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Abstract

Background: Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC
will improve its outcome. The current techniques for NSCLC early detection are either invasive or have low
accuracy. Molecular analyses of clinical specimens present promising diagnostic approaches. Non-coding RNAs
(ncRNAs) play an important role in tumorigenesis and could be developed as biomarkers for cancer. Here we
aimed to develop small nucleolar RNAs (snoRNAs), a common class of ncRNAs, as biomarkers for NSCLC early
detection. The study comprised three phases: (1) profiling snoRNA signatures in 22 NSCLC tissues and matched
noncancerous lung tissues by GeneChip Array, (2) validating expressions of the signatures by RT-qPCR in the
tissues, and (3) evaluating plasma expressions of the snoRNAs in 37 NSCLC patients, 26 patients with chronic
obstructive pulmonary disease (COPD), and 22 healthy subjects.

Results: In the surgical tissues, six snoRNAs were identified, which were overexpressed in all tumour tissues
compared with their normal counterparts. The overexpressions of the genes in tumors were confirmed by RT-qPCR.
The snoRNAs were stably present and reliably detectable in plasma. Of the six genes, three (SNORD33, SNORD66
and SNORD76) displayed higher plasma expressions in NSCLC patients compared with the cancer-free individuals
(All < 0.01). The use of the three genes produced 81.1% sensitivity and 95.8% specificity in distinguishing NSCLC
patients from both normal and COPD subjects. The plasma snoRNA expressions were not associated with stages
and histological types of NSCLC (All > 0.05).

Conclusions: The identified snoRNAs provide potential markers for NSCLC early detection.

Background
Non-small-cell lung cancer (NSCLC) is the number one
cancer killer in the USA and worldwide [1]. The overall
5-year survival rate for stage I NSCLC patients who are
typically treated with surgery remain up to 83%. In con-
trast, only 5-15% and less than 2% of patients with stage
III and IV NSCLC are alive after five years [1]. These
statistics provide the primary rationale to improve
NSCLC early detection. Chest X-ray and plasma cytol-
ogy have been used for detection of early NSCLC [2,3].
However, the sensitivity was low [2,3]. Although the
bronchoscopy excels at detecting centrally occurring
lung tumor, it is invasive. CT provides excellent ana-
tomic information and can noninvasively detect lung
cancer at small size; however, the improved sensitivity is
associated with over-diagnosis [2,3]. Furthermore, it is

still unclear whether CT screening can ultimately reduce
lung cancer mortality [4]. Therefore, the development of
noninvasive approaches that can reliably detect early
stage NSCLC is clinically important.
Non-coding RNAs (ncRNAs) are functional transcripts

that do not code for proteins, however, play a major
role in regulating almost every level of gene expression
[5]. In addition to highly abundant and functionally
important transfer and ribosomal RNAs, ncRNAs
include other RNAs such as small nucleolar RNAs
(snoRNAs), microRNAs (miRNAs), short interfering
RNAs (siRNAs), piwi-associated RNAs, small Cajal
body-specific RNAs (scaRNAs), snRNAs (small nuclear
RNAs), and long ncRNAs that are still partially under-
stood [5-8]. Of the small ncRNAs, miRNAs and siRNAs
have extensively been studied in carcinogenesis [5-8].
Differential expressions of miRNAs in lung cancer and
their potential diagnostic values have been intensively
evaluated [9,10]. For instance, abnormal expressions of
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some miRNAs measured in lung tumor tissues were
prognostic factors for overall survival of the patients
[11-13]. Furthermore, serum miRNA signatures were
identified that can be used to predict outcome of the
disease [14]. In addition, we demonstrated that examin-
ing altered miRNA expressions in sputum could
improve early detection of lung cancer [15,16]. Recently,
new and unexpected functions of other types of small
ncRNAs have been discovered, revealing that the mole-
cules have highly diverse roles and are actively involved
in the processes of carcinogenesis than previously
thought [5]. Therefore, investigation of dysregulation of
the small ncRNAs in the development and progression
of lung tumorigenesis, and their diagnostic values is
necessary.
SnoRNAs represent one of the largest groups of func-

