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Abstract
Background: The mitotic Aurora-A kinase exerts crucial functions in maintaining mitotic fidelity. As a bona fide
oncoprotein, Aurora-A aberrant overexpression leads to oncogenic transformation. Yet, the mechanisms by
which Aurora-A enhances cancer cell survival remain to be elucidated.

Results: Here, we found that Aurora-A overexpression was closely correlated with clinic stage and lymph node
metastasis in tongue carcinoma. Aurora-A inhibitory VX-680 suppressed proliferation, induced apoptosis and
markedly reduced migration in cancer cells. We further showed that insulin-like growth factor-1, a PI3K
physiological activator, reversed VX-680-decreased cell survival and motility. Conversely, wortmannin, a PI3K
inhibitor, combined with VX-680 showed a synergistic effect on inducing apoptosis and suppressing migration. In
addition, Aurora-A inhibition suppressed Akt activation, and VX-680-induced apoptosis was attenuated by Myr-
Akt overexpression, revealing a cross-talk between Aurora-A and PI3K pathway interacting at Akt activation.
Significantly, we showed that suppression of Aurora-A decreased phosphorylated Akt and was associated with
increased IkappaBα expression. By contrast, Aurora-A overexpression upregulated Akt activity and
downregulated IkappaBα, these changes were accompanied by nuclear translocation of nuclear factor-κB and
increased expression of its target gene Bcl-xL. Lastly, Aurora-A overexpression induced IkappaBα reduction was
abrogated by suppression of Akt either chemically or genetically.

Conclusion: Taken together, our data established that Aurora-A, via activating Akt, stimulated nuclear factor-
κB signaling pathway to promote cancer cell survival, and promised a novel combined chemotherapy targeting
both Aurora-A and PI3K in cancer treatment.
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Background
Mammalian Aurora kinases, including Aurora A, B, and C,
represent a new family of serine/threonine kinases crucial
for several physiological processes including cytokinesis
and chromosome segregation [1-3]. Aberrant expression
and activity of Aurora kinase lead to formation of abnor-
mal spindle in mitosis and aneuploidy which are closely
associated with genomic instability [1,4]. Indeed, Aurora-
A (Aur-A) is frequently overexpressed in various cancer
types, such as ovarian, breast, colorectal, pancreatic, blad-
der and gastric cancer [5-7]. Overexpression of Aur-A
induces tumorigenesis, metastasis and chemoresistance,
correlating with its pro-survival function in cancer cells.
Thus, Aurora kinase has been considered to be an onco-
protein and a promising molecular target for cancer ther-
apy.

We and others previously reported that Aur-A-induced cell
survival and migration were correlated with Akt activation
[8,9]. Phosphatidylinositol 3-kinase (PI3K)/Akt signaling
pathway is involved in survival and invasion in human
cancers [10-12]. Akt, which consists of a family of highly
conserved serine/threonine kinases, plays a key role in
mediating insulin-like growth factor-1 (IGF-1)-stimulated
cell survival response. Many pro-apoptotic proteins have
been identified as direct or indirect Akt substrates, includ-
ing glycogen synthase kinase-3 (GSK-3), Bad and fork-
head transcription factors [13]. In addition, Aur-A was
reported to up-regulate NF-κB signaling by phosphoryla-
tion of IkappaBα(IκBα) [14]. NF-κB stimulates prolifera-
tion and blocks apoptosis via modulating transcription of
pro-survival genes such as Bcl-xL and Bcl-2 in a number of
cancer cell types [15]. Intra-cellular negative regulation of
NF-κB is controlled primarily through interactions with
IκB family, which prevent nuclear translocation and DNA
binding of NF-κB. The exact mechanism and pathway by
which Aur-A promotes cancer cell survival and anti-apop-
tosis however remain unclear.

Tongue squamous cell carcinoma (TSCC), the common
type of head and neck squamous cell carcinoma, is associ-
ated with a high mortality rate. The poor survival of
tongue cancer is mainly due to tumor recurrence and
regional lymph node metastasis, the most reliable prog-
nostic indicators for patients [16]. Enhanced cytotoxicity
has been observed when anti-EGFR monoclonal antibody
cetuximab (Erbitux, C225) is used in combination with a
number of conventional cytotoxic therapies, including
cisplatin and paclitaxel to avoid the severe side-effect.
Thus designing new drugs or combined chemotherapy
aiming to enhance cytotoxicity and attenuate side-effect
becomes urgent and challenging tasks.

