aldefluor,
StemCell Technologies, Durham, NC, USA). Direct evi-
dence that ALDH1 activity defines a subpopulation of
OC cells with CSC-like properties was provided in nu-
merous studies [53, 61, 67, 106, 127, 139]. In particular,
a recent report established the superiority of ALDH1
over CD133 in identifying primary OC-derived cells ex-
pressing stemness genes and capable of self-renewal and
tumor initiation [127]. Along the same line, the ALDH
+/CD133+ fraction of OC primary cells was identified at
the apex of an OC hierarchy and showed a more

multipotent phenotype than all the other marker combi-
nations, including ALDH-/CD133+ [123]. Data from
Condello et al. suggested that ALDH1A1 in OCSC is
regulated at the transcriptional level by the Wnt/β-ca-
tenin pathway, and revealed that a small-molecule
ALDH1A1 inhibitor abolished sphere formation, point-
ing to this enzyme as a potential therapeutic target
[140]. Of note, knockdown of the ALDH1A1 gene in OC
cell lines restored their sensitivity to chemotherapy both
in vitro [141] and in mouse xenograft models [61].
While some of the studies discussed above pointed to

the causal role of ALDH1 in conferring CSC traits to
OC cells, the underlying molecular mechanism have not
been fully elucidated yet. Recent data suggested that
ALDH1A1 exerts a regulatory function on the levels of
ATP-Binding Cassette (ABC) drug transporters, thus
modulating the resistance of OC cells to chemothera-
peutics, although the molecular mechanisms remains to
be pinpointed [141]. Interestingly, the role of ALDH1 in
OCSC extends beyond its detoxifying activity: Meng et
al. showed that the knockdown of ALDH1A1 in the OC
cell line A2780 caused a decrease in the cell cycle check-
points regulators KLF4 and p21 which, in turn, resulted
in enhanced cell proliferation [142]. Actively proliferat-
ing cells are more susceptible to cytotoxic drugs and,
therefore, forcing the cell cycle entry likely contributes
to the sensitization of OC cells to chemotherapy upon
loss of ALDH1A1. Furthermore, the ablation of
ALDH1A1 triggered DNA damage with a concomitant
reduction in various DNA repair pathways [142], imply-
ing that ALDH1A1 exerts a genome-protecting role in
OCSC. The anti-proliferative role of ALDH1A1 reported
by Meng et al. was contradicted by data obtained in pri-
mary OC-derived cells where the genetic or pharmaco-
logical inactivation resulted in decreased proliferation
[127]. In this experimental system, the authors also iden-
tified an intriguing interplay between ALDH1A1 and the
stemness-associated gene SOX2 and showed that their
reciprocal regulation orchestrates sphere formation and
OCSC survival and proliferation [127].

Side population Besides ALDH1 activity, the functional
feature that has been most extensively used for the isola-
tion of OCSC is the ability to efflux the lipophilic dye
Hoechst 33342 due to the selective expression of ABC
transporters. Cells endowed with such a property are
called side-population (SP) cells due to their position in
FACS panels [143]. In OC, this method was first applied
to the identification of tumor-initiating cells from the
transgenic mouse model of OC known as MISIIR-TAg
[109]. Thereafter, increased expression of stemness-
related genes and tumorigenic capacity were reported in
SP cells isolated from a panel of OC cell lines as well as
from human tumors [144, 145]. Of note, the SP fraction
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purified from different OC cell lines was highly hetero-
geneous with regard to the expression of other markers
[146], raising the question of whether cells with multiple
phenotypes can co-exist in the CSC compartment or
one single subset contained in SP cells represents bona
fide OCSC.