tionally diverse trans-acting ncRNAs currently known in
mammalian cells [17]. NcRNAs range between 60-150
nucleotides in length [8,17-19]. From a structural basis,
snoRNAs fall into two categories termed box C/D snoR-
NAs (SNORDs) and box H/ACA snoRNAs (SNORAs)
[17-19]. SNORDs serve as guides for the 2’-O-ribose
methylation of rRNAs or snRNAs, whereas SNORAs are
guides for the isomerization of uridine residues into
pseudouridine [20,21]. Accumulated evidence suggests
that snoRNAs can target other RNAs including snRNAs
and possibly messenger RNAs [19]. Furthermore, a link
between snoRNA and carcinogenesis was first reported
by Chang et al, who found that snoRNA h5sn2 was
highly expressed in normal brain, but its expression was
dramatically reduced in meningioma, suggesting a role
for the loss of snoRNA h5sn2 in brain tumorigenesis
[21]. Recently, a homozygous 2 bp (TT) deletion in
snoRNA U50 was discovered in prostate cancer cell
lines and localized prostate tumor tissues, while hetero-
zygous genotype of the deletion occurred more fre-
quently in women with breast cancer [22,23]. Although
studies are just emerging, snoRNAs may play malfunc-
tion in the development and progression of human
malignancy. In this report, we first profiled snoRNA
expression signatures of lung cancer tissues and then
found that the identified snoRNAs were significantly
upregulated in tumor tissues and plasma of NSCLC
patients. The snoRNAs might provide potential markers
for early detection of NSCLC.

Results
Identifying snoRNA signatures whose aberrant expression
levels were associated with NSCLC
To define and validate snoRNA signatures whose altered
expressions were associated with early stage NSCLC, we
obtained surgical specimens from 22 stage I NSCLC
patients who had either a lobectomy or a pneumonect-
omy. The cases consisted of 11 patients with squamous

cell carcinoma (SCC) and 11 patients with adenocarci-
noma (AC) (Table 1). The GeneChipR Arrays comprised
probe sets for human snoRNAs, scaRNAs and miRNA
coverage of human, mouse, rat, canine, and rhesus maca-
que was performed on the clinical specimens. We only
analyzed and compared expressions of human mature
352 snoRNAs in the tumor and noncancerous tissue spe-
cimens. When P value < 0.01 was used as a cutoff, of the
snoRNAs analyzed, 30 were overexpressed and one were
underexpressed with ≥ 1.0 fold-change in lung NSCLC
tissues compared with the corresponding noncancerous
lung tissues (P < 0. 01) (Fig. 1 and Additional Table 1).
Using a predefined criterion of a change ≥1.5-fold, we
identified six snoRNAs that were statistically differently
expressed between the paired tumor and noncancerous
samples (all P < 0.01). These included SNORD33,
SNORD66, SNORD73B, SNORD76, SNORD78, and
SNORA42 (Additional Table 1). Furthermore, there was
no statistical difference of expressions of the six genes
between AC and SCC of the lungs, suggesting that the
snoRNAs were shared in the two major histological types
of NSCLC. More importantly, the six snoRNAs were
overexpressed in all 22 NSCLC tissues compared with
the paired noncancerous specimens, thus were proceed
to the next phase of the study.

Validating expressions of the six snoRNAs on surgical
tissues by RT-qPCR
To determine whether the data derived from the
microarray platform could be confirmed by different
technique, the expressions of the six snoRNAs were
assessed by using RT-qPCR assay in the same 22
NSCLC tissues and paired noncancerous lung speci-
mens. More than 1.5-fold overexpression of the six
snoRNAs was found in all NSCLC cases, respectively,
as compared with that in the corresponding noncan-
cerous tissues (All P < 0.0001). Pearson test showed

Table 1 Characteristics of 22 NSCLC patients

11 SCC (%) 11 AC (%)

Age 68 (SD 13.6) 67 (SD 12.8)

Sex

Female 3 (27.3) 3 (27.3)

Male 8 (72.7) 8 (72.7)

Race

White 6 (54.6) 6 (54.6)

African American 5 (45.4) 5 (45.4)

Smoking status

Pack-years 33.2 (SD 20.9) 27.2 (SD 18.3)

Stage

All are stage I 11 11

Abbreviations: NSCLC, non-small-cell lung cancer; SCC, squamous cell
carcinoma; AC, adenocarcinoma; SD, standard deviation.
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that each gene ’s the relative expression level by
RT-qPCR and log 2-transformed signal intensity value
by microarray significantly correlated (Additional
Table 2). The observations suggested that the identi-
fied snoRNAs could be confirmed by a different tech-
nique, and thus the differential expressions of the
identified genes in the surgical specimens were based
on accurate quantification. Furthermore, no significant
expression difference of the six snoRNAs by RT-qPCR
(P > 0.05) was observed for the stage I tumor samples
with different histological types. The observation pro-
vides further evidence that the elevated snoRNA
expressions in cancer tissues are not histologically spe-
cific changes.

