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Higher levels of TIMP-1 expression are
associated with a poor prognosis in triple-
negative breast cancer
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Abstract

Background: Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional protein that can directly regulate
apoptosis and metastasis. In this study, we investigated the functional and molecular mechanisms by which TIMP-1
influences triple-negative breast cancer (TNBC).

Methods: The expression level of TIMP-1 in breast cancer tissues was analyzed using the ONCOMINE microarray
database. The overall survival of patients with distinct molecular subtypes of breast cancer stratified by TIMP-1
expression levels was evaluated using Kaplan–Meier analysis. Bisulfate sequencing PCR (BSP) was used to analyze
the methylation status of the TIMP-1 promoter. Real-time-PCR (RT-PCR), Western blot and ELISA assays were used to
evaluate gene and protein expression in cell lines and human tissue specimens. In addition, TIMP-1 function was
analyzed using a series of in vitro and in vivo assays with cells in which TIMP-1 was inhibited using RNAi or
neutralizing antibodies.

Results: We found that serum TIMP-1 levels were strongly enhanced in patients with TNBC and that elevated TIMP-1
levels were associated with a poor prognosis in TNBC. However, TIMP-1 levels were not significantly associated with
overall survival in other subtypes of breast cancer or in the overall population of breast cancer patients. We also report
the first evidence that the TIMP-1 promoter is hypomethylated in TNBC cell lines compared with non-TNBC cell lines,
suggesting that aberrant TIMP-1 expression in TNBC results from reduced DNA methylation. RNAi-mediated silencing
of TIMP-1 in TNBC cells induced cell cycle arrest at the G1 phase and reduced cyclin D1 expression. In addition,
mechanistic analyses revealed that the p-Akt and p-NF-κB signaling pathways, but not the GSK-3β and MAPK1/2
pathways, are associated with TIMP-1 overexpression in TNBC cells. Moreover, neutralizing antibodies against TIMP-1
significantly decreased the rate of tumor growth in vivo.

Conclusions: Our findings suggest that TIMP-1 is a biomarker indicative of a poor prognosis in TNBC patients and that
targeting TIMP-1 may provide an attractive therapeutic intervention specifically for triple-negative breast cancer
patients.
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Background
Human breast cancer is a heterogeneous disease, and
predicting treatment response and clinical outcomes is
typically based on specific clinical and pathological fea-
tures [1]. Breast cancer is molecularly classified into the
luminal-A, luminal-B, HER2-overexpressing (HER2+) or
triple-negative subtypes. Triple-negative breast cancer
(TNBC) refers to a subtype of breast carcinoma character-
ized by the lack of expression of the 3 receptors most
commonly targeted by standard breast cancer therapy:
estrogen receptor alpha (ERα), progesterone receptor (PR)
and human epidermal growth factor receptor 2 (HER-2)
[2]. In practice, TNBC is often used as a surrogate name
for basal-like breast cancer [3]. There is currently no con-
sensus on the optimal immunohistochemistry (IHC) panel
to use to characterize basal-like tumors [4]. Although sys-
tematic therapeutic approaches have reduced cancer-
specific mortality, TNBC is associated with relatively poor
clinical outcomes compared with other subtypes of breast
cancer [5, 6]. In recent years, there has been a focus on
further characterizing the various molecular markers and
biomarkers associated with TNBC, including EGFR,
VEGFR, c-Myc, C-kit, Poly (ADP-ribose) polymerase-1,
HSP90, TOP-2A and spleen tyrosine kinase (SYK) [7, 8].
These biomarkers might be valuable prognostic indicators
and might represent potential therapeutic targets of
TNBC treatment. Identifying novel biomarkers of TNBC
might further contribute to the development of effective
TNBC treatment approaches.
Tissue inhibitor of metalloproteinases-1 (TIMP-1), a