In this study, we first showed that Aur-A was overex-
pressed in TSCC tissues and closely correlated with lymph
node metastasis in patients. Aur-A inhibitory VX-680

[17,18] demonstrated a potent anti-tumor activity against
various aspects of TSCC tumor progression, offering an
opportunity for target therapy. More interestingly, we
showed that activation of PI3K signaling by IGF-1 abro-
gated Aur-A inhibitory VX-680 induced apoptosis,
whereas combination of VX-680 and PI3K inhibitor
induced synergistic effects on inducing apoptosis and
reducing migration in cancer cells. These data suggested a
cross-talk between Aur-A and PI3K signaling pathway in
regulating cell survival and migration. More importantly,
we found that Aur-A downregulated IκBα via Akt activa-
tion, and subsequently induced NF-κB p65 translocated
to nuclei where expression of its target gene Bcl-xL was
increased, pointing that Aur-A promoted cell survival via
Akt-mediated IκB kinase (IKK)/NF-κB signaling pathway.
Taken together, understanding the mechanism underly-
ing the pro-survival activity of Aur-A and the link between
Aur-A and PI3K pathway provide a new insight and
rationale for future combined molecular targeting thera-
peutics.

Results
Aur-A is overexpressed in TSCC tissues and correlated with 
clinical stage and lymph node metastasis
We used the immunohistochemical analysis to investigate
Aur-A expression in primary tumor tissues. Results
showed that only a few (7/30, 23.3%) matched adjacent
normal tissues displayed Aur-A positive staining (Fig. 1a).
However, Aur-A was significantly elevated in majority
(36/55, 65.5%) of pathologically confirmed tumor speci-
mens (Fig. 1b). Aur-A was uniformly cytoplasmic positive
staining, uncoupled with its normal mitosis-related
expression pattern.

We further analyzed the relationship between Aur-A
expression and clinical characteristics (Table 1). Aur-A
was more frequently expressed in high-grade tumors
(stage III and IV, 77.8%) compared with low-grade (stage
I and II, 42.1%) tumors (p = 0.008). Moreover, we
observed preferential expression of Aur-A in tumor with
positively (87.5%) versus negatively (56.4%) lymph node
metastasized samples (p = 0.028). No significant correla-
tion was found between Aur-A expression and other clin-
ical characteristics including age, gender and
differentiation status. Thus, the potential association
between tumor overexpression of Aur-A and clinic stage or
lymph node metastasis raises the possibility of specific
inhibition of Aurora kinase in treatment of tongue cancer
cells.

Aurora kinase inhibitory VX-680 suppresses cell growth 
and induces apoptosis in a dose-dependent manner in 
TSCC cells
To evaluate the inhibition of Aurora kinase in TSCC cells,
we used a small molecule inhibitor VX-680. Figure 2a
showed that the percentage of abnormal spindle as was
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markedly increased in VX-680 treated mitotic cells (22.39
± 0.98%) compared to the control mitotic cells (4.21 ±
0.91%). The abnormal spindle characterized as mono-
polarity consistent with a known Aur-A inhibition pheno-
type [19]. Phosphorylation inhibition of histone H3 at
Ser10, an in vivo substrate of Aur-B was significantly
reduced in Tca8113 cells treated with VX-680 at 1 nM
(12.00 ± 3.06) or 5 nM (5.80 ± 0.08), compared to the
control cells (30.20 ± 8.62, Fig. 2b).

Cell survival rates were reduced by VX-680 in a dose-
dependent manner as assessed by MTT assay with IC50 of
6.45 ± 1.14 nM (Fig. 2c). Annexin V assay revealed that
VX-680 induced apoptosis even at 1 nM as showed in
Annexin V and PI staining positive (Fig. 2d). Western blot

assay showed that VX-680 reduced the expression of anti-
apoptotic protein Bcl-2 and increased the level of both
cleaved PARP and cleaved caspase-3 in a dose-dependent
manner (Fig. 2e). Caspase-3 inhibitor however reversed
Bcl-2 reduction and PARP cleavage in response to VX-680
(data not shown).