Quantifying snoRNA expression in plasma by RT-qPCR
assay
Although previous reports have documented presence of
detectable quantifies of miRNA in plasma, whether
snoRNAs stably exist in the cell free body fluid remain
unknown. To determine if the snoRNAs were present in
plasma, we first prepared two RNA pools containing
equal amounts of RNA from plasma of five cancer
patients and five healthy individuals, respectively.
Expression of each snoRNA was then measured by RT-
qPCR in the pooled RNA samples. All tested snoRNAs
had ≤ 32 Ct values in both pools, indicating that the
snoRNAs existed in plasma. To determine if the snoR-
NAs were stably and reliably detected in plasma, we

Figure 1 SnoRNAs differentially expressed in 22 stage I non-small-cell lung cancer (NSCLC) tissues versus normal lung tissues.
Hierarchical clustering of 31 snoRNA genes with a significantly different expression (p < 0.01) in tumour tissues. Rows represent individual genes;
columns represent individual tissue samples. The scale stands for the intensity of gene expression (log2 scale ranges between -3.5 and 3.5).
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first assessed the stability of endogenous ncRNAs in
plasma, because it contains high levels of RNase activity.
Plasma obtained from three healthy subjects was split
into two parts, respectively. One part of each sample
was treated with Ribonuclease A at final concentration
of 10 μg/mL, whereas the second part was not added
with Ribonuclease A. Expressions of the six snoRNAs
and a miRNA, miR-21, were measured by using RT-
qPCR in parallel. The abundance of all snoRNAs and
the miR-21 in the plasma samples with the different
treatments was fairly equable (P > 0.05) (Additional Fig.
1), demonstrating that the plasma snoRNAs were resis-
tant to RNase digestion. To further verify the stability of
the plasma snoRNAs, plasma was collected from
another three healthy individuals. Each sample was
divided into 4 parts. The first aliquot from each speci-
men was processed immediately for isolating RNA,
while others were stored in -80°C and processed for
RNA isolation on day 1, 7 and 30. Expressions of the
snoRNAs were measured at the same time in these spe-
cimens that were processed from the different time
points. Expression level of miR-21 was also simulta-
neously assayed on the specimens. Each of the snoRNAs
and miR-21 displayed equal expression levels between
the samples, respectively (Additional Fig. 2). Therefore,
like miRNA, snoRNAs are present in a stable form and
consistently measurable in archived plasma samples.
To determine specificity of snoRNA quantification by

RT-qPCR assay in plasma, SNORD76 and SNORD78
that are located in the same chromosomal region
(1q25.1), were synthetically generated (Integrated DNA
Technologies, Inc, Coralville, IA). Each one subjected to
two independent RT-qPCR reactions, where in each
reaction there were present PCR primers specific to
only one of the two genes. Amplification only of the
appropriate gene matching the specific primer was
observed, indicating that RT-qPCR assay could detect
snoRNA with high specificity. Furthermore, given that
the average size of snoRNAs (70 to 90 nt) was longer
than that of miRNAs (22 nt), we evaluated whether the
RT-qPCR assay would only detect snoRNA but not
DNA sequences. RNA preparation extracted from two
plasma samples was divided into two identical portions,
which were then treated with or without DNase I Reac-
tion Buffer, respectively. The expression level of the
snoRNAs in each of the two groups was quantified by
RT-qPCR. There was no difference in the gene expres-
sion levels between RNA extracted from the samples
treated with DNase I and RNA from the samples with-
out treatment (P < 0.05). The result suggests that the
snoRNAs could be specifically detected without contam-
inating genomic DNA in RNA preparations.
To determine the sensitivity of detecting snoRNA by

RT-qPCR assay in plasma, the total RNA was isolated

from plasma of three healthy subjects and then diluted
in diethyldicarbonate water by ten orders of magnitude,
respectively. The serially diluted RNAs served as experi-
mental samples for measuring expression of the snoR-
NAs. The results showed excellent linearity between the
RNA input and the Ct values for RT-qPCR. Further-
more, the assay had a dynamic range of at least six
orders of magnitude (R2 = 0.997), and was capable of
detecting al least 100 copies of the target snoRNA
genes. Altogether, the snoRNAs could be accurately and
reliably measured in blood plasma by the RT-qPCR
platform.