Label retention In various tumor types, CSC are
thought to be mostly quiescent or at least to have a very
slow cycling rate. This property has been harnessed by a
number of laboratories to isolate quiescent CSC from
the bulk of actively proliferating tumor cells. In particu-
lar, this type of technology is based on the principle,
schematically depicted in Fig. 2, that, upon labelling a
cell population with a fluorescent vital dye, the latter will
be progressively diluted in dividing cells while quiescent
cells will retain it and can be purified by FACS-based
strategies. For example, retention of the lipophilic dyes
of the PKH class (which intercalate in the cell mem-
branes) was used for the isolation of quiescent OCSC

and allowed to demonstrate the reversibility of their
state to an active proliferating phenotype when their clo-
nogenic or tumorigenic function is stimulated [147]. Re-
cently, by applying the PKH technology to an in vivo
model of OC, Bapat et al. identified gene modules spe-
cifically associated to the individual tumor cell fractions
separated on the basis of their PKH retention, and de-
fined CD53 as a novel marker of OC-initiating cells
within the PKHhigh subset [148]. PKH retention was also
used as a proof of quiescence during the characterization
of polyploid giant cancer cells as OCSC [149].
The isolation of label-retaining OCSC entails, by defin-

ition, the manipulation of the system (e.g., biochemical
or genetic labelling, expansion of tumor cells to allow
for label dilution, etc.), which obviously increases the
risk of artifacts. In addition, label retention marks quies-
cent cells which, however, not necessarily coincide with
CSC. These limitations should be taken into account
when applying label retention-based strategies. Yet, the
latter offer the possibility to discover molecular and

label

A

B

chase

C

a b c d

a

b

c

e

d

Fig. 2 Label retention in CSC. (A) Schematic representation of label retention. A bulk population of tumor cells (a) is labeled with a vital dye so
that all cells become labeled (b). During the following chase period, actively dividing cells (black nuclei) progressively lose the dye by diluting it
to daughter cells (c,d). In contrast, CSC (blue nucleus), due to their slow cycling rate, retain the dye much longer and can thus be identified (d).
(B) Label retention during sphere formation. When labeled, single CSC (a) are cultured under low-attachment conditions they undergo asymmetric
division to generate another CSC and a progenitor cell (b). While the daughter CSC enters quiescence thus retaining the dye (b), the progenitor give
rise to a progeny of proliferating cells (c), which form the bulk of sphere cells, in which the dye is progressively lost (d,e). The final result, as shown in
(C), is a clonal sphere with only one or very few label-retaining CSC. The image shows a sphere from primary OC cells labeled with PKH26. Scale
bar, 100 μm
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biological features of CSC, provided that the findings are
validated in clinically relevant systems. For example, the
transcriptomic profile of PKH-retaining mammary cells
has yielded a panel of differentially expressed genes that
have then been proven useful for the prospective identi-
fication of CSC from breast tumor tissue [150]. Quies-
cent CSC can also be tracked genetically, for example
through the retention of green fluorescent protein-
tagged histone 2B (H2B-GFP). This approach can be
combined with animal models of spontaneous tumorigen-
esis, thus making it possible to identify label-retaining
CSC in preclinical tumor models that recapitulate, at least
to some extent, the natural history of the disease. Long-
term retention of H2B-GFP favoured the identification
and characterization of stem cells in the ovarian and ovi-
ductal epithelium of transgenic mice [151, 152]. Applying
this strategy to mouse models of spontaneous ovarian car-
cinogenesis should help defining novel molecular and
functional features of OCSC, not only in the context of
tumor initiation, but also in dissemination, recurrence and
chemoresistance.
It should not be neglected, however, that PKH-

retaining cells isolated from OC specimens failed to
show higher tumorigenic potential when compared to
their PKH-negative counterparts and, in fact, exhibited
lower clonogenic activity in vitro and longer tumor la-
tency in xenograft models [153]. Results in our labora-
tory with either PKH or H2B-GFP indicated that label
retention in primary OC cells does not mark cells with
specific OCSC-like traits (Lupia and Cavallaro, unpub-
lished data). These observations might imply that OC is
highly heterogeneous with regard to the quiescent na-
ture of its CSC compartment, and that slow cycling is
not an absolute and universal feature of OCSC.