Cross-talk between Aur-A and PI3K pathway regulates VX-
680 induced apoptosis in tumor cells
Using a serum-free system, we examined cell apoptosis by
Western blot and flow cytometry assay. IGF-1 increased
the phosphorylation of Akt at Ser473 and its downstream
target GSK3 at Ser 21/9. Expression of IκBα was however
decreased by IGF-1 treatment (Fig. 3a), which also pre-
vented VX-680 (5 nM)-induced apoptosis (Fig. 3b). Inter-

Aur-A is overexpressed in TSCC tissues and correlated with clinical stage and lymph node metastasisFigure 1
Aur-A is overexpressed in TSCC tissues and correlated with clinical stage and lymph node metastasis. TSCC or 
its corresponding adjacent normal samples were collected and subjected to immunohistochemical staining with Aur-A anti-
body. (a) Aur-A expression is low in normal samples. (b) Aur-A expression is obviously increased in TSCC, original magnifica-
tion, × 200. Insets show enlarged views, original magnification, × 400.

a b

Table 1: Association of Aur-A expression with clinicopathological parameters

Clinicopathological features n Aur-A expression
Positive No.(%)

χ2 P

Age ≤ 60 years 28 20 (71.4) 0.900 0.343
>60 years 27 16 (59.3)

Gender Male 33 22 (66.7) 0.054 0.817
Female 22 14 (63.6)

Clinical Stage I+II 19 8 (42.1) 6.999 0.008
III+IV 36 28 (77.8)

Differentiation Well 7 2 (28.6) 4.952 0.084
Moderate 26 19 (73.1)
Poor 22 15 (68.2)

Lymph node metastasis Positive 16 14 (87.5) 4.850 0.028
Negative 39 22 (56.4)
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Aurora kinase inhibitory VX-680 suppresses cell growth and induces apoptosis in TSCC cellsFigure 2
Aurora kinase inhibitory VX-680 suppresses cell growth and induces apoptosis in TSCC cells. Cells were main-
tained at DMSO (served as a control) or VX-680 for 48 h. (a and b) VX-680 inhibits Aurora kinase and leads to defects in 
mitotic spindles. Cells were subjected to immunofluorescence staining with α-tubulin (green), Aur-A (red, original magnifica-
tion × 600) or pHistone H3-Ser10 antibodies (green, original magnification × 200). DAPI (blue) was used to visualize the nuclei. 
(a) Quantification showed the percentage of the abnormal spindles assessed as monopolarity of three independent experi-
ments. In each experiment, at least 150 randomly chosen spindles were counted. (b) Histogram indicated the number of pHis-
tone H3 positive cells counted in five randomly selected fields from three independent experiments. Error bars indicated the 
SD. *p < 0.05, **p < 0.01, compared to control. (c-e) VX-680 suppresses cell growth and induces apoptotic cell death. (c) Cell 
survival rates were measured by MTT assay, *p < 0.05, ***p < 0.001. (d) Representative immunofluorescent images of apop-
totic cells were stained with Annexin V (green), PI (red) and DAPI (blue). Histogram represented the percentage of Annexin V 
or PI positive staining cells of three independent experiments. (e) Cell apoptosis was analyzed by Western blot with indicated 
antibodies. GAPDH was used as a control.

0

10

20

30

40

50

0 1 5

VX-680 (nM)

Annexin V

PI

*

**

0

10

20

30

40

50

0 1 5

VX-680 (nM)

***

0

5

10

15

20

25

0 1
VX-680 (nM)

A
bn

om
al

 S
pi

nd
le

 N
um

be
r 

(%
)

DAPI

tubulin

Aur-A

Merge

a Control VX-680 (1 nM)
b

Control VX-680 (1 nM) VX-680 (5 nM)

Merge

pHistone H3 (Ser 10)

DAPI

c

d

VX-680
(1nM)

Control

VX-680
(5nM)

Annexin V      PI DAPI       Merge 

Bcl-2

cleaved PARP

VX-680 (nM)

0      1        5       10      15

GAPDH

cleaved caspase-3

e

******

***

***
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0 DMSO 1 5 10 15 20

VX-680 (nM)

O
D

IC50=6.45 1.14nM

P
os

iti
ve

 C
el

l N
um

be
r/

F
ie

ld
P

os
iti

ve
 C

el
l N

um
be

r 
(%

)



Molecular Cancer 2009, 8:95 http://www.molecular-cancer.com/content/8/1/95

Page 5 of 12
(page number not for citation purposes)