Evaluating plasma expressions of the six snoRNAs in
NSCLC patients, COPD patients, and healthy individuals
RT-qPCR assay was successfully performed in all plasma
samples of 37 NSCLC patients and cancer-free indivi-
duals including 26 patients with chronic obstructive
pulmonary disease (COPD) and 22 healthy subjects
(Table 2, Fig. 2). Of the six genes, SNORA42,
SNORD73B, and SNORD78 showed measurable plasma
expressions, which, however, did not significantly differ
between NSCLC patients, COPD patients, and healthy
individuals (Table 3, Fig. 2). In contrast, SNORD33,
SNORD66, and SNORD76 exhibited significantly higher
expressions in NSCLC patients as compared with
healthy controls, suggesting that the elevated expres-
sions of the three genes in plasma might be cancer-asso-
ciated changes (All P < 0.01). Among the three

Table 2 Characteristics of a cohort of NSCLC patients,
healthy individuals, and COPD patients

37 NSCLC (%) 22 healthy
individuals (%)

26 COPD
patients (%)

Age* 68 (53-75) 64 (48-69) 67 (56-72)

Sex

Female 11 (29.73) 7 (31.82) 8 (30.77)

Male 26 (70.27) 15 (68.18) 18 (29.23)

Race

White 22 (59.46) 13 (59.09) 16 (61.54)

African
American

15 (40.54) 9 (40.91) 10 (38.55)

Smoking status 38 ± 27
(pack-years)

33 ± 29
(pack-years)

37 ± 25
(pack-years)

Histological
types

SCC 16 (43.24)

AC 21 (56.76)

Stage

I 10 (27.03)

II 12 (32.43)

III-IV 15 (40.54)

Abbreviations: NSCLC, non-small-cell lung cancer; COPD, chronic obstructive
pulmonary disease; SCC, squamous cell carcinoma, AC, adenocarcinoma.

*Data are presented as median (range).
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cancer-associated genes, SNORD66 was also consider-
ably overexpressed in plasma of COPD patients as com-
pared with healthy controls (P < 0.01), implying that the
cancer-associated gene whose changes were also related
to COPD. However, when plasma expression of
SNORD66 was compared between NSCLC and COPD
groups, it was significantly higher in the NSCLC patients
as compared with the COPD patients (P < 0.01) (Table
3, Fig. 2). Therefore, although displaying higher plasma

level in COPD patients as compared with healthy sub-
jects, SNORD66 had lower plasma expression level in
COPD patients as compared with NSCLC patients. On
the contrary, SNORD33 and SNORD76 showed signifi-
cantly higher expressions in plasma of the NSCLC
group as compared with COPD group (All P < 0.01),
whereas there was no statistical difference regarding
expressions of the two genes between COPD and
healthy groups (All P > 0.05; Table 3, Fig. 2). The

Figure 2 Plasma expression levels of the six snoRNAs in 22 healthy controls, 26 patients with chronic obstructive pulmonary disease
(COPD), and 37 patients with non-small-cell lung cancer (NSCLC). Horizontal lines denote mean values. *, statistical significance (< 0.01) of
expression levels of snoRNA between NSCLC patients and healthy controls. †, statistical significance (< 0.01) of expression levels of snoRNA
between COPD patients and healthy controls. ‡, statistical significance (< 0.01) of expression levels of snoRNA between NSCLC patients and
COPD patients.

Table 3 Plasma expression levels of snoRNAs

SnoRNAs Twenty-two healthy individuals Twenty-six COPD patients Thirty-seven NSCLC patients

Mean ± SD Mean ± SD Mean ± SD

SNORD33 0.1275 ± 0.0631 0.1368 ± 0.0577 0.2466 ± 0.1907 *‡

SNORD66 0.9821 ± 0.0011 0.9857 ± 0.0015† 0.9923 ± 0.0035 *‡

SNORD73B 0.2325 ± 0.0179 0.2297 ± 0.0248 0.2405 ± 0.0363

SNORD76 70.7031 ± 42.2108 64.2773 ± 47.7285 173.1275 ± 52.7852 *‡

SNORD78 0.3571 ± 0.0186 0.3598 ± 0.0198 0.3613 ± 0.0208

SNORA42 0.0074 ± 0.0016 0.0075 ± 0.0016 0.0076 ± 0.0017

Abbreviations: COPD, chronic obstructive pulmonary disease; NSCLC, non-small-cell lung cancer; SD, standard deviation.

