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Background: The type | insulin-like growth factor receptor (IGF-IR) tyrosine kinase promotes the survival of an
aggressive subtype of T-cell lymphoma by interacting with nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)
oncogenic protein. NPM-ALK" T-cell lymphoma exhibits much higher levels of IGF-IR than normal human T
lymphocytes. The mechanisms underlying increased expression of IGF-IR in this lymphoma are not known. We
hypothesized that upregulation of IGF-IR could be attributed to previously unrecognized defects that inherently
exist in the transcriptional machinery in NPM-ALK™ T-cell lymphoma.

Methods and results: Screening studies showed substantially lower levels of the transcription factors lkaros
isoform 1 (Ik-1) and myeloid zinc finger 1 (MZF1) in NPM-ALK™ T-cell lymphoma cell lines and primary tumor tissues
from patients than in human T lymphocytes. A luciferase assay supported that Ik-1 and MZF1 suppress IGF-IR gene
promoter. Furthermore, ChIP assay showed that these transcription factors bind specific sites located within the IGF-IR
gene promoter. Forced expression of lk-1 or MZF1 in the lymphoma cells decreased IGF-IR mRNA and protein.
This decrease was associated with downregulation of plGF-IR, and the phosphorylation of its interacting proteins
IRS-1, AKT, and NPM-ALK. In addition, overexpression of Ik-1 and MZF1 decreased the viability, proliferation, migration,
and anchorage-independent colony formation of the lymphoma cells.

Conclusions: Our results provide novel evidence that the aberrant decreases in Ik-1 and MZF1 contribute significantly

to the pathogenesis of NPM-ALK" T-cell lymphoma through the upregulation of IGF-IR expression. These findings could
be exploited to devise new strategies to eradicate this lymphoma.

Background

The type I insulin-like growth factor receptor (IGF-IR)
tyrosine kinase is a homodimeric protein that is com-
posed of 2 extracellular a and 2 transmembranous 3
subunits connected by disulfide bonds. IGF-IR belongs
to the insulin receptor family whose members exhibit a
common structural characteristic in the form of an
amino acid motif (YXXXYY) within the activation loop of
their respective kinase domains [1,2]. Ligand stimulation
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of IGF-IR causes its dimerization and phosphorylation,
and subsequent activation of downstream signaling sys-
tems. Animal models have demonstrated the physiological
contributions of IGF-IR to prenatal and postnatal normal
cellular homeostasis through interactions with the growth
hormone [3,4]. Thus, basal levels of activation of IGF-IR
are required for the proliferation and growth of various
types of cells, tissues, and organs [4-7]. The critical roles
of IGF-IR in early development are illustrated by the IgfIr-
null mice, which develop generalized organ hypoplasia,
delayed bone ossification, and abnormalities in the central
nervous system. The [gfIr-null mice die prematurely due
to lung underdevelopment accompanied by respiratory
failure [8].
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In addition to its physiological roles, pathological ac-
tivation of IGF-IR induces cellular transformation and
protection from apoptosis— prerequisites for the estab-
lishment and growth of malignant tumors [9-15].
Indeed, IGF-IR is aberrantly overexpressed in and con-
tributes to the survival of a variety of aggressive solid
tumors as well as different types of myeloid, lymphoid,
and plasma cell neoplasms and, therefore, it may repre-
sent an important therapeutic target [16-21]. IGF-IR in-
duces its oncogenic effects through interactions with
the downstream survival effectors IRS-1/PI3K/AKT,
Grb/Ras/MAPK, and JAK/STAT [22-25].

The mechanisms underlying increased expression of
IGF-IR in cancer cells are not completely understood.
For instance, only a few transcription factors have been
shown to bind the IGF-IR gene promoter (15q26.3) and
modulate its activity through stimulation or inhibition.
These transcription factors include Spl, WT1, E2F1,
STAT1, and EGR-1 [26-34].

Recently, we identified IGF-IR as a major survival mol-
ecule that interacts reciprocally with nucleophosmin-
anaplastic lymphoma kinase (NPM-ALK) in NPM-ALK-
expressing (NPM-ALK") T-cell lymphoma, an aggressive
type of cancer that frequently occurs in children and ad-
olescents [35-37]. Compared with its expression in nor-
mal human T lymphocytes and reactive lymphoid
tissues, the expression of IGF-IR mRNA and protein is
remarkably upregulated in NPM-ALK" T-cell lymphoma
cell lines and human tumors [36]. Nonetheless, the
mechanisms leading to IGF-IR upregulation in this
lymphoma remain to be elucidated. We hypothesized
that increased IGF-IR expression may be explained by
transcriptional aberrancies that exist inherently in this
lymphoma. Our data show that the transcription factors
Ikaros isoform 1 (Ik-1) and myeloid zinc finger 1
(MZF1) have lower expressions in NPM-ALK" T-cell
lymphoma cell lines and human tumors relative to T
lymphocytes. We were able to identify sites located
within the IGF-IR gene promoter that bind Ik-1 and
MZF1. Forced expression of Ik-1 and MZF1 significanty
decreased the activity of the IGF-IR gene promoter and
downregulated IGF-IR mRNA and protein levels in these
lymphoma cells. In addition, Ik-1- and MZFI-induced
downregulation of IGF-IR was assoicated with decreased
NPM-ALK" T-cell lymphoma viability, proliferation, mi-
gration, and anchorage-independent colony formation.

Results

k-1 and MZF1 are potential modulators of IGF-IR gene
expression

The TFSearch, MATCH, and Genomatix algorithms
identified multiple potential transcription factors, yet we
elected to focus on Ik-1 and MZF1 because their 1)
matrix similarity thresholds to bind with the IGF-IR
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gene promoter are > 0.9, which has been predicted col-
lectively by the 3 algorithms [the matrix similarity
threshold represents the quality of the match between
the transcription factor binding sequence and arbitrary
parts of the promoter sequence, and is used to minimize
false positive results]; 2) contribution to the transcrip-
tional regulation of IGF-IR expression has not been
previously described; 3) role in the pathogenesis of
NPM-ALK" T-cell lymphoma is not known; and 4) con-
tribution to normal and abnormal hematopoiesis has
been established [38-42].

Expressions of k-1 and MZF1 are markedly deceased in
NPM-ALK" T-cell ymphoma cell lines and human
lymphoma tumors

We used Western blotting to screen the expression of
Ik-1 and MZF1 proteins in 4 NPM-ALK" T-cell lymph-
oma cell lines (Karpas 299, SR-786, DEL, and SUP-M2)
as well as in normal human T lymphocytes. Jurkat cells
were used as a positive control. Ik-1 and MZF1 expres-
sions were remarkably lower in the cell lines than in the
human T lymphocytes (Figure 1A and B). To examine
the expression of Ik-1 and MZF1 proteins in formalin-
fixed and paraffin-embedded ALK" T-cell lymphoma
tissues from patients, we initially attempted using immu-
nohistochemical (IHC) staining. However, commercially
available Ik-1 antibodies that were suitable for IHC were
nonspecific because they detect, not only the Ik-1
protein, but other Ikaros isoforms as well. In addition,
we found only one commercially available MZF1 anti-
body that was listed as suitable for IHC. Our repeated
attempts to optimize this antibody for IHC failed because
it showed inconsistent results in positive and negative
control tissues. Thus, we resorted to using Western blot-
ting to analyze the expression of Ik-1 and MZF1 in protein
extracts from 15 ALK" T-cell lymphoma patient tumor
sections. Ik-1 and MZF1 were significantly decreased in
87% and 100% of patient samples, respectively (Figure 1C).
Densitometric analysis of the Western blotting bands
in patient specimens is shown confirming the results
depicted in Figure 1C (Figure 1D).