member of the TIMP family of proteins comprising
TIMP-1, 2, 3 and 4, was identified 2 decades ago and
was initially characterized as an endogenous inhibitor of
matrix metalloproteinases (MMPs) [9–12]. TIMP-1 has
long been recognized for its role in extracellular matrix re-
modeling [13]. Emerging evidence indicates that TIMP-1
is frequently overexpressed in several types of human can-
cers, including prostate cancer [14], lung cancer [15],
melanoma [16], glioblastoma [17] and breast cancer [18,
19]. As a cytokine and a key regulator of ECM degrad-
ation, TIMP-1 has multiple functions associated with the
tumor microenvironment and cancer progression [20]. In
addition to its inhibitory activity against MMPs, TIMP-1
promotes cell proliferation in various cell types [21],
including breast cancer cells [22, 23], and it might also be
associated with anti-apoptotic activity in breast cancer
[24–26]. Although the anti-apoptotic activity of TIMP-1
in other cancers has been well demonstrated, some studies
evaluating the role of TIMP-1 in breast cancer cell growth
have reported conflicting results [23, 27]. For example, in
MDA-435 breast cancer cells, TIMP-1 was reported to
promote cell growth by inhibiting MMPs [23]. In contrast,
TIMP-1 was reported to inhibit cell growth in MCF-10A
normal breast epithelial cells by decreasing cyclin D1

levels [27]. In TIMP-1-deficient mice, mammary epithelial
cell proliferation is upregulated [28]. Thus, although
several distinct signaling pathways and putative receptors
have been implicated in TIMP-1 function [29–32], the
mechanisms underlying the role of TIMP-1 in distinct
subtypes of breast cancer remain unclear.
To gain new insights into the role of TIMP-1 dur-

ing breast cancer progression, we examined TIMP-1
expression levels in serum derived from breast cancer
patients and evaluated the prognostic value of TIMP-
1 using a large publically available clinical microarray
database of breast cancer specimens. Interestingly, we
observed higher levels of TIMP-1 expression in patients
with TNBC compared with control individuals, and this
phenomenon was associated with a poor prognosis in
TNBC patients. However, TIMP-1 expression levels were
not associated with survival in other subtypes of breast can-
cer or in the overall population of breast cancer patients
evaluated. Mechanistic analyses indicated that shRNA-
mediated knockdown of TIMP-1 in TNBC cells induced
cell cycle arrest at the G1 phase and decreased cyclin D1
levels. Moreover, inhibiting TIMP-1 function prevented
tumor growth in mice, suggesting that TIMP-1 inhibition
might be a promising therapeutic strategy for treating
TNBC.

Methods
ONCOMINE microarray datasets
Microarray datasets of invasive breast carcinoma (The
Cancer Genome Atlas: Invasive Breast Carcinoma Gene
Expression Data, 2011, http://tcga-data.nci.nih.gov/tcga/)
and ductal breast carcinoma (The Cancer Genome Atlas:
Invasive Breast Carcinoma Gene Expression Data, 2003,
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4382)
were accessed via the ONCOMINE Cancer Profiling
Database (version 4.4.4.4, www.oncomine.org) and were
used to investigate TIMP-1 expression in various types of
breast cancer.

Cell culture
The human breast cancer cell lines corresponding to the
luminal subtype (MCF-7 and BT474 cells), HER2+ sub-
type (SK-BR-3) and TNBC subtype (MDA-MB-231,
MDA-MB-468, MDA-MB-435 and BT549 cells) were
obtained from the American Type Culture Collection
(ATCC) and cultured according to the manufacturer’s
online instructions. The immortalized epithelial cell line
MCF-10A (ATCC) was maintained in DMEM/F12
medium (Invitrogen) supplemented with 5 % horse
serum, EGF (20 ng/ml), hydrocortisone (0.5 mg/ml),
cholera toxin (100 ng/ml), insulin (10 μg/ml) and 1 %
penicillin/streptomycin.