* Statistical significance of expression levels of the snoRNAs between NSCLC patients and healthy controls. P < 0.01.
† Statistical significance of expression levels of the snoRNA between COPD patients and healthy controls. P < 0.01.
‡ Statistical significance of expression levels of the snoRNAs between NSCLC patients and COPD patients. P < 0.01.
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finding that the increased plasma expressions of
SNORD33 and SNORD76 solely occurred in NSCLC
patients suggest that these two genes whose upregula-
tions could be cancer-specific changes. Taken together,
the three snoRNAs might provide potential biomarkers
in distinguishing NSCLC patients from both healthy
subjects and COPD patients. Therefore, the three genes,
SNORD33, SNORD66, and SNORD76, proceed to the
next step of the study.

Evaluating diagnostic efficiency of the snoRNAs in plasma
for NSCLC
Receiver-operator characteristic (ROC) analyses were
applied to evaluate the capability of using the three snoR-
NAs to discriminate NSCLC patients from healthy indivi-
duals and COPD patients. As shown in Table 4, the
individual snoRNAs exhibited area under the receiver-
operator characteristic (AUC) values of 0.8064-0.8233 in
distinguishing NSCLC patients from healthy subjects.
When optimum cutoffs were selected at 0.2262, 0.9893,
and 133.6453, the snoRNAs yielded 72.65-75.36% sensi-
tivity and 85.02-87.66% specificity. Furthermore, the indi-
vidual snoRNAs exhibited 0.7903-0.8186 AUCs in
distinguishing NSCLC patients from COPD patients
(Table 4). When optimal cutoffs were chosen at 0.2278,
0.9902, and 136.1379, the three genes produced 71.46.3-
73.98% sensitivity and 84.91-87.58% specificity in indenti-
fying NSCLC patients from COPD patients (Table 4).
We then evaluated the combination of the three snoR-

NAs for identification of NSCLC. The three snoRNAs in
combination produced 0.8935 AUC, being considerably
higher than those of each individual gene (All P < 0.05)
in identification of NSCLC group from healthy group
(Table 4). Accordingly, given a specificity of 95.5%, the
composite panel of the snoRNAs revealed a sensitivity
of 83.8% in detection of NSCLC. The parameters were
significantly higher compared with those of an indivi-
dual snoRNAs (all p < 0.05) in distinguishing cancer
patients from normal controls. Furthermore, the three

genes used in combination created 0.8827 AUC in dis-
tinguishing cancer patients from COPD individuals,
yielding 81.1% sensitivity and 96.2% specificity in detec-
tion of NSCLC patients. In addition, when the optimal
cutoff for each gene that was selected to discriminate
NSCLC group from COPD group was used to identify
cancer patients from healthy controls, ROC analyses
showed that the three genes in combination revealed
83.8% sensitivity and 96.2% specificity. The results,
therefore, documented that the combined analysis of the
three genes in a panel had a reasonable power to differ-
entiate NSCLC patients from both COPD patients and
healthy controls.
Spearman rank correlation analysis indicated that the

estimated correlations among expression levels of the
three snoRNAs in plasma were low (all R2 < 0.50, P >
0.05). The data suggested that expressions of the snoR-
NAs were complementary to each other, and further
supported that the combined analyses of the genes out-
performed a single one used alone. Therefore, the panel
of the snoRNAs provides a reasonable power for the
early detection of NSCLC in plasma.
Moreover, the composite use of the three snoRNAs

had no statistical differences of sensitivity and specificity
between different stages of NSCLC (P > 0.05) (Addi-
tional Tables 3). The finding that altered expressions of
the snoRNAs are found not only in advanced stage, but
also in early stage NSCLC might be an important char-
acteristic if they are to be employed for early detection.
Additionally, there were no significant differences of
sensitivity and specificity for the panel of snoRNAs in
discriminating lung SCC and AC patients from healthy
controls (P > 0.05) (Additional Tables 3). Therefore, the
combined analysis of the three genes in plasma had
equal diagnostic efficiency for the two major histological
types of NSCLC. There was no association of the
changes of the three genes with the age, gender, ethnic,
and smoking packer-year of the participants (All p >
0.05) (Additional Tables 4).

Table 4 Capability of the three snoRNA genes to discriminate NSCLC patients from healthy controls and COPD
patients*

Distinguishing NSCLC from healthy subjects Distinguishing NSCLC from COPD

SnoRNAs AUC (SE) Thresholds Sensitivity Specificity AUC (SE) Thresholds Sensitivity Specificity

% % % %

SNORD33 0.8233 (0.06) 0.23 72.97 86.36 0.82 (0.05) 0.23 72.97 84.62

SNORD66 0.8139 (0.046) 0.99 75.68 77.27 0.7903 (0.04) 1.00 72.97 80.77

SNORD76 0.8064 (0.03) 133.65 70.27 90.91 0.8149 (0.06) 136.14 70.27 88.46

The three genes used in combination 0.89 (0.06) 83.78 95.45 0.88 (0.06) 81.08% 96.15%

* Receiver-operator characteristic (ROC) curve and the area under ROC curve (AUC) analyses were applied to determine optimal thresholds that define expression
levels of the tested genes, yielding corresponding maximum sensitivity and specificity of each gene in diagnosis of NSCLC from either healthy or COPD
individuals.