Interaction and physical association between Ik-1/MZF1
and the IGF-IR gene promoter

To elucidate whether Ik-1 and MZF1 can bind to and
regulate the IGF-IR gene promoter, we performed a lu-
ciferase assay in R™ cells, mouse 3 T3-like fibroblasts
with targeted ablation of Igfir gene [8], using 3 different
fragments of the human IGF-IR promoter construct
(F1: -682/-137, F2: —137/+583, F3; +530/+1137; illustrated
in Figure 2A and B) along with either EV, Ik-1 or MZF1
expression plasmids. We also performed the luciferase
assay using mutated versions of the promoter fragments
that were sequentially deleted at the corresponding
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Figure 1 The expression of k-1 and MZF1 is decreased in NPM-ALK" T-cell lymphoma and primary tumors from patients. (A) Western
blotting shows that Ik-1 levels were markedly lower in 4 NPM-ALK" T-cell lymphoma cell lines than in T lymphocytes. Jurkat cells were used as a
positive control. 3-actin showed equal protein loading. Vertical lines have been inserted to indicate repositioned gel lanes. (B) Similarly, MZF1 levels
were substantially lower in the lymphoma cell lines than in normal human T-cells. Jurkat cells served as a positive control. 3-Actin demonstrated equal
levels of loaded proteins. (C) The expression of Ik-1 and MZF1 is shown in 15 ALK" T-cell ymphoma specimens from patients. Patient’s lysates were
divided into 2 groups — 1-7 (left panel) and 8-15 (right panel) — and lysates from 2 different pools of normal human T lymphocytes (TL) were analyzed
simultaneously as controls with the corresponding lysates from the patient tumors. Because the quality of the formalin-fixed and paraffin-embedded
tissue sections varied significantly, 3-actin showed unequal protein levels. (D) Despite apparent differences in protein levels loaded in the different
lanes, densitometric analysis of the Ik-1/MZF1:3-actin ratio of the Western blot bands shown in (C) supports that the expression of Ik-1 and MZF1 was
markedly reduced in 87% and 100%, respectively, of the ALK* T-cell lymphoma specimens from patients compared to human TL. The Western blotting
assays were performed 3 independent times with consistent results.

binding sites. Ik-1 and MZF1 significantly decreased the Ik-1 and 6 sites that could potentially bind with MZF1
luciferase activity of the F1 and F2, but not the F3, regions  (Figure 2A and B). To determine which of these sites is
of the human /GF-IR promoter (Figure 2C). The inhibi- responsible for Ik-1 or MZF1 interactions with the IGF-
tory effects on F1 and F2 were much more pronounced IR promoter, we performed a ChIP assay. Because there
when R™ cells were simultaneously transfected with Ik-1  are very low levels of endogenous Ik-1 and MZF1 in
and MZF1 (Figure 2C). These effects did not occur when  Karpas 299 and SR-786 cells, c-Myc-Ik-1 and c-Myc-
mutated F1 and F2 were used (Figure 2C). Our results ~MZF1 expression constructs were used. Using c-Myc
suggest that Ik-1 and MZF1 can downregulate /GF-IR  antibody, the transcription factors were immunoprecipi-
gene promoter through interactions with binding sites lo-  tated and the sonicated chromatin was used to perform
cated within the F1 and F2 regions. an RT-PCR analysis using primers flanking the potential

Using the 3 web-based transcription factor search al-  binding sites for Ik-1 and MZF1 within the human IGF-
gorithms, we were able to predict 5 sites within the hu- IR promoter. The ChIP assay identified 2 binding sites
man [GF-IR promoter that could potentially bind with  (BS2 and BS4) for Ik-1 and 3 binding sites for MZF1
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Figure 2 Ik-1 and MZF1 interact with and bind the IGF-IR gene promoter. (A) /GF-IR gene promoter map including the transcription (AGT)
and translation (ATG) start sites. The 3 PCR fragments used in the luciferase assay (F1: —682/-137, F2: —137/+583, F3: +530/+1137) and 5 sites that
potentially bind with Ik-1 are shown. *: 2 sites confirmed by ChIP assay. (B) In addition to the 3 PCR fragments, 6 sites that potentially bind with
MZF1 are depicted. *: 3 sites confirmed by the ChiP. (C) Luciferase assay performed in R™ cells demonstrates that transfection of Ik-1 or MZF1
decreased IGF-IR promoter activity with F1 and F2, but not with F3. Cotransfection of Ik-1 and MZF1 induced more pronounced inhibitory effects
on F1 and F2 than one transcription factor alone (*: P < 0.05 vs. F1+EV and F2+EV; t: P < 0.01 vs. F1+lk-1 and P < 0.0001 vs. F1+EV; : P < 0.0001
vs. F1+EV and F1+lk-1 and P < 0.01 vs. F1+MZF1; ¥ P < 0.001 vs. F2+EV; 9: P < 0.001 vs. F2+EV and < 0.0001 vs. F2+1k-1 and F2+MZF1). Ik-1 and
MZF1 failed to induce similar effects when F1 and F2 were mutated (MT) at potential binding sites. The results are shown as means + SE of 3
consistent experiments. (D) ChIP assay shows that Ik-1 binds with binding site 2 (BS2) and BS4, but not BS3, of the promoter. Controls, including
EV, IgG, input, and H,O, worked properly. The 2 binding sites are identified by an (*) in (A). (E) ChIP assay confirms that MZF1 binds with the
promoter at BS2, BS3, and BS4, and not BS5, which are marked by an (*) in (B). Controls worked properly. Some of the panels shown in (D)
and (E) have been slightly enhanced in their entirety to assist with the visualization of the weak bands, which are pertinent to the results.

(BS2, BS3, and BS4) (Figure 2D, 2E; these sites are
depicted in Figure 2A and B). The RT-PCR (2 different
sets of primers were tried) showed nonspecific binding
in the ChIP assay for Ik-1 BS1 and BS5, and for MZF1
BS1 and BS6 (data not shown). The nonspecific binding
could be attributed to the fact that these regions con-
tained highly repetitive sequences.

Ectopic expression of Ik-1 and MZF1 in NPM-ALK" T-cell
lymphoma cells downregulates IGF-IR mRNA and protein
levels and decreases the phosphorylation of downstream
targets

We next determined the effect of ectopic expression of
Ik-1 and MZF1 on IGF-IR mRNA and protein levels.
Transfection of Karpas 299, SUP-M2, and SR-786 cells
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with Ik-1 and MZF1 expression plasmids, but not EV,
increased adequately the level of expression of the corre-
sponding transcription factor (Figure 3A). In further
support of their regulatory effects on IGF-IR gene ex-
pression, Ik-1 and MZF1 significantly decreased IGF-IR
mRNA levels (Figures 3B, C). The decrease in IGF-IR
mRNA was associated with downregulation of IGF-IR
protein expression, as well as levels of its activated/
phosphorylated form, pIGF-IR (Figure 3D). Ik-1- and
MZF1-induced downregulation of IGF-IR and pIGF-
IR was associated with a significant decrease in the
phosphorylation of important downstream targets such
as pAKT and pIRS-1 (Figure 3D). Whereas there was
no notable decrease in total AKT levels, Ik-1 and MZF1
decreased total IRS-1 protein levels (Figure 3D). When
the IRS-1 gene promoter sequence was analyzed using
the 3 web-based transcription factor search algorithms,
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we discovered that Ik-1 and MZF1 have the potential to
bind to the IRS-I gene promoter, which may explain
this unexpected finding.