The normal counterpart of OCSC
The origin of CSC remains a highly debated and contro-
versial issue. Based on the functional and phenotypic
similarities between CSC and normal tissue stem cells
(self-renewal, differentiation, quiescence, shared
markers, etc.), CSC were initially proposed to derive
from normal SC that have undergone malignant trans-
formation. More recent evidence, however, pointed to
the dedifferentiation and reprogramming of “mature”
tumor cells as an additional mechanism to generate
bona fide CSC. Furthermore, it has been proposed that
tumor cells convert dynamically between stem and non-
stem states, a plasticity that can be orchestrated by
microenvironmental cues [38]. These models are not
mutually exclusive, and it is likely that different path-
ways underlie the origin of CSC in different tumor
types. In addition, different mechanisms may occur
within the same tumor [38], possibly accounting for
the generation of distinct CSC subsets. The intra-

tumor heterogeneity of CSC, indeed, has been re-
ported in certain cancer types, one of the best exam-
ples being ovarian cancer [146, 154].
Regardless whether CSC originate from normal stem

cells (SC) of the same tissue, investigating the latter has
provided significant insights into the biological features
of CSC. For example, certain signalling pathways gov-
erning the stem phenotype in CSC have been identified
also in normal SC, and in some cases signature inferred
from normal SC have been used to prospectively identify
the CSC in the corresponding tumor tissue [30, 150]. In
addition, comparing normal SC with CSC might help to
identify molecular drivers that act specifically in CSC,
possibly resulting in a better understanding of CSC biol-
ogy and in CSC-targeted therapies.
In the context of OC, this approach must face both

biological and methodological challenges mainly linked
to the tissue of origin and, therefore, to the somatic SC
that one should consider as the normal counterpart of
OCSC.
OC has long been thought to derive from the neoplas-

tic transformation of cells belonging to the ovarian sur-
face epithelium (OSE), a monolayer of cells with
mesothelial characteristics lining the ovary [13, 14]. Re-
cent clinical and experimental data, however, have dem-
onstrated that a significant fraction of OC originate in
non-ovarian tissues [155]. This is best exemplified by
HGSC, for which the precursor lesion is often localized
within the distal fallopian tube epithelium (FTE), and is
driven by TP53-mutated FTE cells [17, 18]. A recent
phylogenetic analysis of the tumor mutational profile
has confirmed the frequent tubal histogenesis of HGSC,
although in some cases the FT itself appeared to be a
metastatic site [156].
From a methodological standpoint, the poor accessibil-

ity and the difficult handling of OSE and FTE have
posed major obstacles to the identification and
characterization of SC residing in these tissues. Never-
theless, as discussed below, a few studies have addressed
this question and provided intriguing information.

OSE stem cells
Tracing quiescent cells through their long-term reten-
tion of 5-bromo-2-deoxyuridine (BrdU) and H2B-GFP
has revealed a subset of SC-like cells in OSE of adult
mice which displayed asymmetric cell division and
higher clonogenic potential when compared to their non
label-retaining counterpart [151]. The SP analysis (de-
scribed above) was instead employed by Gamwell et al.
[157] to isolate rare SC from mouse OSE which
expressed the classical SC marker Ly6A/Sca-1 and had
higher sphere-forming efficiency. These studies, how-
ever, did not explore the possible relation of OSE-
derived SC with OCSC. Such a question, instead, was
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address by the researchers who identified a SC subpopu-
lation in the ovary hilum, which is a transitional area be-
tween the OSE, mesothelium and the oviduct. Besides
exhibiting a wide spectrum of phenotypical and func-
tional features classically associated with stemness,
hilum-derived SC were more susceptible to the neoplas-
tic transformation induced by the deletion of Trp53 and
Rb1, implying that the ovary hilum may act as the niche
for OCSC [158]. This study showed that OSE-derived
SC express the surface protein Lgr5, previously charac-
terized as a SC marker in different epithelia [158]. Sub-
sequent in vivo tracing identified Lgr5+ SC not only in
the hilum but also in other regions of the OSE and in
the tubal epithelium [159]. Of note, this paper docu-
mented the role of Lgr5+ cells in OSE homeostasis and
in epithelial regeneration following ovulation-induced
damage, providing compelling evidence of their SC
nature [159].