Cheng et al. Molecular Cancer  (2016) 15:30 Page 2 of 13

http://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4382
http://www.oncomine.org


Real-time PCR
Total RNA was extracted using Trizol reagent (Cat.
#15596-026, Invitrogen) and reverse transcribed using
the transcriptase cDNA synthesis kit (Cat. #K1662, Fer-
mentas) according to the manufacturer’s instructions.
Real-time PCR analysis was conducted using SYBR
Premix Ex Taq™ (Cat. #RR420A, TaKaRa, China) and
the Applied Biosystems 7500 Fast Real-Time PCR
System (ABI, USA). The results were normalized to
the GAPDH internal control. The following primers
were used: TIMP-1-F: TTGTGGGACCTGTGGAAGTA,
TIMP-1-R: CTGTTGTTGCTGTGGCTGAT, GAPDH-F:
ACGGATTTGGTCGTATTGGG, and GAPDH-R: CGCT
CCTGGAAGATGGTGAT.

TIMP-1 shRNA lentiviral vectors
TIMP-1 shRNA lentiviral vectors were created by insert-
ing the TIMP-1 target sequences into the GV248 lenti-
viral vector (GeneChem Company, Shanghai, China).
The following TIMP-1 target sequences were used:
shTIMP1-1#: ACAGTGTTTCCCTGTTTAT, shTIMP1-
2#: AGCGTTATGAGATCAAGAT, and shTIMP1-3#:
AGTCAACCAGACCACCTTA. The resulting shRNA
lentiviral vectors were transfected into 293 T cells and
the viral supernatants were collected and filtered 48 h
after the transfection. MDA-MB-468 and MDA-MB-231
cells were infected with the viral supernatant and suc-
cessfully infected cells were selected using puromycin
(0.5 μg/mL) (#P8833, Sigma).

ELISA
TIMP-1 levels in preoperative patient serum samples
and cell-conditioned medium were detected using
Quantikine Human TIMP-1 ELISA Kits (Cat. #DTM100,
R&D Systems). ELISA assays were conducted according
to the manufacturer’s instructions. All the samples were
analyzed in 3 wells in each experiment, and each experi-
ment was repeated 3 times. The serum samples were
collected from 81 patients prior to surgery. The use of
the patient specimens was approved by the Institutional
Ethics Committee of Shanghai Ninth People’s Hospital
affiliated with Shanghai JiaoTong University School of
Medicine, and written consent was obtained from all
participants.

Overall survival (OS) analysis
The Sorlie classification method used in the data set was
used to assign patients to the different groups according
to clinical breast cancer subtype. OS stratified by expres-
sion levels of the gene of interest was evaluated using
Kaplan–Meier analysis, and comparisons between
groups were evaluated using log-rank tests. The statis-
tical analysis was performed according to the manufac-
turer’s instructions [33] (http://kmplot.com/analysis/).

DNA isolation, bisulfite conversion and methylation
analysis
DNA was extracted using the Beyotime® Genomic DNA
Mini Preparation Kit (Cat. #D0063, Beyotime, China).
The DNA samples (500 μg) were treated with bisulfite
using the EZ DNA Methylation Gold™ Kit (Cat.
#D5006, ZymoResearch, USA). Bisulfite-converted gen-
omic DNA was amplified using ZymoTaq™ DNA poly-
merase (Cat. #E2001, CA, USA). The BSP specific
primers were designed according to the location of the
TIMP-1 CpG islands. The primer sequences are as fol-
lows: TIMP-1-BSP-F: TGTATAATAAATGTTGAAGG
GTTGAATTA and TIMP-1-BSP-R: ACCATCAATACA
AAAACCAAAAAAC. The PCR products were inserted
into the pCR2.1 vector using the TA cloning Kit (Cat.
#K2020-20, Invitrogen, USA), and 10 clones were se-
quenced by MeiJi Company (Shanghai, China).

Cell cycle analysis
Cells cultured in 6-well plates were harvested, washed
once in PBS and fixed in 70 % ethanol for 48 h at 4 °C.
The nuclei were stained with 50 μg/ml propidium iodide
(PI) in 1 % Triton-X100/PBS containing 100 μg/ml
DNase-free RNase, and the DNA content was analyzed
using flow cytometry with the FACSCalibur platform
(Becton Dickinson, San Jose, USA). The proportion of
cells in each phase of the cell cycle was determined using
the ModFit LT program (Verity Software House, USA).