Cross-talk between Aur-A and PI3K pathway regulates VX-680 induced apoptosis in TSCC cellsFigure 3
Cross-talk between Aur-A and PI3K pathway regulates VX-680 induced apoptosis in TSCC cells. Serum-starved 
Tca8113 cells treated with IGF-1 (I, 100 ng/ml), wortmannin (W, 1 μM), VX-680 (V, 5 nM) alone or in combination for 12 h. (a) 
Cells were subjected to Western blot analysis with indicated antibodies. GAPDH was used as a control. (b) The apoptosis was 
assessed by flow cytometry as a sub-G1 population. Images showed one representative of three independent experiments. His-
togram represented the quantification.
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estingly, VX-680 and an irreversible PI3K inhibitor
wortmannin in combination displayed a dramatic effect
in inhibiting Akt and GSK3 activity, elevating IκBα expres-
sion (Fig. 3a), and increasing cell apoptosis, compared
with either VX-680 (about 7.90 ± 2.54-fold) or wortman-
nin (about 18.49 ± 2.88-fold) alone (Fig. 3b). We calcu-
lated the cooperative coefficient of VX-680 and
wortmannin was 6.09 ± 0.35, suggesting wortmannin syn-
ergized VX-680 mediated apoptosis by inhibiting PI3K.
Meanwhile, elevated levels of cleaved PARP and cleaved
caspase-3 and reduction of Bcl-2 expression were
observed in cells treated with VX-680 and/or wortmannin
(Fig. 3a). These data together indicated that there was an
intracellular cross-talk between Aurora kinases and PI3K
pathway in regulating cancer cell survival. We conducted
Western blot with another squamous carcinoma KB cells
and observed similar results (Additional file 1).

Aur-A interacts with PI3K pathway in regulating TSCC cell 
migration
We have showed that overexpression of Aur-A was posi-
tively correlated with lymph node metastasis (Table 1),
and cell migration was closely associated with potential of
tumor invasiveness and metastasis. We showed that VX-
680 potently induced a dose-dependent inhibition in the
migration of Tca8113 cells (Additional file 2). Similar
inhibition of cell motility was also induced by Akt/protein
kinase B signaling inhibitor-2 (API-2) at dose of 1 μM.

We then conducted the transwell migration assay in
serum-free condition. Compared with the control cells,
IGF-1 significantly enhanced migration of Tca8113 cells
(about 3.5-fold), while either VX-680 or wortmannin
alone at low dose could partially reduce the cell mobility
induced by IGF-1 (Fig. 4). Moreover, the combination of
VX-680 and wortmannin efficiently abrogated IGF-1
induced cell migration in a synergic manner. Meanwhile
we performed MTT assay to detect the cell viability in the
same system. These results showed that the suppression of
migration by VX-680 and/or wortmannin were not due to
inducing apoptosis in Tca8113 cells (data not shown).
Thus, these data indicated the interaction between Aurora
kinases and PI3K pathway also played a key role in cancer
cell migration.

Activated Akt attenuates Aur-A inhibitory VX-680-induced 
apoptosis in TSCC cells
Based on above findings, we hypothesized that Aur-A and
PI3K pathway might interact at Akt. The level of pAkt was
decreased in cells treated with increasing concentration of
VX-680 (Fig. 5a). We further overexpressed a constitu-
tively active form of Akt (Myr-Akt1) in Tca8113 cells (Fig.
5b). MTT assay showed that the survival rate of Myr-Akt1
transfected cells was (46.43 ± 7.95% and 38.11 ± 6.16%),
obviously higher than that of empty vector pUSE trans-

fected cells (31.5 ± 1.67% and 18.93 ± 2.90%) when
treated with VX-680 at 5 nM and 10 nM respectively (Fig.
5c). We performed Aur-A RNAi in vector or Myr-Akt1
transfected cells and observed similar results (Additional
file 3). Together, these data suggested that Akt was a
potential downstream target of Aurora kinases in enhanc-
ing cancer cell survival.

