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Abstract

Background: DNA hypermethylation events and other epimutations occur in many neoplasms, producing gene
expression changes that contribute to neoplastic transformation, tumorigenesis, and tumor behavior. Some human
cancers exhibit a hypermethylator phenotype, characterized by concurrent DNA methylation-dependent silencing of
multiple genes. To determine if a hypermethylation defect occurs in breast cancer, the expression profile and promoter
methylation status of methylation-sensitive genes were evaluated among breast cancer cell lines.

Results: The relationship between gene expression (assessed by RT-PCR and quantitative real-time PCR), promoter
methylation (assessed by methylation-specific PCR, bisulfite sequencing, and 5-aza-2'deoxycytidine treatment), and the
DNA methyltransferase machinery (total DNMT activity and expression of DNMT |, DNMT3a, and DNMT3b proteins)
were examined in |2 breast cancer cell lines. Unsupervised cluster analysis of the expression of 64 methylation-sensitive
genes revealed two groups of cell lines that possess distinct methylation signatures: (i) hypermethylator cell lines, and (ii)
low-frequency methylator cell lines. The hypermethylator cell lines are characterized by high rates of concurrent
methylation of six genes (CDH I, CEACAM6, CSTé, ESRI, LCN2, SCNN | A), whereas the low-frequency methylator cell lines
do not methylate these genes. Hypermethylator cell lines coordinately overexpress total DNMT activity and DNMT3b
protein levels compared to normal breast epithelial cells. In contrast, most low-frequency methylator cell lines possess
DNMT activity and protein levels that are indistinguishable from normal. Microarray data mining identified a strong
cluster of primary breast tumors that express the hypermethylation signature defined by CDH I, CEACAMé, CSTé, ESRI,
LCN2, and SCNNIA. This subset of breast cancers represents 18/88 (20%) tumors in the dataset analyzed, and 100% of
these tumors were classified as basal-like, suggesting that the hypermethylator defect cosegregates with poor prognosis
breast cancers.

Conclusion: These observations combine to strongly suggest that: (a) a subset of breast cancer cell lines express a
hypermethylator phenotype, (b) the hypermethylation defect in these breast cancer cell lines is related to aberrant
overexpression of DNMT activity, (c) overexpression of DNMT3b protein significantly contributes to the elevated
DNMT activity observed in tumor cells expressing this phenotype, and (d) the six-gene hypermethylator signature
characterized in breast cancer cell lines defines a distinct cluster of primary basal-like breast cancers.
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Background

Inappropriate gene silencing resulting from aberrant DNA
methylation significantly contributes to neoplastic trans-
formation, tumorigenesis, and tumor progression [1,2],
contributing to some of the hallmarks of cancer [3]. While
abnormal DNA methylation affecting a variety of genes
occurs in nearly every type of cancer that has been evalu-
ated, some tumors exhibit aberrant concurrent hyper-
methylation of numerous genes, a phenomenon known
as the CpG island methylator phenotype (CIMP). CIMP
was first described in a distinct subset of human colorectal
carcinomas that displayed high rates of concordant meth-
ylation of specific genes [4]. Subsequently, CIMP has been
described in other human neoplasms, including tumors
of the ovary [5], bladder [6], prostate [6], stomach [7],
liver [8], pancreas [9], esophagus [10], and kidney [11], as
well as neuroblastomas [12], and leukemias and lympho-
mas [13,14]. While tissue type is important in determin-
ing which genes are targeted for methylation in a given
neoplasm, CIMP-positive tumors in each of these tissue
types exhibit gene silencing that is due to cancer-specific
(rather than age-specific) hypermethylation of epigeneti-
cally-regulated genes. Definitive evidence for a hyper-
methylation defect (similar to CIMP) among human
breast cancers has not emerged, and some investigators
have suggested that such a hypermethylator phenotype
does not occur in breast tumors [15]. Nevertheless numer-
ous epigenetically-regulated genes are known to be
directly silenced by DNA methylation in breast cancer
including cell cycle control genes (APC, RASSF1, RB,
TFAP2A), steroid receptor genes (ESR1, PGR, RARa),
tumor suppressor genes (BRCA1, CDKN2A, CST6), and
metastasis-associated ~ genes (CDH1, = CEACAMG,
PCDHGB6), among others [16-19].