Colony formation assay
For the colony formation assays, 1 × 103 cells were
plated into 6-well plates and cultured for 10 days. At the
end of the culture period, the cells were fixed with
methanol for 30 min and stained with crystal violet for
30 min. The plates were washed several times with
water, and the images of the optical density of the cells
were captured using a digital camera.

Invasion assay
Cell invasion was examined using a reconstituted extracel-
lular matrix membrane (Cat. #354480, BD Biosciences,
San Jose, CA). Cells suspended in serum-free media at a
concentration of 3 × 104 cells/0.5 ml were placed in the
upper chambers, and complete media containing 10 %
fetal bovine serum (FBS) and 1 % antibiotics (Invitrogen
Corp., Carlsbad, CA) was added to the lower chambers.
The chambers were incubated for 18–24 h at 37 °C and
5 % CO2. After the incubation, the medium was com-
pletely removed from the upper and lower chambers, and
the purple residue indicative of noninvasive cells was
gently removed from the upper chamber using a cotton-
tipped swab. Next, the chambers were fixed with metha-
nol for 30 min and stained with crystal violet for an
additional 30 min. The cells were counted in images of
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the membrane that had been captured using a microscope
(Zeiss) with a 10x objective lens.

Western blot
The Western blot assays were conducted as previously
described [34]. Briefly, cells were washed with cold PBS 3
times and harvested in RIPA buffer [1× PBS, 1 % NP40,
0.5 % sodium deoxycholate, 0.1 % SDS, phosphatase
inhibitor cocktail (Roche, Indianapolis, IN), 0.1 mg/ml
PMSF and 1 mM sodium orthovanadate]. Proteins ex-
tracted from the cells or tissue lysates were resolved using
8 %, 10 % or 12 % SDS-polyacrylamide gel electrophoresis,
transferred to a nitrocellulose membrane, blocked in 5 %
nonfat milk and blotted with the appropriate antibody.

Xenograft models
The mouse xenograft tumor assays were performed
in the animal center of Shanghai Jiao Tong Univer-
sity School of Medicine after obtaining approval
from the Shanghai Medical Experimental Animal
Care Commission. Twenty 6-week old female mice
were obtained from the Shanghai Medical Experi-
mental Animal Care Commission. All the animal ex-
periments were performed in a designated animal
center. The mice were subcutaneously injected (2 in-
jection sites per mouse) with 1 × 106 MDA-MB-468

cells and divided into 2 groups (N = 10 for each
group). Five days later, the mice were injected with a
neutralizing antibody against TIMP-1 (10 μg per
25 g of body weight) (Cat. #AF970, R&D Systems)
or the IgG control, and the injections were repeated
once a week for 4 weeks. Tumor volumes were mea-
sured regularly using the formula V = 0.5 × L ×W2,
where L was the longest diameter, and W was the
shortest diameter, before the animals were sacrificed,
and the tumors were isolated.

Results
TIMP-1 expression was significantly elevated in breast
cancer
To characterize the role of TIMP-1 in breast cancer,
we analyzed TIMP-1 mRNA expression in breast
cancer specimens from the publicly available cancer
microarray database ONCOMINE (https://www.onc
omine.org/). We found that TIMP-1 expression was
significantly increased in invasive breast carcinoma
(Fig. 1a) and ductal breast carcinoma (Fig. 1b) com-
pared with normal breast tissues. We also evaluated
the levels of TIMP-1 mRNA and protein in breast
cancer cell lines and found that TIMP-1 expression
was significantly elevated in the TNBC cell lines
(MDA-MB-231, MDA-MB-468, MDA-MB-435 and
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Fig. 1 TIMP-1 is highly expressed in breast cancer and is expressed at particularly high levels in TNBC. a TIMP-1 gene-centric expression analysis
using Oncomine. TIMP-1 is significantly overexpressed in invasive breast cancer tissue compared with normal breast tissue in samples from the
TCGA Breast cancer microarray database (p = 2.18E-14). b Similar results were observed in the Sorlie Breast 2 microarray data (p = 2.15E-5). c The
expression level of TIMP-1 mRNA in various breast cancer cell lines was evaluated using Real-time PCR. The data are presented as the mean ± SD.
d TIMP-1 protein levels in cell culture medium were detected using ELISA assays. The results demonstrated that TNBC cells express higher levels
of TIMP-1 compared with non-TNBC cells. The data are presented as the mean ± SD
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BT549) compared with the luminal (MCF-7 and BT474)
and HER2+ breast cancer cell lines (SK-BR-3) and the
normal epithelial cell line (MCF-10A) at the mRNA and
protein levels (Fig. 1c and d).
TIMP-1 was initially identified in human serum de-