Ectopic expression of Ik-1 and MZF1 in NPM-ALK" T-cell
lymphoma cells is associated with downregulation of
NPM-ALK protein levels

We have recently demonstrated that IGF-IR binds and
interacts with NPM-ALK, and through their binding/in-
teractions, IGF-IR appears to maintain the stability of
the NPM-ALK protein [36,37]. Consistent with our earl-
ier observations, Ik-1- and MZF1-induced downregula-
tion of IGF-IR was associated with a marked decrease in
the expression of NPM-ALK protein (Figure 3D). To
further explore this finding, the 3 web-based transcrip-
tion factor search algorithms were utilized and each
failed to predict potential binding sites for Ik-1/MZF1
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Figure 3 lk-1 and MZF1 decrease IGF-IR mRNA and protein levels and the phosphorylation of downstream targets. (A) Western blotting
demonstrates increased expression levels of Ik-1 and MZF1 proteins at 48 h after transfection into 3 NPM-ALK" T-cell lymphoma cell lines. B-actin
shows equal protein loading (—: transfection of EV; +: transfection of Ik-1 or MZF1). (B) Transfection of Ik-1 remarkably decreased IGF-IR mRNA
levels in Karpas 299, SUP-M2, and SR-786 cell lines (*: < 0.0001 compared with EV). (C) Similarly, transfection of MZF1 induced a significant decrease in
IGF-IR mRNA levels (*: < 0.0001 compared with EV). The results depicted in (B) and (C) represent the means + SE of 3 experiments. (D) Western blotting
shows that transfection of k-1 and MZF1 into Karpas 299, SUP-M2, and SR-786 cell lines induced marked downregulation of IGF-IR protein, which was
associated with decreased plIGF-IR levels. Moreover, the decrease in IGF-IR/pIGF-IR expression levels was associated with decreased
phosphorylation of important IGF-IR targets including IRS-1, AKT, and NPM-ALK. Whereas basal levels of AKT remained unchanged, notable
decrease in IRS-1 protein was observed. The 3 web-based transcription factor search algorithms showed that Ik-1 and MZF1 could potentially
bind the JRS-T gene promoter. In contrast, searching these algorithms did not support potential binding of k-1 or MZF1 and the NPM gene
promoter, where the expression of NPM-ALK protein is regulated at the transcriptional level. (E) In line with lack of potential binding/interaction
between Ik-1 or MZF1 and the NPM gene promoter, a luciferase assay performed in R™ cells shows that transfection of lk-1 and MZF1 does
not decrease the NPM promoter activity. The results represent means + SE of 3 consistent experiments.
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with the NPM gene promoter, where the promoter re-
gion for the transcriptional regulation of the NPM-ALK
chimeric oncogene resides [43]. In line with this obser-
vation, Western blot analysis showed no decrease in the
levels of wild-type NPM protein after transfection of Ik-
1 and MZF1 in NPM-ALK" T-cell lymphoma cell lines
(Figure 3D). In addition, a luciferase assay in R cells
failed to demonstrate decreased NPM gene promoter ac-
tivity after transfection of Ik-1 or MZF1 (Figure 3E).
These results indicate that, most likely, an indirect
mechanism of NPM-ALK downregulation exists through
Ik-1 and MZF1l-mediated suppression of IGF-IR
expression.

Ik-1 and MZF1 decrease the viability, proliferation,
migration, and anchorage-independent colony formation
of NPM-ALK* T-cell lymphoma cells

We performed a series of cellular assays to test the
biological impact of forced expression of Ik-1 and MZF1
in NPM-ALK" T-cell lymphoma. Transfection of Ik-1 or
MZF1, but not EV, significantly decreased the viability,
proliferation, and migration of Karpas 299, SR-786, and
SUP-M2 cells (Figure 4A,B,C,D and E). Ik-1 and MZF1
also abrogated anchorage-independent colony formation
of NPM-ALK" T-cell lymphoma cells (Figure 4F,G).

IGF-IR mRNA demonstrates prolonged decay time in
NPM-ALK" T-cell lymphoma

Because the mechanisms leading to aberrant expression
of oncogenes and tumor suppressor genes are typically
executed at more than one regulatory level, we ques-
tioned whether aberrancies in /GF-IR mRNA decay also
exist in this lymphoma. Consistent with our previously
published results [36], basal levels of IGF-IR were much
higher in the NPM-ALK" T-cell lymphoma cells than in
the normal human T lymphocytes (Figures 5A, B). In T
lymphocytes, IGF-IR mRNA decreased to 50% of its
basal levels (t;,5) at 0.8 h (Figure 5A). The decay of IGF-
IR mRNA varied among 5 different NPM-ALK" T-cell
lymphoma cell lines, yet it consistently occurred at a
more prolonged rate than T lymphocytes (Figure 5B; t,»
mean + SE: 2.62 + 0.4 h).

NPM-ALK does not influence the expression levels of
IGF-IR or IGF-I

To explore whether NPM-ALK plays a role in increased
levels of expression of IGF-IR, we transfected SUP-M2,
SR-786, and DEL cells with ALK siRNA for extended
time periods. Although ALK siRNA effectively downreg-
ulated NPM-ALK (Figure 6A), levels of IGF-IR protein
(Figure 6A) and mRNA (Figure 6B) remained un-
changed. In addition, decreased NPM-ALK was not as-
sociated with decreased endogenous pro-IGF-I or IGF-I
(Figure 6A) or decreased secreted IGF-I (Figure 6C).
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IGF-IR gene is not amplified in NPM-ALK* T-cell
lymphoma

FISH assay failed to support amplification of IGF-IR
gene in NPM-ALK" T-cell lymphoma cells (Additional
file 1: Figure S1-AF and Table S1-AF).

Discussion

In this paper we show that previously unidentified de-
fects in transcriptional machinery contribute to the
pathogenesis of NPM-ALK" T-cell lymphoma. Com-
pared with their expression in normal human T lympho-
cytes, the transcription factors Ik-1 and MZF1 are
markedly decreased in NPM-ALK" T-cell lymphoma cell
lines and lymphoma tumors from patients. Substantial
evidence is provided to support that Ik-1 and MZF1 pos-
sess ability to bind specific sites residing within the IGF-
IR gene promoter and inhibit its activity. In agreement
with these observations, ectopic expression of Ik-1 and
MZF1 in NPM-ALK" T-cell lymphoma cells causes re-
markable downregulation of the expression of IGF-IR
mRNA and protein. Also, transfection of Ik-1 and MZF1
was associated with decreased cell viability, proliferation,
migration, and anchorage-independent colony formation
of NPM-ALK" T-cell lymphoma cells, asserting the
tumor-suppressing impact of Ik-1 and MZF1 in this
lymphoma. It has been previously shown that Ik-1
induces tumor suppressor effects primarily in hemato-
poietic cellular elements [44-46]; nonetheless, the contri-
bution of MZF1 to tumorigenesis is more diverse as it
may induce oncogenic or tumor suppressor effects in
hematopoietic and non-hematopoietic cells [47-52].

The IGF-IR gene promoter is tightly regulated during
mammalian development, and during the embryonic
and early postnatal stages it induces the transcription of
high levels of IGF-IR mRNA, which decrease to much
lower levels during growth [53]. The IGF-IR gene pro-
moter is a TATA-less and CAAT-less promoter, and like
other structurally similar promoters, the IGF-IR pro-
moter is GC-rich [26,27,54]. The transcription of the
IGF-IR gene is therefore initiated from a unique site
contained within an “initiator” motif similar to the ones
present in the terminal deoxynucleotidyl transferase and
adenovirus middle late gene promoters [27,28,55].