Aur-A down-regulates IκBα via Akt phosphorylation and 
induces p65 subunit of NF-κB nuclear translocation
A recent study reported that Aur-A regulated NF-κB via
phosphrylation of IκBα [14]. We further studied whether
Aur-A regulated IκBα and its downstream targets via Akt
pathway. Decreased pAkt and elevated IκBα were detected
when cells were transfected with siRNA toward either Akt
(Additional file 4) or Aur-A (Fig. 6a), compared with cells
transfected with their scramble control respectively. Inhi-
bition of Aur-A chemically also up-regulated IκBα level

Aur-A interacts with PI3K pathway in regulating TSCC cell migrationFigure 4
Aur-A interacts with PI3K pathway in regulating 
TSCC cell migration. Cells were incubated in serum-free 
media containing IGF-1 (I, 100 ng/ml), wortmannin (W, 1 
μM), VX-680 (V, 1 nM) alone or in combination for 16 h. 
Migration rates were quantified by counting the migrated 
cells in five random fields. (a) One representative of three 
independent experiments was shown, original magnification 
× 200. (b) Data summarized three independent experiments 
in identical condition.
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(Fig. 6b). Conversely, overexpression of Aur-A increased
Akt activity and decreased IκBα level compared with the
vector control (Fig. 6a). We then analyzed the expression
of Bcl-xL, which is known as a NF-κB target gene closely
associated with cell proliferation and apoptosis. Bcl-xL
was down-regulated in Aur-A and Akt depleted cells (Fig.
6a). Immunofluorescence staining of NF-κB p65 showed
that Aur-A overexpression was significantly associated
with p65 nuclear translocation whereas p65 was mainly
expressed in the cytoplasm in cells transfected with empty
vector pCS2+ (Fig. 6c). We further showed that inhibition

of PI3K with wortmannin did not prevent either an
increase of pAkt and Bcl-xL or a decrease in IκBα caused
by Aur-A overexpression (Fig. 6d). Interestingly, in cells
incubated with Akt inhibitor API-2 or siRNA against Akt,
overexpression of Aur-A however failed to reduce IκBα or
raise Bcl-xL expression in comparison to the vector control
(Fig. 6e and 6f). This suggested that Akt, but not PI3K, was
involved in the down-regulation of IκBα by Aur-A. These
results revealed that Aur-A, via its downstream target Akt,
down-regulated IκBα, which then led to NF-κB nuclear
translocation and subsequently activating NF-κB target
gene Bcl-xL in enhancing cancer cell survival (Fig. 6g).

Discussion
Aur-A kinase plays a critical role in tumorigenesis as an
oncogenic protein. However, the exact pathway by which
Aur-A enhances cell survival has not been well defined. In
this study, we showed that Aur-A, via activating Akt path-
way, induced NF-κB nuclear translocation to promote cell
survival. Indeed, overexpression of Aur-A was positively
associated with clinic stage and lymph node metastasis in
TSCC patients. Moreover, we established a cross-talk
between mitotic Aurora kinase and IGF-1-induced PI3K
survival pathway, interacting at Akt activation. Combined
inhibition of both Aur-A and PI3K led to a synergistic
effect on inducing apoptosis and suppressing migration,
reassuring an emerging theme of combination therapy in
cancer treatment.

Aur-A, a key regulator of mitosis, is essential for centro-
some function, spindle assembly, and mitotic entry [1-3].
Dysregulation of Aur-A has been linked to tumorigenesis.
Previous studies have also shown that Aur-A functions as
a pro-survival protein that counteract apoptosis and
induce drug resistance in tumour cells [20]. We and others
demonstrated that Aur-A promoted cell survival and
migration by Akt activation, and Aur-A activated NF-κB
via IκBα phosphorylation [8,9,14]. Nevertheless, a clear
pathway from Aur-A activation to cell survival remains to
be elucidated. In this study, we showed that inhibition of
Aur-A induced cell apoptosis accompanied with suppress-
ing Akt activation, increasing IκBα level and down-regu-
lating Bcl-xL expression. On the contrary, overexpression
of Aur-A led to Akt activation and IκBα down-regulation,
subsequently induced NF-κB p65 nuclear translocation to
enhance cell survival. Moreover, suppression of Akt by
either API-2 or siAkt prevented Aur-A-induced IκBα reduc-
tion and Bcl-xL elevation. Thus, our data demonstrated
that Aur-A downregulated IκBα via Akt activation, trigger-
ing NF-κB p65 nuclear translocation, and subsequently
activating target gene Bcl-xL to promote survival in cancer
cells.