Abbreviations: NSCLC, non-small-cell lung cancer; COPD, chronic obstructive pulmonary disease; SD, standard deviation; SE, standard error.
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Discussion
In the present study, we profiled snoRNA expression
signatures of early stage NSCLC by performing microar-
ray analysis on surgical tissues. Aberrant expressions of
the identified signatures were well confirmed by RT-
qPCR assay. To the best of our knowledge, this is the
first study to globally analyze snoRNA expression pat-
terns in human tumor tissues. Furthermore, we demon-
strated that like miRNAs, snoRNAs remained intact and
were readily detectable in plasma by using RT-qPCR.
More importantly, based on the discoveries, we devel-
oped a panel of plasma-based snoRNAs as potential bio-
markers for early stage NSCLC. Our data might provide
compelling evidence that dysregulations of the snoRNAs
could play an important role in lung tumorigenesis, and
measuring plasma snoRNAs might serves as a potential
noninvasive approach to improve diagnosis of NSCLC.
Although rarely being reported, malfunction of some

snoRNAs have recently been considered to contribute to
carcinogenesis. For instance, adeno-associated viruses
integrated their genome into mouse genome, causing
liver cancer [24]. Interestingly, the integration sites iden-
tified in the tumors were all located within a DNA
interval encoding snoRNAs [24]. Furthermore, the accu-
mulation of gas5-generated snoRNAs was associated
with an arrest of cell growth [25], and dysregulations of
the snoRNAs were related to growth arrest of breast
cancer cells [26,27]. In addition, although snoRNAs and
miRNAs are generated by different cellular pathways
and function in different cellular compartments, some
members of these two types of ncRNAs display numer-
ous genomic similarities [28-30]. Indeed, a number of
human snoRNAs with miRNA-like processing signatures
were recently identified [31]. The findings were consis-
tent with those in another report [32], in which, a set of
miRNAs display functional snoRNA characteristics, and
the miRNAs might evolve from snoRNAs [32]. There-
fore, some small ncRNAs in human cells that originate
from snoRNAs were proposed to function like miRNAs
[32]. Moreover, snoRNAs could play a role in posttran-
scriptional gene silencing. For example, HBII-52, a
human SNORD gene, can regulate splicing of serotonin
receptor 2C messenger RNA [33]. Like miRNAs, some
snoRNAs are located at a chromosomal breakpoint
involved in human carcinogenesis. For example, U50
snoRNA was originally discovered from the breakpoint
of chromosomal translocation t (3,6) (q27;q15), which
was involved in human B-cell lymphoma [34]. It have
been suggested that the genes that are frequently located
at chromosomal genomic amplification regions might
have oncogenic function involved in the promotion of
cancer [35-37]. Notably, all the snoRNAs identified in
the present study displayed up-regulation in lung tumor

specimens. Interestingly, the snoRNAs are located in
commonly frequent genomic amplified regions in lung
cancer [38,39]. SNORD33 is located in chromosome
19q13.3 that contain potential oncogenes in lung cancer
[36,37], while SNORD66 and SNORD76 are situated in
chromosomal regions 3q27.1 and 1q25.1, respectively.
3q27.1 and 1q25.1 are two of the most frequently ampli-
fied chromosomal segments in solid tumors, particularly
NSCLC [35-39]. Therefore, upregulation of the snoR-
NAs in lung cancer might have oncogenic functions in
the cacinogensis. Our primary goal of the current study
is marker development. The biological relevance of the
snoRNAs in tumorigenesis is currently being investi-
gated at our laboratory.
Most of the previously identified lung cancer asso-