Although levels of expression of IGF-IR during physio-
logical and pathological conditions can be rigorously
determined at the transcriptional level [56], thus far rela-
tively few transcription factors have been shown to be
capable of binding with and regulating the expression of
the IGF-IR gene promoter. The multiple GC boxes
present in this promoter form potential binding sites for
members of the zinc-finger transcription factor family.
In line with this notion, earlier studies using rat IGF-IR
gene promoter showed that Spl, a zinc-finger transcrip-
tion factor, binds with GC boxes located within the 5'-
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Figure 4 Transfection of Ik-1 and MZF1 decreases the viability, proliferation, migration, and anchorage-independent colony formation of
NPM-ALK* T-cell ymphoma cells. (A) Compared with EV, transfection of Ik-1 decreased the viability of the lymphoma cells at 48 h (*: P < 0.0001).
(B) In a similar fashion, transfection of MZF1 decreased cellular viability (*: P < 0.0001). (C) Ik-1 decreased cellular proliferation (*: P < 0.05; **: P < 0.01).
(D) Transfection of MZF1 also reduced the proliferation of these cells (*: P < 0.05; **: P < 0.01). (E) IGF-I stimulated the migration of the lymphoma cells.
Whereas this effect was substantially decreased when cells were treated with IGF-l and transfected with Ik-1 or MZF1; EV failed to induce similar effects
(Karpas 299, *: P < 00001 in IGF-I vs. IGF-I+1k-1 and IGF-+MZF1, +: P < 001 in IGF-I+EV [Ik-1] vs. IGF-I+1k-1, : P < 0.001 in IGF-HEV [MZF1] vs. IGF-I
+MZF1; SUP-M2, §: P < 0.05 in IGF-I vs. IGF-I+1k-1, IGF-I+EV [Ik-1] vs. IGF-I+lk-1 and IGF-I+EV [MZF1] vs. IGF-I+MZF1, t: P < 0.01 in IGF-l vs. IGF-I+MZF1;
SR-786, *: P < 0.0001 in IGF-I vs. IGF-+MZF1, IGF-I+EV [Ik-1] vs. IGF-I+1k-1, and IGF-I+EV [MZF1] vs. IGF-I4+MZF1, +: P < 0001 in IGF vs. IGF-+1k-1). (F) k-1
abrogated anchorage-independent colony formation of the lymphoma cells at 7 days after transfection (*: P < 0.05; **: P < 0.01; ***: P < 0.001
compared with EV). The numbers of colonies are shown in the left panel, and examples of the colonies are illustrated in the right panel.

(G) Similarly, MZF1 halted the lymphoma cell colony formation (*: P < 0.05; **: P < 0.01 compared with EV). The numbers of colonies are shown in the

left panel, and examples of the colonies are depicted in the right panel. Results represent means + SE of at least 3 consistent experiments.

flanking region and one homopurine/homopyrimidine
motif (CT element) in the 5'-untranslated region of
IGF-IR gene promoter to enhance its activity [28,29].
The IGF-IR gene promoter also includes cis-elements
for members of the early growth response family of
zinc-finger proteins including the WT1 Wilms' tumor
suppressor, which, in contrast with Sp1, downregulates
the expression of IGF-IR [30,31]. Indeed, increased

expression of WT1 protein was associated with a recip-
rocal decrease in the expression of IGF-IR protein and
receptor number in prostate cancer cells, and downreg-
ulation of WT1 increased IGF-IR expression in glio-
blastoma [57,58]. Albeit less extensively studied, E2F1
and EGR-1 are also implicated in the positive regula-
tion, and STAT1 in the negative regulation of IGF-IR
gene expression [32-34].
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Figure 5 IGF-IR mRNA expressed in NPM-ALK* T-cell lymphoma cells exhibits prolonged decay time compared with IGF-IR mRNA from
normal human T lymphocytes. (A) The decay of /GF-IR mRNA in normal human T lymphocytes over 8 h is illustrated. The 50% level (t;,,) of
IGF-IR mRNA was detected at 0.8 h. (B) In contrast with T lymphocytes, the NPM-ALK" T-cell lymphoma cell lines expressed remarkably higher
basal levels of IGF-IR mRNA, with DEL and SUP-M2 cells demonstrating the highest and lowest levels, respectively. The t,,, for IGF-IR mRNA level
was achieved after longer periods of time in the lymphoma cells than in normal T lymphocytes (SU-DHL-1: 3.7 h, Karpas 299: 3.4 h, SR-786: 2.6 h,
SUP-M2: 1.9 h, DEL: 1.5 h). The mean of the t;,, IGF-IR mRNA decay time in the lymphoma cells was 2.62 + 0.4 h (SE). Results shown represent the
means + SE of 3 experiments.
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Figure 6 NPM-ALK oncogenic protein does not affect the levels of expression of IGF-IR and IGF-1. (A) Western blotting shows that at 48 h,
downregulation of NPM-ALK by ALK siRNA was not associated with decreased expression of IGF-IR, pro-IGF-I or IGF-I proteins in SUP-M2, SR-786,
and DEL cell lines. B-Actin shows equal protein loading. Analysis of IGF-IR levels after transfection of the cells with ALK siRNA was performed at
extended time points (12, 24, 48, 72, and 96 h), and also in other cell lines including Karpas 299 and SU-DHL-1, with similar results (data not shown).
(B) Downregulation of NPM-ALK in the 3 cell lines did not decrease the levels of IGF-IR mMRNA. The example shown is at 48 h after transfection of the
cells with ALK siRNA. The results are shown as means + SE of 4 consistent experiments. In addition, analysis of IGF-IR mRNA was performed at other
time points and cell lines as described in (A). Changes in IGF-IR mRNA levels were not detected at any time point (data not shown). (C) An ELISA assay
showing that specific downregulation of NPM-ALK did not significantly decrease the levels of IGF-I secreted from the NPM-ALK" T-cell lymphoma cells.

SR-786 DEL

In addition to the direct regulatory effects of Spl and
WT1, several studies have elucidated indirect contribu-
tions of oncogenic and tumor suppressor proteins to the
regulation of the IGF-IR gene expression through inter-
actions with these 2 transcription factors. In breast can-
cer, BRCA1 appears to suppress the IGF-IR promoter
activity, but there is no evidence to support BRCAT’s
binding and direct interactions with the IGF-IR pro-
moter. Instead, BRCA1l most likely suppresses the

activity of the IGF-IR promoter through the sequestra-
tion of Spl [59,60]. Similarly, in breast cancer cells, the
estrogen receptor enhances /GF-IR gene promoter activ-
ity via interactions with Spl and WT1 [61,62]. Also,
MCEF7 breast cancer cells that express caveolin-1 dem-
onstrate much higher levels of IGF-IR gene promoter ac-
tivity, and the effects of caveolin-1 on the /GF-IR gene
promoter were mediated through Sp1 [63]. Furthermore,
the tumor suppressor transcription factor Kruppel-like
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factor 6 (KLF6) activates IGF-IR gene transcription
through synergy with Spl [64]. Moreover, it was found
that wild-type p53 downregulates IGF-IR gene expres-
sion and mutated p53 enhances this expression [65-67].
The regulatory mechanisms conferred by p53 also do
not involve specific binding with the /GF-IR gene pro-
moter but seem to be mediated, at least partially, by
protein-protein interactions between p53 and Spl.

The NPM-ALK chimeric oncogene plays a central role
in the survival of NPM-ALK" T-cell lymphoma [35]. We
have previously demonstrated that NPM-ALK and IGEF-
IR reciprocally collaborate to sustain their high phos-
phorylation levels in this lymphoma [36,37]. Here we
questioned whether NPM-ALK, similar to oncogenic
proteins described above, possesses regulatory capacity
pertinent to IGF-IR expression. Our results show that
specific abrogation of NPM-ALK by siRNA failed to re-
duce IGF-IR protein or mRNA levels. Furthermore, it
was previously demonstrated that chimeric oncogenes
such as the Ewing sarcoma fusion proteins induce the
expression of IGF-I, the primary ligand of IGF-IR [68].
Our data indicate that endogenous and secreted IGF-I
levels are most likely regulated independently from
NPM-ALK. Collectively, these results suggest that the ef-
fects of NPM-ALK on IGF-I/IGF-IR signaling are medi-
ated post-translationally through phosphorylation of
IGF-IR protein [36,37].