FTE stem cells
In addition to Ng et al. [159], a few other studies have
addressed the identification of SC in the fallopian tube.
Pulse-chase experiments in mice expressing H2B-GFP in
an inducible fashion revealed the presence of long-term,
label-retaining (i.e., quiescent) cells in the distal portion
of mouse oviduct. These cells were capable of sphere
formation of differentiation towards different lineages of
the female reproductive system [152]. Label-retaining
cells in mouse oviduct were also identified through
pulse-chase experiments with BrdU, although their SC
nature was not further investigated [160]. Paik et al.
[161] identified a subpopulation of basally located cells
that do not express the typical markers of ciliated or
secretory cells, the two cell lineages that compose the
FTE, while expressing CD44. These cells, termed FTESC
and found to correspond to the so-called peg cells, were
enriched for sphere-forming activity. Notably, an expan-
sion of FTESC was found both in HGSC lesions and in
the normal appearing FTE adjacent to HGSC sites [161],
possibly implicating FTESC in the pathogenesis of this
cancer type. Direct functional evidence in support of the
causal link between human FTE-derived SC and OC de-
velopment was provided by the in vitro immortalization
with hTERT and transformation with c-MYC, an onco-
gene that is frequently overexpressed in OC. Besides
having tumor-initiating potential, these transformed
FTE-derived SC upon xenotransplantation into immu-
nodeficient mice generated tumors that recapitulated
both the histopathological and transcriptomic features of
HGSC [162]. Finally, the stemness-related gene SOX2,
which appears to be causally involved in OC stemness
[163], was found to be expressed only in rare FTE cells
in women with benign conditions, while SOX2-express-
ing cells were expanded in the FTE of patients affected

by HGSC [164]. Moreover, higher frequency of SOX2-
expressing cells was detected also in the fallopian tubes
of women that were at high risk of developing ovarian
cancer because of germline BRCA1/2 mutations [164],
thus lending further support to the hypothesis that FTE
is a prominent site of precursor lesions of HGSC.

Final remarks on OCSC markers
Based on the studies discussed above, it is striking to see
how heterogeneous are the sets of putative OCSC
markers used by different groups, especially if compared
with other tumor types where there is a more general
consensus on the CSC-associated repertoire of surface
antigens (e.g., CD44+/CD24- in breast carcinoma, LGR5+

in colon carcinoma, CD133+ in glioblastoma). The varie-
gated picture in OCSC markers is likely due to a
combination of different factors. First, the heterogeneity
of the disease itself, which encompasses the different
histotypes (likely reflecting different tissues of origin and
tumor precursors) as well as the molecular alterations,
with only a handful of genomic lesions shared by tumors
of the same group (e.g. p53 in HGSC) and, otherwise, a
very heterogeneous mutational landscape. Second, differ-
ent sets of OCSC markers might simply reflect the exist-
ence of different pools of OCSC. In fact, the
heterogeneity of CSC is common across various tumor
types [38], which apparently include OC. Indeed, Boesch
et al. screened several OC cell lines and found that their
SP compartment, while enriched in CSC functional
properties, contained different cell subsets with distinct
surface markers [146]. It is conceivable, therefore, that
cell pools with different phenotypical (and maybe bio-
logical) properties share stemness and tumor-
propagating abilities. On the other hand, these findings
are also compatible with a pronounced plasticity of
OCSC, whereby the expression of different markers un-
derlies different phases of the disease or different states
of cell differentiation. The two phenomena would not be
mutually exclusive, implying that the heterogeneity of
OCSC might result from both distinct subsets of cells
and cell plasticity.
Furthermore, while one would expect OCSC to repre-

sent a minor subpopulation of cancer cells, the preva-
lence of cells expressing putative CSC markers, such as
CD44 and CD24, is often high in OC specimens. On one
hand, this might reflect a massive shift of the bulk tumor
cell population towards an undifferentiated phenotype
(which indeed can be the case in some HGSC and carci-
nosarcoma). On the other hand, it is highly unlikely that
all marker-positive cells identified through these markers
are actually bona fide CSC. Rather, CSC would probably
account only for subsets of that population, which im-
plies the need to employ more stringent marker
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combinations and/or to associate marker expression
with other biological CSC features.