ciated molecular genetic changes were related to the
smoking status. Furthermore, some of the changes were
associated with lung inflammatory diseases, especially
COPD [40]. The use of such molecular alterations as
biomarkers will produce false positive diagnostic rate,
thus impeding their future application in clinical settings
for diagnosis of lung cancer. The snoRNAs identified
from the present research is fairly encouraging as bio-
markers, because they highly express in plasma indepen-
dently of participants’ age, gender, ethnic subgroup, and
smoking packer-year. In particular, high expressions of
SNORD33 and SNORD76 were only observed in plasma
from cancer patients. Furthermore, although SNORD66
displayed increased expression in plasma of COPD
patients as compared with that in plasma of the healthy
controls, it had considerably higher plasma expression
level in NSCLC patients compared with COPD indivi-
duals. The observation suggests that the snoRNA panel
could serves as useful biomarkers in differentiating
NSCLC patients from not only healthy individuals, but
also COPD subjects. Nonetheless, futures studies to
comprehensively investigate biological relevance of the
dysregulated SNORD66 in COPD are needed. Moreover,
no significant difference regarding plasma expression of
the genes was observed at different stages of NSCLC,
implying that the potential markers were not stage-
specific. In addition, the elevated plasma expression
levels of the snoRNAs had equal frequency between AC
and SCC of the lungs, suggesting that the genetic
changes might be useful biomarkers for the two major
histological types of lung cancer.
Although the results look promising, the sensitivity

(81.1%) and specificity (95.5%) of the snoRNAs are still
not yet efficient for routine clinical application. To
surmount the problem, we need to identify additional
cancer-associated ncRNAs that can be added to the cur-
rent ones so that the diagnostic efficacy of the plasma-
based approach could be improved. The fundamental
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mechanism supports this premise is that although only
about 352 snoRNAs were analyzed, more than 500
snoRNAs might exist in the human genomic sequences
[41]. Furthermore, we expect to improve such result
through combing lung cancer-associated miRNAs with
the identified snoRNAs [11,13,14]. In addition, other
types of ncRNAs, such as piwi-associated RNAs may
also play important role in carcinogenesis [5,42]. Includ-
ing other classes of small ncRNAs with high associated
with NSCLC would also improve diagnostic accuracy of
the noninvasive approach. To that end, we are analyzing
tumor specimens by applying microarray platform to
target various types of ncRNAs to develop additional
markers for NSCLC.

Conclusions
We have defined and developed a panel of snoRNAs,
whose altered expressions were associated with early
stage NSCLC. We demonstrated that the snoRNAs
existed in a stable form and were reliably measurable in
plasma. Detection of the class of ncRNAs in plasma
could potentially be used as a noninvasive diagnostic
tool for early NSCLC. Nonetheless, a large multi-center
clinical project to further validate the full utility is
required before it could be adopted in routine clinical
setting.

Methods
Patients and clinical specimens
To define and validate snoRNA signatures whose
altered expressions were associated with early stage
NSCLC, surgical specimens were obtained from 22
lung cancer patients who had either a lobectomy or a
pneumonectomy between March 6, 2000 and June 23,
2003 at the University of Maryland Medical Center.
All cases were diagnosed with histologically confirmed
stage I NSCLC, comprising 11 patients with SCC and
11 patients with AC (Table 1). Tumor tissues were
intraoperatively dissected from the surrounding lung
parenchyma; paired noncancerous lung tissues were
obtained from the same patients at an area distant
from their tumors. Serial cryostat sections from the
specimens were stained with hematoxylin and eosin to
confirm the diagnosis based on the most recent WHO
classification of tumors of the lungs [43,44]. None of
the patients had received preoperative adjuvant che-
motherapy or radiotherapy. To evaluate expressions of
the snoRNAs in plasma, 37 NSCLC patients, 22
healthy subjects, and 26 patients with COPD were
recruited (Table 2). Peripheral blood was drawn in
EDTA tubes (Greiner Bio-One GmbH, Monroe, NC)
from the participants and processed within 1 hour of
collection by centrifugation at 1,500 × g for 15 min at
4°C. Blood plasma was then collected as previously