We have also previously demonstrated that NPM-ALK
and IGF-IR are physically associated, and it appears
that this physical association, through interactions with
Hsp90, enhances the stability of NPM-ALK protein [37].
In the current study, the decrease in IGF-IR expression
after Tk-1 and MZF1 transfection was also associated
with pronounced decrease in NPM-ALK basal protein
levels. Although these results agree with our previous
observations, we sought to investigate whether Ik-1 or
MZF1 is capable of regulating the expression of NPM-
ALK directly at the transcriptional level. The web-based
transcription factor search algorithms failed to predict
potential binding sites between the NPM gene promoter,
where the transcription of the NPM-ALK chimeric
oncogene is driven [43], and either Ik-1 or MZF1. Fur-
thermore, a luciferase assay using an NPM reporter
construct showed that transfection of Ik-1 and MZF1
does not affect NPM promoter activity or protein levels.
Therefore, our current results indicate that the decrease
in NPM-ALK protein levels occurs secondarily to Ik-1-
and MZF-1-induced downregulation of IGF-IR protein
expression.

The Ik-1 and MZF1 transcription factors play physio-
logical roles in the development of normal hematopoiesis
[39-42]. In the present paper we describe for the first time
in any type of cancer cells the negative regulation of
IGF-IR gene expression by Ik-1 and MZF1 transcription
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factors. Ik-1 regulates transcription by binding to spe-
cific consensus binding sites (C/TGGGAA/T) within
target promoters [69]. Similarly, MZF1’s 13 zinc fingers
are separated into 2 arms, and each arm has the ability
to independently bind to specific binding sites within
the promoters of target genes: the first domain of fingers
1-4 (ZN 1-4) binds to the sequence 5'-AGTGGGGA-3’,
and the second domain of fingers 5-13 (ZN 5-13) binds
the core sequence 5'-CGGGnGAGGGGGAA-3" [41].
Similar to other transcription factors that bind with IGF-
IR gene promoter, we found that Ik-1 and MZF1 possess
the potential to bind with sequences located both up-
stream and downstream of the transcription start site
within the 5'-flanking region as well as within the 5’-un-
translated region. Specifically, potential binding sites for
Ik-1 are located at nucleotides -504/-491, —138/-125,
+77/+90, +427/+440, and +1011/+1024, and potential
binding sites for MZF1 are located at nucleotides —504/-
496, -299/-291, -138/-130, +501/+514, +919/+928, and
+1011/+1019 (binding sites confirmed by ChIP are in
italics). To our knowledge, these binding sites have not
been previously described to bind with any of the tran-
scription factors that are known to regulate IGF-IR
gene. Among the previously described transcription
factors, Spl, E2F1, and EGR-1 showed a greater net
change in promoter activity at binding sites located
downstream of the transcription start site [29,33,34].
While this pattern was similar to Ik-1, MZF1 demon-
strated a greater net change in /GF-IR promoter activity
at binding sites located upstream of the transcription
start site, which resembles the inhibitory effects in-
duced by WT1 [30].

Ik-1- and MZF1-induced downregulation of IGF-IR
was associated with decreased levels of its activated/
phosphorylated form, pIGF-IR. These effects induced
downregulation of the phosphorylation levels of the mo-
lecular targets of IGF-IR including IRS-1, AKT, and
NPM-ALK. Whereas basal levels of AKT remained un-
changed, the basal levels of IRS-1 decreased after trans-
fection of Ik-1 and MZF1. To further analyze this
unexpected finding, we searched the web-based tran-
scription factor algorithms and found that the IRS-I
gene promoter contains sites that could potentially func-
tion as targets for Ik-1 and MZF1 transcriptional activ-
ity. It is important to mention that IRS-1 is also a
downstream target of NPM-ALK phosphorylation activ-
ity [70]. Although further analysis is required to support
this idea, we cannot completely rule out that Ik-1 and
MZF1 act as tumor suppressors in this lymphoma
through targeting the expression of IGF-IR and IRS-1.

It is important, however, to emphasize that deregulated
systems underlying the pathogenesis of NPM-ALK" T-cell
lymphoma are complex owing to the fact that they origin-
ate from more than one defected regulatory mechanism
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[35]. Although our results provide strong evidence that
the aberrant decrease in the expression of Ik-1 and MZF1
transcription factors contributes to upregulation of an
important oncogenic protein, i.e., IGF-IR, we elected to
investigate whether other transcriptional or posttranscrip-
tional mechanisms exist to further enhance IGF-IR
expression. Our experiments failed to support the
presence of IGF-IR gene amplification, an aberrant tran-
scriptional mechanism, in NPM-ALK" T-cell lymph-
oma. IGF-IR gene amplification has been previously
reported in small subgroups of patients with solid
tumors such as lung cancer and gastrointestinal stromal
tumors [71,72]. Nonetheless, we also found that the
posttranscriptional decay of IGF-IR mRNA in NPM-
ALK" T-cell lymphoma occurs over a remarkably pro-
longed time compared with the decay of IGF-IR mRNA
that is physiologically expressed in human T lympho-
cytes. To this end, our data suggest a model in which up-
regulation of IGF-IR in NPM-ALK" T-cell lymphoma
results from multilevel defects in transcriptional and post-
transcriptional mechanisms, which reflects the complexity
of survival signaling in this lymphoma.

Conclusions

The vast majority of the previously published literature
has implicated overexpression of several transcription
factors in the tumor-promoting effects in NPM-ALK" T-
cell lymphoma [35,73-78]. In this report, we were able to
show that substantial decreases in the Ik-1 and MZF1
transcription factors play important roles in the patho-
genesis of this lymphoma. In this capacity, Ik-1 and
MZF1 are physiologically capable of binding with the
IGF-IR gene promoter to inhibit its transcriptional activ-
ity, which induces downregulation of the expression of
IGF-IR oncogenic tyrosine kinase. Collectively, lack of
these molecular events supports the survival of NPM-
ALK" T-cell lymphoma. Notably, the upregulation of
IGF-IR expression appears to be independent from
NPM-ALK expression. However, we cannot completely
exclude that the outcome of decreased expression of Ik-
1 and MZF1 in this lymphoma is not only mediated
through upregulation of IGF-IR because it is possible
that these 2 transcription factors are involved in the
regulation of other survival/oncogenic proteins. The
findings presented herein are expected to further ad-
vance current understanding of the pathobiology of
NPM-ALK" T-cell lymphoma and may contribute to the
development of novel therapeutic approaches to effi-
ciently eradicate this aggressive cancer.

Materials and methods

Web-based transcription factor search algorithms

To identify transcription factors that can potentially bind
to the human IGF-IR gene promoter, 3 web-based
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transcription factor search algorithms were used: Geno-
matix (www.genomatix.de), MATCH (www.gene-regula-
tion.com/pub/programs.html), and TFSearch (we used
this transcription factor search algorithm when we initi-
ated the study, but we noticed that now this algorithm
has been removed and the website is not available for
online support. Importantly, the findings we obtained
from TFSearch matched exactly the findings gathered
from Genomatix and MATCH).