Inactivation of PTEN leads to constitutively activate PI3K/
Akt pathway. Recently, Aur-A was found to abrogate the
DNA-binding and transactivation activity of p53 and sub-

Activated Akt attenuates Aur-A inhibitory VX-680-induced apoptosis in TSCC cellsFigure 5
Activated Akt attenuates Aur-A inhibitory VX-680-
induced apoptosis in TSCC cells. (a) Cells were incu-
bated in serum-free media with indicated doses of VX-680 
for 24 h, and subjected to Western blot analysis with pAkt 
(ser473), and Akt1 antibodies. (b) Myr-Akt1 or pUSE stable 
transfected cells were subjected to Western blot with pAkt 
and Akt1 antibodies, GAPDH was used as a control. (c) Myr-
Akt1 or pUSE transfected cells were treated with VX-680 (5 
nM or 10 nM) for 24 h. Cell survival rates were measured by 
MTT assay.
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Aur-A down-regulates IκBα via Akt phosphorylation and induces p65 subunit of NF-κB nuclear translocationFigure 6
Aur-A down-regulates IκBα via Akt phosphorylation and induces p65 subunit of NF-κB nuclear translocation. 
(a) Cells were transiently transfected with Aur-A or pCS2+, or Aur-A siRNA or its scramble control. (b) Cells were incubated 
in serum-free media with VX-680 for 12 h. (c) Cells were treated with or without TNF-α 50 ng/ml, or transiently transfected 
with Aur-A or pCS2+, and subjected to immunofluorescence staining with anti-p65 antibody (green). DAPI (blue) was used to 
visualize the nuclei, original magnification × 1000. Histogram represented the percentage of cells with nuclear translocation 
from three independent experiments. (d) Aur-A or pCS2+, Aur-A siRNA or its control transfected cells treated with wort-
mannin 1 μM for 24 h before harvesting. (e) Cells were transfected with Aur-A or pCS2+ and treated with API-2 1 μM for 24 
h prior to harvesting. (f) Cells were cotransfected Aur-A or pCS2+ with Akt1 siRNA or its control. Cell lysates were analyzed 
for indicated proteins by Western blot (a, b and d-f). (g) A diagram depicts the Aur-A-mediated pro-survival signaling pathways.
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sequently inhibit its downstream target genes including
PTEN by phosphorylating Ser 215 [21]. PTEN expression
was significantly reduced in Aur-A overexpressed cells
with activated Akt activity [22]. Here, we showed that
overexpression of Aur-A increased the phosphorylation of
Akt at Ser 473 (Fig. 6a). Consistently, previous report
showed that Aur-A activated Akt in a p53-dependent man-
ner to induce cell survival and chemoresistance in ovarian
cancer cells [9]. Thus, it is conceivable that Aur-A activates
Akt via inhibiting PTEN.

Akt promotes cell survival by its ability to phosphorylate
and inactivate several pro-apoptotic targets including
GSK-3. We showed that inhibition of Aur-A resulted in
suppressed phosphorylation of both Akt and GSK-3,
according with one recent study that Aur-A promoted cell
proliferation by increasing the phosphorylation of GSK-
3β [23]. On the other hand, another work reported that
Akt inhibitor A-443654 interfered with mitotic progres-
sion by decreasing Aur-A expression, suggesting Akt acts
upstream of Aur-A by regulating its transcription level
[24]. We and others showed that Aur-A contributed to cell
survival, chemoresistance and migration via activation of
Akt, suggesting a positive feedback interplaying between
Aur-A and Akt.

Akt plays a part in activation of NF-κB signaling pathway
and exerts a positive effect on NF-κB function by phos-
phorylation and activation of IKK, a kinase that phospho-
rylates and induces proteolytic degradation of the NF-κB
inhibitor, IκBα [25]. Interestingly, several recent reports
have suggested that Aur-A kinase may serve both upstream
and downstream of the IKK complex components
[14,26]. IKK complex includes two catalytic components,
IKKα and IKKβ. As a downstream target, Aur-A was phos-
phorylated by IKKα at threonine residue 288, a site which
is important for its kinase activity [26]. Depletion of IKKβ
resulted in the up-regulation of Aur-A protein, and IKKβ
functioned as an antagonist of Aur-A signaling during
mitosis in normal cells [27]. On the other hand, we
showed that Aur-A promoted cell survival through acti-
vated IKK/NF-κB signaling pathway, consistent with pre-
vious reports [14,28]. Thus, there may be a reciprocal
regulation between Aur-A and IKK complex.