rived from skin fibroblasts in 1975 [35]. Based on this
finding, we assessed the association between serum
levels of TIMP-1 breast cancer clinical parameters, in-
cluding age (< or ≥50 years), T status, lymph node me-
tastasis, and the ER, PR and HER2 status (Table 1).
Serum TIMP-1 were significantly elevated in malignant
tissues compared with benign tissues (p < 0.001) and in

ER-negative breast cancer patients compared with ER-
positive patients (p = 0.002). Stratifying TIMP-1 levels
according to molecular subtype revealed that serum
levels of TIMP-1 were significantly higher in patients
with the luminal-A (p < 0.001), HER2+ (p < 0.001) and
TNBC (p < 0.001) subtypes compared with patients with
benign disease. However, there were no significant dif-
ferences in TIMP-1 levels among the 3 malignant sub-
types (p > 0.05, data not shown).
These results suggested that elevated TIMP-1 ex-

pression might play an important role in breast can-
cer development.

Table 1 Relationship between clinicopathological features and serum levels of TIMP-1 in breast cancer patients

TIMP-1 level (ng/ml) p value

N Mean SD Rang

All study subjects 81 211.2317 82.4088 40.1078–414.3112

Diagnostic category <0.001

Benign 22 159.8383 58.3779 40.1078–239.5306

Malignant 59 230.3953 82.2059 73.2381–414.3112

Age 0.985

<50 22 230.1297 79.5451 78.9473–378.5845

≧50 37 230.5533 84.8323 73.2381–414.3113

T status 0.386

≦2 24 215.8122 86.4862 73.2381–414.3113

>2 23 238.4916 90.9452 86.1807–404.1802

Lymph node 0.798

0 30 221.8737 89.6307 73.2381–414.3113

≧1 19 228.2739 76.2754 86.1807–324.1554

ER 0.002

Negative 24 268.9795 82.9122 73.2381–324.1554

Positive 35 203.9396 71.4596 86.1807–414.3113

PR 0.030

Negative 34 250.1643 83.3048 73.2381–324.1554

Positive 25 203.5096 74.0452 75.7956–414.3113

HER2+ 0.120

Negative 38 242.7811 70.3116 86.1807–404.1802

Positive 21 207.971 98.1427 73.2381–414.3113

Ki-67(%) 0.597

<15 % 20 238.4001 62.2747 142.3562–378.5845

≧15 % 39 226.2903 91.2385 73.2381–414.3113

Molecular subtype

Luminal-A 25 230.8728 58.3779 134.5391–324.1554 <0.001

Luminal-B 10 136.6069 61.2456 73.2381–250.8275 0.327

HER2+ 11 272.8475 78.5198 126.9324–414.3113 <0.001

TNBC 13 280.6168 74.7404 143.2887–404.1802 <0.001

Serum was collected from 81 patients before surgery, including 22 benign and 59 malignant. Serum TIMP-1 level was detected by ELISA. Before detection, the
serum samples were diluted 1:50 with 1 % BSA. ELISA was done according to the manufacturer’s instructions. Student’s T test was used to assess whether the
mean of different group has statistically difference
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TIMP-1 predicts poor clinical outcomes in patients with
TNBC
To further explore the relationship between TIMP-1 and
clinical prognosis in patients with breast cancer, we
evaluated the prognostic value of TIMP-1 in a large pub-
lically available clinical breast cancer microarray data-
base [33] that includes data from 1027 patients (459
luminal-A, 308 luminal-B, 75 HER2+ and 185 TNBC).
We found that higher levels of TIMP-1 expression
were associated with poor overall survival (OS) in
TNBC patients (p = 0.032, Fig. 2e) but not in the

overall breast cancer population or in the other sub-
types evaluated (p > 0.05, Fig. 2a-d).