Cell lines

Five NPM-ALK" T-cell lymphoma cell lines were used
in this study: Karpas 299, SUP-M2, SR-786, DEL, and
SU-DHL-1 (DSMZ, Braunschweig, Germany). The R~
cell line (mouse 3 T3-like fibroblasts with targeted abla-
tion of Igflr gene [8]; gift from Dr. Renato Baserga,
Thomas Jefferson University, Philadelphia, PA) was used
as the host cell line for luciferase assay studies. Normal
human peripheral blood CD3" pan-T lymphocytes were
used in some experiments (catalog number: PBO091F;
StemCell Technologies, Vancouver, BC, Canada). In
addition, Jurkat cells (ATCC, Manassas, VA) were used
as a positive control for the expression of Ik-1 and
MZF1 [38,79]. The T lymphocytes and the Jurkat and
NPM-ALK" T-cell lymphoma cell lines were maintained
in RPMI 1640 medium supplemented with 10% FBS
(Sigma, St. Louis, MO), glutamine (2 mM), penicillin
(100 U/mL), and streptomycin (100 pg/mL) at 37°C in
humidified air with 5% CO,. DMEM supplemented with
10% EBS was used to culture the R™ cells under the same
conditions.

Antibodies

The following antibodies were used: pIGEF-I
(3021), pALKY'®%* (Y664 in NPM-ALK; 3341), pAKT4"3
(4051), and Ikaros (5443) (Cell Signaling Technology,
Danvers, MA); IRS-1 (ab40777), AKT (ab8805), NPM
(ab52644), and MZF1 (ab64866) (Abcam, Cambridge,
MA); IGF-IR (396700; Life Technologies, Grand Island,
NY); pIRS-1%¢% (sc-22300; Santa Cruz Biotechnology,
Santa Cruz, CA); ALK (M719501-2; Dako, Carpinteria,
CA); c-Myc (631206, Clontech Laboratories, Mountain
View, CA); IGF-I (05-172; Millipore, Billerica, MA); and
B-actin (A-5316; Sigma).

Y1131
R

RNA extraction, cDNA synthesis, and relative quantitative

PCR (qPCR)

Total RNA was isolated and purified using the RNAeasy
Mini Kit (Qiagen). Briefly, 1 x 10° cells were collected by
centrifugation at 200g for 5 min, washed twice in
phosphate-buffered saline (PBS), and subjected to lysis
and homogenization with Buffer RLT using QiaShredder
spin columns (Qiagen). Homogenized cells were re-
suspended in an equal volume of 70% ethanol and
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passed through the spin columns. Cells were then
washed once using Buffer RW1 and twice using Buffer
RPE (Qiagen). Total RNA was collected upon elution
with RNase-free water. Optical density was detected
using spectrophotometry (NanoDrop 2000, Thermo
Fisher Scientific, Waltham, MA).

c¢DNA synthesis was performed using the Superscript
III RT protocol (Invitrogen, Carlsbad, CA). Approxi-
mately 0.3 pg total RNA was used for reverse transcrip-
tion. Briefly, total RNA, oligo deoxy-thymine (dT), and
deoxytrinucleotide triphosphate (ANTP) were admixed,
and the final volume was adjusted to 10 uL using
RNase-free water. The RNA mixture and primer were
denatured at 65°C for 5 min and then placed on ice. The
master reaction mixture consisting of 10x cDNA synthe-
sis buffer, 0.1 M DTT, RNaseOUT, Superscriptlll RT,
MgCl,, and RNase-free H,O was prepared on ice and
vortexed gently. Then, 10 pL of the reaction mixture
was pipetted into each reaction tube on ice. Samples
were transferred to a thermal cycler preheated to the ap-
propriate cDNA synthesis temperature and incubated at
50°C for 60 min and then at 85°C for 5 min. Finally,
1.0 uL RNase H was added and the samples were incu-
bated at 37°C for 20 min to remove template RNA.

Relative qPCR was used to measure the levels of IGF-IR
mRNA in NPM-ALK" T-cell lymphoma cell lines after
transfection with Ik-1 or MZF1 expression vectors (Open
Biosystems, Pittsburgh, PA) using reactions containing
reverse-transcribed cDNA, IGF-IR primer/probe, and Taq-
man Mastermix (Applied Biosystems, Grand Island, NY).
18S ribosomal RNA was used as the endogenous control.

Transfection

Cells were transfected with Ik-1 or MZF1 expression
plasmids using electroporation and the Amaxa 4D
Nucleofector System (solution SF, program CA-150;
Lonza, Walkersville, MD) and then incubated for 48 h.
For luciferase assays, R cells were transfected using Li-
pofectamine 2000 reagent. Briefly, 1 x 10° R™ cells were
seeded in 6-well plates. The following day, plasmids were
incubated in 100 pL OptiMEM media for 5 min at room
temperature. Simultaneously, 7 uL lipofectamine was in-
cubated in a separate tube. Then, the contents of the
plasmid tubes were added to the lipofectamine and incu-
bated for 20 min at room temperature. Finally, the plas-
mid mixtures were added to the corresponding plate
wells containing the R™ cells. In some experiments,
scrambled or ALK siRNA (Dharmacon, Pittsburgh, PA)
was transfected into NPM-ALK" T-cell lymphoma cell
lines by using the same approach.

Construction of the human IGF-IR gene promoter
Three different fragments of the human IGF-IR gene
promoter were amplified using genomic DNA (Promega,
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Madison, WI). Briefly, 500 ng of genomic DNA was
added to HotStarTaq plus Q solution additive mixture
(Qiagen) and subjected to Touchdown PCR. Primers
and amplification conditions are shown in Table 1 and
Table 2.

PCR products were run on 1.5% agarose gel, excised,
and purified using the Qiaquick Gel Extraction Kit
(Qiagen). PCR products were subcloned at a 1:5 molar
ratio into the pGEM vector using the TA cloning sys-
tem (Promega). The ligated products were transformed
using MaxEfficiency DH5a-competent cells (Invitrogen)
overnight at 37°C, and positive clones were selected
and verified by PCR and direct DNA sequencing.
Clones containing the correct insert were amplified in
ampicillin containing Luria-Bertani broth (Corning Costar,
Corning, NY). Plasmids were isolated and purified
using the Purelink Quick Plasmid Miniprep Kit (Invi-
trogen). To construct reporter plasmids containing the
human IGF-IR gene promoter fragments, the pGEM
plasmids and the PGL4.17 luciferase vector (Promega)
were subjected to restriction enzyme digestion using
Zral/Spel (Promega) and EcoIlCRI/Nhel (New England
Biolabs, Ipswich, MA). After digestion, DNA was ligated
at room temperature using T4 DNA ligase (Promega).
PCR conditions are shown in Table 3. Ligated products
were confirmed by agarose gel electrophoresis and trans-
formed using DH5a-competent cells. Positive clones were
selected, subjected to plasmid isolation and purification
using the Miniprep Kit, and verified by PCR and direct
DNA sequencing.