Activation of Akt was associated with adverse outcome in
tongue cancer patients, serving as a significant prognostic
factor in TSCC [29]. Multiple growth factors such as IGF-
1, VEGF, and EGF facilitate the development and progres-
sion of cancer by activating PI3K pathway leading to cell
survival and therapeutic resistance [30-32]. Here, we
showed that Aur-A was overexpressed in tongue cancer tis-
sue and tightly correlated with clinical stage and lymph
node metastasis in patients (Fig. 1 and Table 1). Thus, dys-
regulation of mitotic Aur-A kinase and abnormal activa-

tion PI3K survival pathway are two essential but distinct
biological processes in cancer progression. As tumorigen-
esis is a multiple process, combination therapeutic strate-
gies have shown substantially enhanced anti-tumor
effects and reduced side-effects both in vitro and in vivo. A
recent study reported that combined treatment with the
pan-histone deacetylase inhibitor vorinostat and Aur-A
kinase inhibitor MK-0457 (VX-680) showed a synergistic
anti-leukemia activity in cultured and primary AML and
CML cells [33]. Here, we demonstrated that Aur-A inhibi-
tory VX-680 could markedly reduce IGF-1 induced sur-
vival and migration. Furthermore, combinational
inhibition of Aur-A and PI3K showed a synergic effect in
causing apoptosis and suppressing migration in cancer
cells (Fig. 3, 4 and Additional file 1).

Conclusion
Taken together, our findings demonstrated that Aur-A
stimulated NF-κB signaling pathway via Akt activation to
promote cancer cell survival, and formed a conceptual
basis for the combination chemotherapy of targeting both
Aurora kinase and growth factor-induced PI3K pathway
for inhibiting the enhanced survival and migration of can-
cer cells.

Methods
Patients and clinical tissue specimens
Fifty-five patients who performed radical surgery were
original clinically diagnosed and pathologically con-
firmed of TSCC between 1987 and 1992. Pertinent patient
clinical reports were obtained with prior patient consent
and the approval of the institutional Clinical Ethics
Review Board. All of the 55 specimens and additional 30
normal adjacent tissues were collected and fixed in forma-
lin and embedded in paraffin in the diagnostic histopa-
thology laboratory at the Second Affiliated Hospital of
Sun Yat-sen University. Patient clinic pathological fea-
tures were shown in Table 1. Tumors were staged accord-
ing to UICC classification (1997): stage I (4 cases), II (15
cases), III (23 cases) and IV (13 cases) or histopathology
classification: stage I (7 cases) stage II (26 cases) and stage
III (22 cases).

Reagents and cell lines
VX-680 was purchased from Kava Technology, San Diego,
CA., API-2 was from Calbiochem, IGF-1 from Biosource,
tumor necrosis factor α (TNF-α) and wortmannin from
Cell Signaling. Human tongue squamous cancer cell line
Tca8113 was kindly provided by Xiao-feng Zhu (Cancer
Center, Sun Yat-sen University), human oral floor cancer
cell line KB was obtained from ATCC.

Immunohistochemical staining of Aur-A expression
Aur-A immunohistostaining using an anti-Aur-A antibody
(Upstate) on tongue cancer tissues was performed as pre-
Page 9 of 12
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viously described [8]. Moderate or strong cytoplasm stain-
ing, considered as positive reaction, was assessed semi-
quantitatively by at least two independent pathologists.
Specimen was determined as positive staining for Aur-A
when >30% cells showed visible brown granules in the
cytoplasm.

Immunofluorescence staining
Cultured cells grown on coverslips treated with DMSO or
VX-680, or transiently transfected with plasmid expressing
Aur-A or empty vector pCS2+. Immunofluorescence stain-
ing of cells was performed as described [34] and analyzed
with an Olympus BX51 microscope. For immunofluores-
cence staining of NF-κB p65, cells were treated with 50 ng/
ml of TNF-α for 10 min prior to fixing as a positive con-
trol.

MTT assay
Tca8113 cells were incubated in 96-well plate and main-
tained at different doses of VX-680 for 48 h. Myr-Akt or
pUSE transfected Tca8113 cells were maintained at differ-
ent doses of VX-680 for 24 h. Cell survival was assessed as
described previously [35].