Upregulation of TIMP-1 in TNBC is associated with
promoter hypomethylation
DNA methylation is a key epigenetic modification in
the mammalian genome that regulates gene expres-
sion. To determine if DNA methylation is associated
with the transcriptional silencing of TIMP-1 in dif-
ferent subtypes of breast cancer, we analyzed the
promoter sequence of TIMP-1. We identified 1 CpG
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island located between bp −157 and −32 (Fig. 3a)
and analyzed its methylation status in breast cancer
cell lines and in clinical samples from breast cancer
patients. As shown in Fig. 3b and c, the methylation
status of the CpG island in the TIMP-1 promoter
was greater than 20 % in non-TNBC cell lines
(37.3 % in MCF-10A, 29.1 % in BT474 and 20 % in
SK-BR-3 cells) and non-TNBC patients (26.4 % in
benign, 24.5 % in luminal-A, 38.2 % in luminal-B
and 33.6 % in HER2+ patients). In contrast, CpG
methylation in the TIMP-1 promoter was less than
10 % in TNBC cell lines (MDA-231 and MDA-468)
and TNBC patients. Among the breast cancer pa-
tients evaluated in these studies, 5 had luminal-A

disease, 3 had luminal-B disease, 3 had HER2+ dis-
ease and 3 patients had TNBC. The average methy-
lation status associated with each subtype is
presented in Fig. 3c, and the data are summarized in
Fig. 3d. These data indicate that methylation of the
TIMP-1 promoter is significantly greater in TNBC
(p < 0.05). In addition, RT-PCR analysis of MDA-231
and BT474 cells treated with various concentrations
of 5-Aza-2′-deoxycytidine (5-Aza) for 48 h demon-
strated that TIMP-1 mRNA levels increased in
BT474 cells but not in MDA-231 cells (Fig. 3e). To-
gether, these findings indicate that high levels of
TIMP-1 expression in TNBC might be associated
with TIMP-1 promoter hypomethylation.
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presented as the mean± SD, p< 0.05. e Expression of TIMP-1 was analyzed using RT-PCR in breast cancer cells treated with various concentrations (0–20 μM)
of 5-Aza for 48 h. TIMP-1 expression was restored in BT474 cells treated with 2–20 μM of 5-Aza. In contrast, TIMP-1 expression was not restored in MDA-231
cells treated with 5-Aza due to hypomethylation of the TIMP-1 promoter

Cheng et al. Molecular Cancer  (2016) 15:30 Page 7 of 13



TIMP-1 silencing induces cell cycle arrest in the G1 phase
in TNBC cells
Based on the observation that TIMP-1 is highly expressed
in TNBC cells, we evaluated the role of TIMP-1 in TNBC
cells by transfecting MDA-MB-468 and MDA-MB-231
cells with a vector expressing a short hairpin RNA
(shRNA) targeting TIMP-1. Three shRNAs, referred to as
shTIMP1-1#, −2#, and −3#, were used in these experi-
ments. The shRNA knockdown efficiency of TIMP-1 ex-
pression was confirmed using real-time PCR and ELISA
assays in both cell lines.
To determine the role of TIMP-1 in TNBC cell prolifer-

ation, we examined cell cycle distribution using flow cy-
tometry. TIMP-1 knockdown increased the proportion of
cells in the G1 phase (81.61 % of shTIMP1-1# cells and
74.92 % of shTIMP1-3# cells vs. 59.66 % of control cells,
Fig. 4c), and decreased the proportion of cells in the G2
and M phases compared with the control (Fig. 4c). Similar
results were observed in MDA-231 cells (Fig. 4d). In
addition, TIMP-1 knockdown significantly reduced colony
formation in MDA-MB-468 and MDA-MB-231 cells com-
pared with the control (Fig. 4e and f). CCK-8 assays
showed that cell growth was restrained in TIMP-1 knock-
down MDA-468 cells (Fig. 4g). However, no differences in
cell invasion were observed between TIMP-1 knockdown
TNBC cells and control TNBC cells (Fig. 4h).
Together, these results demonstrate that the loss of