Site-directed mutagenesis and luciferase assay
Mutated human IGF-IR luciferase reporter constructs
were generated using the QuickChange II XL Site Di-
rected Mutagenesis Kit (Agilent Technologies, Santa
Clara, CA) and a set of primers depicted in Table 4.
Luciferase assay was performed with the Dual Glo Lu-
ciferase Kit (Promega) after co-transfecting the R™ cells
with the reporter plasmids containing the wild-type or
mutated IGF-IR promoter fragments or NPM promoter
(kind gift from Dr. Qishen Pang, Cincinnati Children’s

Table 1 Sequence of the primers used to construct the 3
fragments (F1, F2, and F3) of the human IGF-IR gene
promoter

Primer name
F1 (Forward)

Sequence
5'-CTC TCC TCG AGC CAC TCT GGG C-3'

5'-CAA GAC GTG CGG AGC GGA GC-3'
5'-TCC GCA CGT CTT GGG GAA CC-3'
5'-GCC CCG AAG TCC GGG TCA CA-3'
5'-GAC TCC GCG TTT CTG CCC CTC-3'
5'-CTC CAC TCG TCG GCC AGA GC-3'

F1 (Reverse)
F2 (Forward)
F2 (Reverse)
F3 (Forward)

F3 (Reverse)
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Table 2 The amplification conditions used in Touchdown
PCR for the construction of 3 fragments of the human
IGF-IR gene promoter (c: hold)

Phase 1 Step Temperature Time

1 Denature 95°C 15 min

2 Denature 95°C 30 sec

3 Anneal 70°C 45 sec
-1.0C"

4 Elongate 72°C 1 min

Repeat steps 2—4 (15 times)

Phase 2 Step Temperature Time

5 Denature 95°C 30 sec

6 Anneal 60°C 45 sec

7 Elongate 72°C 1 min

Repeat steps 5-7 (25 times)

Termination Step Temperature Time

8 Elongate 72°C 5 min

9 Halt reaction 4°C 15 min

10 Hold 4°C oo

*Every time steps 2-4 are repeated, the annealing temperature is decreased
by 1.0°C/cycle until the estimated melting temperature is reached.

Hospital, Cincinnati, OH) along with Ik-1 or MZF1 ex-
pression plasmids using Lipofectamine 2000 (Invitrogen)
for 48 h. Cells were trypsinized, washed twice with ster-
ile PBS, and plated in a 96-well luminometer plate. An
equal volume of Dual-Glo reagent was added and incu-
bated for 10 min for cell lysis to occur. Firefly lumines-
cence readings were obtained using a plate reader
(PolarStar Omega, BMGLabTech, Cary, NC). Finally, the
Dual-Glo Stop & Glo reagent was added and incubated
for 10 min. Renilla luminescence readings were obtained
using the above methods.

Table 3 PCR conditions used for DNA ligation for the
construction of the human IGF-IR gene promoter
(0: hold)

Temperature Time
22°C 30 min
20°C 30 min
18°C 30 min
16°C 30 min
14°C 30 min
12°C 30 min
10°C 30 min
8°C 30 min
6°C 30 min
4°C 30 min
4°C oo
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Chromatin immunoprecipitation (ChIP) assay

Because NPM-ALK" T-cell lymphoma cells contain low
levels of endogenous Ik-1 and MZF1, expression plasmids
containing full-length Ik-1 or MZF1 were constructed by
transferring the inserts into a c-Myc-tagged expression
vector (pCMV-Myc-N; Clontech). Briefly, the original
expression vectors containing Ik-1 or MZF1 as well as
pCMV-Myc-N were subjected to digestion using the re-
striction enzymes Notl/Sall for Ik-1 or Xhol/ECORI for
MZF1 (Promega). Digested products were verified by
agarose gel electrophoresis and then excised and ligated
using the HD InFusion system (Clontech). Ligated prod-
ucts were transformed using DH5a-competent cells, and
positive clones were selected and verified by PCR.

ChIP assays were performed using the Pierce Agarose
ChIP Kit (Thermo Scientific). Briefly, at 48 h post-
transfection, cells were cross-linked using 1% formalde-
hyde, and cell pellets were lysed and re-suspended in a
buffer containing 0.6 puL Micrococcal Nuclease (ChIP
grade) and subjected to sonication on ice (Output 6; six
15 sec pulses, followed by 45 sec rest periods; Sonic Dis-
membrator, model 100; Thermo Fisher Scientific). Five
microliters of digested chromatin was separated for the
10% input. The remaining sonicated samples were
immunoprecipitated overnight at 4°C on a rocking plat-
form using the c-Myc-Tag antibody and the provided
plugged spin columns. Following overnight incubation,
ChIP-grade Protein A/G Plus agarose beads were incu-
bated for 2 h with the lysate at 4°C on a rocking plat-
form. The samples were then washed and reverse
cross-linked at 65°C for 40 min. The immunoprecipi-
tated samples and input were eluted in a buffer con-
taining 5 M NaCl and 20 mg/mL Proteinase K. Finally,
chromatin DNA was recovered and purified using the
DNA Clean-Up column and subjected to Touchdown
PCR using HotStarTaq Master Mix and Q solution and
a set of primers shown in Table 5. PCR products were
run on 1.5% agarose gel.

Western blotting
Cells were lysed using lysis buffer containing 25 mM
HEPES (pH 7.7), 400 mM NaCl, 1.5 mM MgCl,, 2 mM

Table 4 Sequences of the primers used to construct the 3
mutated fragments of human IGF-IR luciferase reporter
(F1, F2, and F3)

Primer name
F1 (Forward)

Sequence
5'-CAA GAG CCC CAG CCG GGA GAA AGG GGA C-3'

5'-GTC CCC TTT CTC CCG GCT GGG GCT CTT G-3'
5'-CAG AAA CGC GGA GCG CCG GCC ACC-3'

5'-GGT GGC CGG CGC TCC GCG TIT CTG-3'

5'-GCC AGA GCG AGA GCG CCA AAT CCA GGA CAC-3'
5'-GTG TCC TGG ATT TGG CGC TCT CGC TCT GGC-3'

F1 (Reverse)
F2 (Forward)
F2 (Reverse)
F3 (Forward)

F3 (Reverse)
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EDTA, 0.5% Triton X-100, 0.1 mM PMSE, 2 mM DTT,
and phosphatase and protease inhibitor cocktails
(Thermo Scientific, Rockford, IL). Protein concentra-
tions were measured using the Bio-Rad protein assay,
and optical density values were obtained using an
ELISA plate reader (Bio-Tek Instruments, Winooski,
VT). Proteins (50 pg) were resolved by electrophoresis
on 8% SDS-PAGE and then transferred to PVDF mem-
branes and probed with specific primary antibodies and
then with appropriate horseradish peroxidase-conjugated
secondary antibodies (GE Healthcare, Cardiff, UK). Pro-
teins were detected using a chemiluminescence-based kit
(Amersham Life Sciences, Arlington Heights, IL).

In addition, a commercially available kit (Qproteome
Tissue Kit, Qiagen, Valencia, CA) was used to perform
Western blot assay to measure Ik-1 and MZF1 protein
levels in formalin-fixed and paraffin-embedded tissue
sections from NPM-ALK" T-cell lymphoma patients (ex-
periments performed on archived human tissues were in
accordance with the Helsinki Declaration of 1975, as re-
vised in 1983, and approval of the Institutional Review
Board was obtained prior to performing such experi-
ments). Briefly, tissue sections mounted on glass slides
were examined and tumor areas were identified and
marked. Next, sections were deparaffinized, and tumor
areas were excised from the slides and transferred into
1.5-mL collection tubes. p-Mercaptoethanol (6 pL) was
admixed with the provided Extraction Buffer EXB Plus
(94 pL) and then added to the excised tissues. Tissue
tubes were incubated on ice for 5 min and then the con-
tents were mixed by vortexing and incubated on a heating

Table 5 Sequences of the primers flanking potential
binding sites (BS) of k-1 and MZF1 within the human
IGF-IR promoter used in the RT-PCR reactions following
the ChIP assay

Primer Name

lk-1 BS2 (Forward)
k-1 BS2 (Reverse)
1k-1 BS3 (Forward)
lk-1 BS3 (Reverse)
Ik-1 BS4 (Forward)
k-1 BS4 (Reverse)
MZF1 BS2 (Forward)
MZF1 BS2 (Reverse)
MZF1 BS3 (Forward)
MZF1 BS3 (Reverse)
MZF1 BS4 (Forward)
MZF1 BS4 (Reverse)
MZF1 BS5 (Forward)
MZF1 BS5 (Reverse)