The stem cell niche: a specialized microenvironment
The acquisition and the maintenance of the biological
properties associated with stemness are driven, both in
normal and neoplastic tissues, by the interplay between
cell-intrinsic characteristics and the interaction with the
local microenvironment. Such a microenvironment often
consists of a distinct anatomical site within the tumor
mass, the so-called stem cell niche. It has become clear
that all niche components, i.e. non-stem cancer cells,
other host cells, extracellular matrix and soluble factors,
regulate various aspects of stem cell biology, including
quiescence, mode of division (symmetric versus asym-
metric), differentiation, EMT and plasticity. The bio-
logical, molecular and functional features of the CSC
niche, as well its clinical implications, have been com-
prehensively discussed in recent reviews [38, 165, 166].

The normal SC niche
With regard to the ovary, the nature and the properties
of the niche for either normal SC or CSC have remained
largely elusive. In the case of normal OSE and FTE, the
two major sources of OC, our poor knowledge on som-
atic SC niches is likely a consequence of the issues and
controversies related to the identification of the SC
themselves (see section on “The normal counterpart of
OCSC”).

OSE niche As reported earlier, Flesken-Nikitin and co-
workers identified putative OSE SC in the hilum region
of mouse ovary, namely in the junctional area between
OSE, mesothelium and fallopian tube [158]. While these
observations point to that anatomical site as a plausible
SC niche, the components of the niche itself and their
regulatory role in OSE SC function remain to be defined.
Furthermore, it is unclear to what extent this niching ef-
fect of the mouse hilum also extends to the human sys-
tem, where areas of transition between OSE,
mesothelium and tubal epithelium are less defined. It is
also noteworthy that other investigators detected som-
atic SC in the OSE which, however, were widespread
throughout the surface rather than restricted to specific
areas [151, 159]. Consistent with this pattern, various
components of the ovarian cortex have been proposed
to have a SC niching function, including mature OSE
cells, follicles, follicular fluid, and the stroma underneath
the OSE [167].

FTE niche The SC niche in the fallopian tube remains
an elusive entity. As reported earlier, a few studies
have identified somatic SC in the distal portion of
FTE [152, 159–161]. In some cases, the localization

of SC at the base of tubal villi [160] pointed to a spe-
cialized microenvironment which, however, has not
been characterized yet. Based on the physical proxim-
ity of the distal fallopian tube with the ovary, it is
conceivable that SC in FTE and in OSE share at least
some of the niche components and signals [167].
Novel insights into these issues should come from the
organoid culture, a methodology that recapitulates
SC-driven morphogenesis in vitro [168]. Indeed, the
recent application of this technique to primary FTE
cells has revealed the major role of the Notch and
Wnt signalling pathways as niche factors that regulate
stemness and differentiation [169]. Future studies
should aim at assessing the relative contributions of
other components of the niche (e.g., non-epithelial
cells) to the function of normal SC in FTE and OSE.

The OCSC niche
OCSC niche in solid tumors The characterization of
the niche(s) that supports OCSC must take into account
the clinical course of the disease. One can expect that in
OC lesions still localized within the ovary and/or the
tube, the CSC compartment benefits from the same
niche that operates for the normal somatic SC of those
tissues (in addition, of course, to the niche factors de-
rived from the tumor itself ). On the other hand, the nat-
ural evolution of the disease, and especially its peritoneal
dissemination, implies the existence of multiple types of
niches that support the pathobiological function of
OCSC in different anatomical districts. The high rate of
OC relapse in peritoneal organs implies that the latter
provide a microenvironment which not only protects
quiescent disseminated OCSC in the presence of un-
favourable conditions (such as during chemotherapy),
but also sustains their tumorigenic activity in the context
of OC recurrence. These events are very likely controlled
by the bidirectional exchange of signalling cues between
niche cells and OCSC. For example, organotypic 3D cul-
tures that recapitulated the early dissemination of OC
into peritoneal mesothelium revealed that cancer cells,
via secretion of transforming growth factor beta-1
(TGFβ1), induce mesothelial cells to synthesize fibronec-
tin [170]. The latter is essential for the adhesion, prolif-
eration and invasion of OC cells and, hence, for
metastasis development [170]. More recently, OC-
derived exosomes were reported to transfer CD44 into
mesothelial cells, resulting in upregulation of matrix me-
talloproteinase 9 (MMP9) that, in turn, favoured cancer
cell homing and invasion. The adipose tissue, especially
within the omentum, also provides an optimal environ-
ment for the formation of OC lesions. Coculture experi-
ments have shown that omental adipocytes enhance
homing, migration and invasion of OC cells and act as
an energy source to sustain their metastatic potential
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[171]. While these studies have not directly addressed
the specific impact of microenvironmental factors on
OCSC, they highlighted suitable approaches and tools to
explore the cellular and molecular players involved in
the crosstalk between OCSC and their niche.