TIMP-1 expression can induce cell cycle arrest in the
G1 phase and reduce colony formation in TNBC cells.

The Akt signaling pathway is associated with TIMP-1-
regulated cyclin D1 expression in TNBC cells
To further investigate the molecular mechanism by
which TIMP-1 regulates TNBC cell cycle distribution,
we examined the levels of cyclin proteins in TIMP-1
knockdown and control MDA-MB-468 cells using West-
ern blot. Cyclin D1, a protein encoded by the CCND1
gene, is required for cell cycle progression from the G1
to the M phase [36]. As shown in Fig. 5a-c, cyclin D1
levels decreased in TIMP-1 knockdown cells. In con-
trast, TIMP-1 overexpression enhanced cyclin D1 ex-
pression in MCF-10A cells (Fig. 5d). The results
indicated that TIMP-1 induced cell cycle arrest by up-
regulating cyclin D1 expression at the mRNA and pro-
tein levels.
In TIMP-1 knockdown MDA-MB-468 cells, the Akt

(mainly at Ser473 residue) and NF-κB signaling pathways
were strongly inhibited, whereas the MAPK1/2 and GSK-
3β pathways were unaffected (Fig. 5e). In MDA-468 cells
treated with exogenous TIMP-1 (100 ng/mL, Cat#: 970-
TM, R&D systems), Akt phosphorylation (primarily at
Ser473) increased within 5 min (Fig. 5f), suggesting that
the Akt signaling pathway is involved in TIMP-1-induced
breast cancer cell proliferation. Figure 5g presents a

schematic by which TIMP-1 regulates cyclin D1 expres-
sion in TNBC cells via activation of the Akt signaling
pathway.

Blocking TIMP-1 activity with neutralizing antibodies
inhibits tumor growth
To determine if TIMP-1 is involved in tumor growth in
vivo, we used a neutralizing antibody to block TIMP-1
activity in TNBC cells. We used this approach rather
than engineering TIMP-1 knockdown cells as TIMP-1 is
a secreted protein. Ultimately, 13 tumors derived from
the cancer cell injections were identified in each group
and used for further analysis. A significantly lower rate
of tumor growth was observed in mice injected with
neutralizing antibodies against TIMP-1 compared with
mice injected with the control IgG. The 26 tumors
5 weeks after the tumor cell injections are shown in
Fig. 6a. We observed a strong reduction in tumor vol-
ume and total tumor burden in mice injected with the
neutralizing antibody compared with control mice
(Fig. 6b and c). Together, these data suggest that block-
ing TIMP-1 activity might be an effective approach for
treating triple-negative breast cancer.

Discussion
TIMP-1 is a small secretory glycoprotein with multiple
functions, including anti-apoptotic activity and inhibiting
matrix metalloproteinases [13, 26]. Numerous studies
have demonstrated that TIMP-1 levels are elevated in
several types of human cancer, including breast cancer
[19]. Breast cancer is a heterogeneous disease composed
of distinct molecular subtypes with different phenotypes.
Triple-negative breast cancer, which is defined by the
absence of ER, PR and HER-2 expression, represents
15 % of breast cancer cases [37]. Among the different
subtypes of breast cancers, TNBC is associated with the
poorest clinical prognosis, and no effective targeted ther-
apies are currently available [38]. Actually, little is
known about the function and molecular mechanism of
TIMP-1 in TNBC [39].
In this study, we found that TIMP-1 expression was