Flow cytometry analysis
Cells were incubated in serum-free media with indicated
drugs for 12 h and subjected to flow cytometry analysis as
previously described [34].

Annexin V assay
Cells were treated with DMSO or VX-680 for 48 h prior to
collecting and resuspending in binding buffer. Annexin V-
FITC and propidium iodide (Annexin V-FITC Apoptosis
Detection Kit, Merck) were added to each sample accord-
ing to the manufacturer's protocol. 4, 6-diamidino-2-phe-
nylindole (DAPI 1 μg/ml) was used to visualize nuclei.
20~25 μl of cell suspension was transfered onto glass
microscope slides respectively, and viewed immediately
using a fluorescence microscope (Olympus BX51).

Western blot assay
Western blot assay was performed as described previously
[8]. Antibodies used were mouse anti-GAPDH (Ambion),
rabbit anti-Bcl-2, rabbit anti-cleaved caspase-3, mouse
anti-cleaved PARP (Asp175), rabbit anti-phosphorylated
Akt (pAkt, Ser473), mouse anti-phospho-GSK3α/β (Ser
21/9, Cell Signaling), mouse anti-IκBα (BD), rabbit anti-
GSK3β, goat anti-Akt1, rabbit anti-Bcl-xL (Santa Cruz Bio-
technology) and rabbit anti-Aur-A (Upstate).

Generation of stable transfection cell lines
Myr-Akt1 and pUSE plasmids were generously provided
by Xiao-feng Zhu (Cancer Center, Sun Yat-sen University).
Transfections were conducted according to manufactur-
ers' recommendations (Invitrogen). Tca8113 cell clones

stably transfected with plasmid were selected in 400 μg/
ml G418.

Transient transfection and cotransfection
Transient transfection of Aur-A and its vector control
pCS2+ or cotransfection of Aur-A or pCS2+ with siRNA
against Akt1 or its control were conducted according to
manufacturers' recommendations (Invitrogen). Lysates
were prepared 48 h after transfection. Cells were treated
with API (10 μM) or wortmannin (1 μM) for 24 h prior to
collecting for Western blot.

RNA-mediated interference
siRNA for downregulating Aur-A or Akt1 expression was
done by the transfection of RNA oligonucleotides with
lipofectamine 2000. The sequence for siRNA against Aur-
A was AUGCCCUGUCUUACUGUCA and siRNA against
Akt1 was AAGGAGGGUUGGCUGCACAAA. Lysates were
prepared 36 h after transfection.

Transwell migration assay
Transwell assay was performed as described previously
[8]. Briefly, cells were incubated in serum or serum-free
media containing desired drugs for 16 h. The migrated
cells in five fields were counted, and the average of each
chamber was determined.

Statistics
Statistical analysis was performed using SPSS version 13.0
(SPSS Inc., Chicago, IL, USA). The χ2 test and Student's t-
test was used to make a statistical comparison between
groups. P < 0.05 was considered statistically significant.
We performed each study at least three times under iden-
tical conditions.
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Cross-talk of Aur-A and PI3K pathway regulates VX-680-induced 
apoptosis in KB cells. Serum-starved KB cells treated with IGF-1 (I, 100 
ng/ml), wortmannin (W, 1 μM), VX-680 (V, 2 nM) alone or in combi-
nation for 12 h. Cells were subjected to Western blot analysis with indi-
cated antibodies. GAPDH served as a loading control.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-95-S1.pdf]

Additional file 2
VX-680 suppresses Tca8113 cell migration. Cells were incubated in 
media containing 10% FBS with API-2 1 μM or increased dose of VX-
680 for 16 h. Migration rates were quantified by counting the migrated 
cells in five random fields. (a) One representative of three independent 
experiments was shown, original magnification ×200. (b) Data summa-
rized three independent experiments, *p < 0.05, **p < 0.01.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-95-S2.pdf]

Additional file 3
Activated Akt overrides siAur-A induced cell death in TSCC cells. Myr-
Akt1 or pUSE stable transfected cells were transfected with Aur-A siRNA 
or its scramble control. Cell survival rate was determined by MTT assay.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-95-S3.pdf]

Additional file 4
Downregulation of Akt increases IκBα level in TSCC cells. Cells were 
transiently transfected with Akt1 siRNA or its scramble control. Cell 
lysates were analyzed for indicated proteins by Western blot. GAPDH was 
used as a control.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-95-S4.pdf]
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