OCSC niche in ascites The ascites that develops in ad-
vanced OC, both at diagnosis and upon recurrence and
development of chemoresistance [172], represents a
unique type of tumor microenvironment. Indeed, ascites
contains malignant cells which are able to survive and to
proliferate even under non-adherent conditions, leading to
self-organized spheroids of OC cells that, in turn, account
for peritoneal seeding. In addition, ascites contains a wide
spectrum of cellular and acellular components that pro-
vide a unique microenvironment to malignant OC cells
[173]. Several studies have reported that ascites is a rich
source of cells with OCSC traits [50–52, 54, 145, 174].
Based on these premises, ascites can be viewed as a spe-
cialized OCSC niche, and future research should unravel
the ascitic factors that are specifically involved in the regu-
lation of OCSC. For example, interleukin-6 (IL-6) is ele-
vated in ascites [175–179]. IL-6 triggers the JAK/STAT3
signalling pathway [180], which plays an important role in
OCSC function [104]. Finally, ascites-derived OC cells dis-
play high levels of STAT3 activation [181]. Taken together,
these findings suggest that the IL-6/JAK/STAT3 axis is an
important effector of the “communication” between OCSC
and their niche within the ascites microenvironment. The
Wnt signalling pathway likely represents another can-
didate for such a communication, based on the en-
richment for Wnt ligands in OC ascites [182, 183],
the activation of Wnt pathway in ascites-derived
OCSC [184], and the functional contribution of Wnt
signalling to OC stemness [185, 186].
These results have relevant implications also from a clin-
ical standpoint, since drugs targeting STAT3 and Wnt
pathways appear particularly effective against ascites-
derived malignant OC cells [187, 188].

Conclusions and future perspectives
In spite of the challenges and limitations related to the
intrinsic complexity of OC itself and of its current ex-
perimental models, there is no doubt that our knowledge
on such an elusive biological entity as OCSC has made
tremendous progress over the last few years. The clinical
utility of this knowledge, which has started to emerge at
least in the context of prognosis and prediction of re-
sponse to chemotherapy, will hopefully become clearer
when translated into novel therapeutic approaches.
However, the future research effort towards such a chal-
lenging objective will have to take into account, in pri-
mis, the heterogeneity of OC. One can envision that, in
view of OCSC-based precision medicine, it will be

necessary to develop appropriate OCSC models that are
specific not only for a given OC variant, but even for the
individual patient. Along the same line, an appropriate
design of clinical trials addressing OCSC-related ques-
tions should incorporate the high heterogeneity of the
disease with regard to OCSC markers (even the most
common markers are found in only <40% tumors),
which would impose a careful selection of the right pa-
tient cohorts. In addition, monitoring OCSC in the
course of clinical trials should entail longitudinal biop-
sies, while most translational studies in OC focus on the
primary tumor. Indeed, OCSC are supposed to account
for a very small subpopulation in the primary tumor but
should enrich in recurrent disease, both because of their
expansion to fuel the relapse and because of the possible
selection of drug-resistant OCSC after the first-line
treatment.
The successful elimination of OCSC would have tre-

mendous implications for the clinical management of
patients. Indeed, it would offer the unprecedented
chance of targeting the driving force of disease dissemin-
ation and recurrence while, at the same time, removing
the major cause of tumor resistance to conventional
chemotherapy. This makes the combination of classical
treatments and OCSC-based therapies a very attractive
and promising strategy towards the eradication of OC,
with the potential to impact significantly the outcome of
OC patients, an objective that we basically failed to ac-
complish in the last 40 years.
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