described [14], and immediately aliquoted and stored
in a dedicated -80°C freezer. The study was approved
by Institutional Review Board.
RNA isolation
Total RNA containing small RNA was extracted from
the tissue and plasma specimens by using a mirVana
ncRNA Isolation Kit (Ambion, Austin, TX) as pre-
viously described [14,16]. The purity and concentration
of RNA were determined from OD260/280 readings
using a dual beam UV spectrophotometer (Eppendorf
AG, Hamburg, Germany). RNA integrity was deter-
mined by capillary electrophoresis using the RNA 6000
Nano Lab-on-a-Chip kit and the Bioanalyzer 2100
(Agilent Technologies, Santa Clara, CA). Only RNA
extracts with integrity number values > 6 underwent in
further analysis.
SnoRNA profiling of surgical resected lung tissues
SnoRNA profiling was performed by using GeneChipR
Array (Affymetrix, Inc, Santa Clara, CA). The array
comprised 7,815 probe sets that were designed to ana-
lyze small non-coding RNAs. Microarray experiments
were done with all 22 matched malignant and noncan-
cerous sample pairs according to the manufacturer’s
instructions as described in our previous report [45].
Briefly, 3 μg total RNA was labeled with Biotin FlashTag
Biotin Labeling Kit (Affymetrix, Inc). The labeling reac-
tion was hybridized on the arrays in Affymetrix Hybridi-
zation Oven 640 (Affymetrix, Inc) at 48°C for 16 hours.
The arrays were stained with Fluidics Station 450 using
fluidics script FS450_0003 (Affymetrix, Inc), and then
scanned on a microarray scanner (Axon Instruments
Inc, Foster City, CA). SnoRNA probe outliers were
defined as per the manufacturer’s instructions (Affyme-
trix, Inc) and further analyzed for data summarization,
normalization, and quality control by using the web-
based QC Tool software (http://www.affymetrix.com).
The normalized microarray data underwent further ana-
lysis as described in statistical section.
Quantification of snoRNA expression by real-time RT-qPCR
Expressions of the identified snoRNAs were first vali-
dated in the surgically resected tissues and then tested
in plasma by using real-time SYBR green RT-qPCR
assay. Briefly, 10 ng of plasma RNA was polyadenylated
by poly(A) polymerase and reverse transcribed to cDNA
using miScript Reverse Transcription kit (Qiagen, Valen-
cia, CA) according to the manufacturer’s instructions.
RT-qPCR was performed using miScript SYBR Green
PCR kit (Qiagen) with the manufacturer provided miS-
cript Universal primer and the snoRNA-specific forward
primers in ABI PRISM 7900 Real-time PCR system
(Applied Biosystems, Foster City, CA). The primers
were designed based on the snoRNA sequences obtained
from the gene database of The National Center for Bio-
technology Information. The primer sequences for the
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snoRNAs and their amplification profile are available
upon request. Each PCR reaction was carried out in a
volume of 25 μl containing 2 μl of the cDNA, 0.1 μmol/
l of each primer and 2× SYBR Green PCR Master mix
(Qiagen). At the end of the PCR cycles, melting curve
analyses were performed. All assays were performed in
triplicates, and one no-template control and two inter-
plate controls were carried along in each experiment.
Expression levels of the snoRNAs were calculated using
comparative cycle threshold (Ct) method as previously
described [15,16]. Ct values of the target snoRNAs were
normalized in relation to that of small nuclear U6 RNA.
U6 RNA was proven as an internal control for ncRNA
quantification [15,16,45,46]. ΔCt was calculated by sub-
tracting the Ct values of U6 from those of the snoRNA
tested, and fold-change of each snoRNA was determined
by the equation 2-ΔΔCt.
Statistical analysis
To find snoRNAs that were differentially expressed
between paired NSCLC specimens and corresponding
noncancerous tissues, we first analyzed the normalized
microarray data by using GenePattern (http://www.
broad.mit.edu), BRB-ArrayTools version 3.6 (http://linus.
nci.nih.gov/BRB-ArrayTools.html), and microarray soft-
ware suite 4 (TM4) (http://www.tm4.org). We then per-
formed tree visualization by using Java Treeview 1.0
(Stanford University School of Medicine, Stanford, CA).
Pearson’s correlations were used for the comparison of
RT-qPCR and microarray data. ROC curve analysis was
done using plasma expression level of each gene for the
NSCLC patients, COPD patients, and normal controls
by Analyse-it software (Analyse-it Software Ltd, Leeds,
UK). Using this approach, AUC identified optimal sensi-
tivity and specificity levels at which to distinguish
NSCLC patients from healthy individuals or COPD
patients, and corresponding thresholds were calculated
for each snoRNA. In addition, Spearman rank correla-
tion was carried out to analyze the correlation between
the expressions of the identified snoRNAs. Moreover,
the associations between the expression levels of the
snoRNAs and both clinicopathologic and demographic
characteristics of the cases and controls were evaluated
by using univariate and multivariate logistic regression
models. All P values shown were two sided, and a
P value of < 0.05 was considered statistically significant.

Additional material

Additional file 1: SnoRNAs that show changes in clinical specimens
of lung cancer patients. SnoRNAs differentially expressed in non-small
cell lung cancer tissues versus normal lung tissues and plasma of cancer
patients and control subjects.
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