Sequence

5'-CGG GGG CAT TGT TTT TGG AG-3'
5'-CGG GTT CCC CAA GAC GTG-3'
5'-TCT TGT TTA CCA GC ATTA ACT CGC-3'
5'-CCT CTC TCG AGT TCG CCT G-3'
5'-CGC CGC TTT GTG TGT GTC-3'

5'-GCC GCC TCC TCC CTC A-3'

5'-GCG GGG GCA TTG TTT TTG GA-3'
5'-CCG GGT TCC CCA AGA CGT G-3'
5'-GCG CGT GTC TCT GTG TGC-3'

5'-GCG AGT TAA TGC TGG TAA ACA A-3'
5'-GTG TGT GTC CTG GAT TTG GGA-3'
5'-GCA GAA ACG CGG AGT CAA AAT-3'
5'-CGG CCC TTC GGA GTATIG T-3'
5'-CAA GTC TCA AAC TCA GTC TTC G-3'
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block at 100°C for 20 min. Using an oven with rotators,
samples were incubated at 80°C for 2 h with agitation at
750 rpm. After incubation, tubes were cooled at 4°C for
1 min. The samples were centrifuged for 15 min at 14,000
g at 4°C. The supernatant containing the extracted pro-
teins was collected. For quantification of protein yield, the
Bio-Rad assay was used as described above.

MTS assay

Cell viability was evaluated using a CellTiter 96 AQueous
One Solution Cell Proliferation 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay kit (Promega). Cells were
seeded in 96-well plates (1.0 x 10* cells/well) in 100 pL
RPMI supplemented with 10% FBS. Twenty microliters
of MTS reagent were added, and the cells were incu-
bated at 37°C in a humidified 5% CO, chamber for 4 h.
Optical density measurements were obtained at 490 nm
using an ELISA plate reader.

BrdU assay

Cell proliferation was measured using a BrdU assay kit
(ExAlpha Biologicals, Shirley, MD). Briefly, 2.0 x 10°
cells/mL were plated into a 96-well plate. BrdU (1:500
dilution) was added, and the plate was incubated for
24 h at 37°C. Cells were then fixed for 30 min at room
temperature. After the cells were washed, anti-BrdU
antibody was added for 1 h followed by peroxidase goat
anti-mouse IgG conjugate (1:2000 dilution) for 30 min.
Next, the 3,3",5,5 -tetramethylbenzidine peroxidase sub-
strate was added, followed by incubation for 30 min at
room temperature in the dark. The acid Stop Solution
was then added and the plate was read at 450 nm using
an ELISA plate reader.

Cell migration assay

Cell migration was analyzed using 24-well Transwell
plates with polycarbonate membranes (Corning Costar).
Briefly, cells transfected with Ik-1 or MZF1 in serum-free
culture medium were loaded into the upper compartment,
and 500 ng/mL IGF-I (R&D Systems, Minneapolis, MN)
in serum-free medium was loaded into the lower com-
partment. As controls, non-transfected cells in serum-
free medium were loaded into the upper compartment
with/without IGF-I loaded into the lower compartment.
Plates were incubated for 4 h at 37°C, and cells migrat-
ing through the membrane into the lower chamber
were counted using a particle counter and size analyzer
(Beckman Coulter, Brea, CA).

Anchorage-independent colony formation assay

Methylcellulose (Methocult H4230; StemCell Technolo-
gies) (3.0 mL) was added to 15-mL tubes. Empty vector-
(EV-), Ik-1- or MZF1-transfected cells were added in a
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1:10 (v/v) ratio to the methylcellulose tubes and mixed
well by gentle inversion. One milliliter of the mix was di-
vided into 24-well plates in triplicate. Plates were placed
in a humidified incubator at 37°C in 5% CO, for 7 days.
Then, p-iodonitrotetrazolium violet was added for 24 h
for staining. Colonies were visualized using the Alphalma-
ger system (Alpha Innotech Corporation, San Leandro,
CA). In an additional experiment, SUP-M2 cells were in-
cubated for 21 days, and the results were similar to those
of the shorter incubations.

IGF-IR mRNA decay assay

Briefly, actinomycin D (Sigma) was dissolved in DMSO
(final concentration: 1 mg/mL). Human T lymphocytes
or NPM-ALK" T-cell lymphoma cell lines were treated
with 1 uM actinomycin D and samples were collected at
0, 0.5, 1, 2, 4, and 8 h. Total RNA was isolated and puri-
fied, and ¢cDNA synthesis was performed as described
above. Absolute real-time qPCR was used to measure
the levels of IGF-IR mRNA in a 25-pL reaction by using
1 pL of the reverse-transcribed ¢cDNA, 20x IGF-IR Taq-
man gene expression assay primer/probe, and 2x Uni-
versal PCR Mastermix (Applied Biosystems). To create a
standard curve, serial 10-fold dilutions (30, 300, 3000,
30,000, and 300,000 copies) of an IGF-IR plasmid were
used [36].

Fluorescent in situ hybridization (FISH) assay to
determine IGF-IR gene copy number

Human T lymphocytes and NPM-ALK" T-cell lymphoma
cells (10 x 10* cells) suspended in RPMI were pipetted
into cytospin chambers. Cytospin slides were prepared
(700 rpm at high acceleration for 5 min). The cytospin
slides were fixed in ice cold 100% methanol, and stored
at —20°C until FISH was performed.

We adopted a previously described approach to per-
form FISH assay and analysis [72]. The SureFish probes
and kit from Agilent Technologies were used. Briefly,
1.0 uL of IGF-IR FISH probe (G100168R) and 1.0 pL of
chromosome enumeration probe 15 (CEP15; G100543G),
which identify centromere 15, were mixed gently in
Agilent FISH hybridization buffer. Cytospin slides were
prepared and placed in gradually increasing concentra-
tions of ethanol (70%, 85%, and 100%), each for 1 min
at room temperature. After allowing the slides to dry,
5.0 pL of probe/hybridization buffer mixture were
added to the slides, and cover slips were applied.
Hybridization was then accomplished by using the
ThermoBrite system (Abbott Molecular, Abbott Park,
IL). The slides were first incubated at 78°C for 5 min to
denature the DNA, and then incubated at 37°C for
24 h. Thereafter, cover slips were removed and slides
were placed and agitated in Wash buffer 1 (73°C) for
2 min. Subsequently, slides were transferred and
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agitated at room temperature for 2 min in Wash Buffer
2. The slides were air dried in the dark at room
temperature, followed by pipetting DAPI (1.0 pg/mL
in PBS). DAPI was then removed, and slides were
mounted with ProlongGold antifade media (P36934,
Invitrogen, Grand Island, NY) and viewed using the
FV1000 confocal microscope (Olympus America, Center
Valley, PA).

FISH scoring was performed in 55 nonoverlapping nu-
clei per slide. The means of the IGFIR gene and CEP15
copy numbers per cell, number of cells with two or fewer,
three, and four or more copies of IGFIR and CEP15
signals, and /GF1R-to-CEP15 ratio were obtained.

Measurement of IGF-I levels secreted by NPM-ALK" T-cell
lymphoma cells

After transfection of scrambled or ALK siRNA for
48 h, cells were transferred to serum free medium for
24 h. The medium was then collected and concentrated
using Amicon Ultra-15 centrifugal tubes (UFC900308;
Millipore). ELISA assay was performed using the IGF-I
cytokine kit (R&D Systems).

Statistical analysis

Statistical analysis was performed using the PRISM soft-
ware (GraphPad, La Jolla, CA). Statistical significance
was detected using one-way ANOVA and Bonferroni’s
post hoc multiple comparisons test. P < 0.05 was consid-
ered statistically significant.
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