elevated in TNBC cell lines and TNBC patients com-
pared with non-TNBC cells and non-TNBC breast can-
cer patients and that increased TIMP-1 expression was
associated with a poor prognosis in TNBC patients. Our
epigenetic analysis provided the first evidence that ele-
vated TIMP-1 expression in TNBC is associated with a
reduction in TIMP-1 promoter methylation. These find-
ings indicate that TIMP-1 expression might be linked to
more aggressive subtypes of breast cancer and are con-
sistent with previous studies reporting that TIMP-1 ex-
pression is associated with a poor prognosis in breast
cancer [40], colorectal cancer [41], laryngeal squamous
cell carcinoma [42] and hepatocellular carcinoma [43].
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An increase in TIMP-1 mRNA levels induced by 5-
Aza treatment has also been observed in melanoma
[44] and gestational tissues [45], indicating that pro-
moter methylation mediates the expression of TIMP-1
in various cell types.
As a member of the TIMP family of proteins, TIMP-1

was initially characterized as an endogenous inhibitor of
MMPs and A Disintegrin and metalloproteinase domain-
containing protein 10 (ADAM10) [46]. However, in recent
years, several reports have focused on the cytokine-like
functions of TIMP-1 in multiple biological processes
[20, 47]. In this study, TIMP-1 down-regulation significantly

decreased cyclin D1 expression at both the mRNA and
protein levels and disrupted Akt and NF-κB signaling,
suggesting that Akt/NF-κB signaling might mediate the
effects TIMP-1 exerts on cell cycle regulation in TNBC.
Despite previous reports that GSK3β signaling pathway
plays a critical role in cyclin D1 degradation [48] and
that TIMP-1 activates human breast epithelial cells via
the PI3K and MAPK signaling pathways [29], we found
that the GSK-3β and MAPK1/2 pathways were unaffected
in TIMP-1 knockdown TNBC cells or TNBC cells treated
with exogenous TIMP-1. In a recent study, TIMP-1 was
reported to phosphorylate Akt at Thr308 in human
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hematopoietic progenitor cells [47]. Other studies have
also reported that TIMP-1 can bind to CD63 or the
pro-MMP9/CD44 complex, thereby activating survival
pathways in some cells [32, 49]. The physiologic recep-
tor of TIMP-1 remains unclear; therefore, further inves-
tigation into TIMP-1 receptors and the intracellular
processes mediated by TIMP-1 might provide novel in-
sights into the molecular mechanisms of TIMP-1 in
breast cancer cells or other types of cancer cells.
In this study; however, we did not observe defects

in cell migration in TIMP-1 knockdown cells. A po-
tential explanation for this finding is that knocking
down a single factor is not sufficient to discernably
disrupt cell migration in the highly aggressive TNBC
cell lines we evaluated.
As the role of TIMP-1 in promoting proliferation in

various cell types has been well established, efforts have
been put forth to evaluate the effect of blocking TIMP-1
signaling in inflammation-associated diseases by target-
ing CD63 [31]. As TIMP-1 is secreted in the tumor
microenvironment, we used a TIMP-1 neutralizing anti-
body to block TIMP-1 activity rather than use TIMP-1
knockdown cell lines. We found that the inhibition of
TIMP-1 activity markedly suppressed tumor growth in
mice, consistent with observations in mouse models of
prostate cancer [50]. Targeting TIMP-1 or its receptor is
widely used in the treatment of immune disease. In this

study we investigated the potential use of TIMP-1 anti-
body in cancer therapy.

Conclusions
TIMP-1 was highly expressed in TNBC patients and was
associated with a poor prognosis. The TIMP-1 promoter
was hypomethylated in TNBC cells, resulting in an in-
crease in proliferation and cyclin D1 levels via the p-Akt
and p-NF-κB pathways. Treatment with a neutralizing
antibody against TIMP-1 significantly decreased tumor
growth in vivo. In summary, our results suggest that
TIMP-1 might serve as a prognostic biomarker indica-
tive of poor outcomes and be an effective therapeutic
target of TNBC treatment.
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