In the current study, we analyzed 12 breast cancer cell
lines for differential expression of 64 methylation-sensi-
tive genes, to determine if subsets of breast cancer cell
lines methylate genes at disparate frequencies, and subse-
quently confirmed that lack of gene expression was attrib-
utable to methylation-dependent silencing. Unsupervised
cluster analysis of gene expression patterns reveals two
distinct groups of breast cancer cell lines that possess dif-
ferent methylation signatures: (i) hypermethylator cell
lines, and (ii) low-frequency methylator cell lines. The
hypermethylator cell lines are characterized by high rates
of concurrent methylation of six genes (CDHI,
CEACAMG, CST6, ESR1, LCN2, and SCNN1A), whereas
the low-frequency methylator cell lines typically lack
methylation of these genes. Analysis of the enzymes
responsible for human DNA methylation reveals aberrant
DNMT3b protein expression and elevated total DNA
methyltransferase activity in hypermethylator cell lines.
These observations combine to suggest the existence of a
distinct subset of human breast cancer cell lines that pos-
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sess novel biological properties related to dysregulation of
the methylation machinery resulting in the acquisition of
a hypermethylator phenotype.

Results

Analysis of Epigenetically-regulated Genes Reveals Two
Distinct Expression

Patterns Among Breast Cancer Cell Lines

Semi-quantitative RT-PCR was performed on a panel of
64 methylation-sensitive genes in each of 12 breast cancer
cell lines (BT20, BT549, Hs578T, MCF7, MDA-MB-231,
MDA-MB-415, MDA-MB-435S, MDA-MB-436, MDA-MB-
453, MDA-MB-468, SKBR3, and ZR-75-1), as well as the
normal breast epithelial cell line MCF12A (Figure 1A).
Epigenetically-regulated genes that are predictive of CIMP
in other tumor systems, as well as genes known to be aber-
rantly methylated in breast cancer, were selected for
expression analysis (Table 1). Levels of expression for
each gene in each breast cancer cell line were scored rela-
tive to the levels of expression in MCF12A cells: undetec-
ted (no expression), low (detectable, but <MCF12A),
normal (equivalent to MCF12A), or high (>MCF12A).
Quantitative real-time PCR was performed on a subset of
epigenetically-regulated genes (n = 6) to confirm the RT-
PCR expression results (Figure 1B). This analysis revealed
a statistically significant correlation (R=0.76, p < 0.0001)
between the quantitative real-time PCR and RT-PCR
results. Gene expression results from the 12 breast cancer
cell lines as well as those of MCF12A cells were subjected
to an unsupervised cluster analysis, which revealed two
distinct groups of six cell lines that differ in their expres-
sion of methylation-sensitive genes: cluster I is composed
of cell lines (MDA-MB-436, BT549, MDA-MB-453, MDA-
MB-435S, Hs578T, and MDA-MB-231) that express a
putative hypermethylator phenotype, and cluster II con-
sists of cell lines (ZR-75-1, MDA-MB-468, SKBR3, BT20,
MDA-MB-415, and MCF7) that express a putative low-fre-
quency methylator phenotype (Figure 1C). The separa-
tion of these two groups is driven predominately by the
differential expression of six methylation-sensitive genes
(CDH1, CEACAMG6, CST6, ESR1, LCN2, and SCNN1A),
which are largely unexpressed by the cell lines in cluster I
(putative hypermethylator group), and typically expressed
by the cell lines in cluster II (putative low-frequency meth-
ylator group).

Methylation Analysis Confirms Epigenetic-regulation of
Silenced Genes

To confirm that lack of gene expression of known methyl-
ation-sensitive genes among this panel of breast cancer
cell lines reflects true methylation-dependent epigenetic
silencing, a number of methods were employed to assess
gene promoter methylation: (i) methylation-specific PCR
(MSP), (ii) bisulfite sequencing, and (iii) response to 5-
aza-2'-deoxycytidine (5-aza) treatment. MSP analysis of
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Expression analysis of methylation-sensitive genes in human breast cancer cell lines. (A) Representative agarose
gels of RT-PCR products from CSTé, LCN2, SCNNIA, CDH I, CEACAM6, ESRI, and factin. The source of cDNA template is
identified for each lane. Normal breast epithelial MCFI2A cells represent the positive control cell line. (B) Quantitative real-
time PCR results for CST6, LCN2, SCNNIA, CDHI, CEACAMé, and ESRI. Black bars correspond to hypermethylator cell lines,
cross-hatched bars correspond to low-frequency methylator cell lines, and the white bar (far right) corresponds to MCFI2A
cells (index control cell line). The expression level of each gene is depicted relative to that of MCFI2A cells. Error bars repre-
sent S.E.M. Instances of no detectable level of quantitative real-time PCR expression are indicated by an asterisk (*). (C) Unsu-
pervised cluster analysis for 48 genes that are expressed at a detectable level in MCFI2A cells. The 12 breast cancer cell lines
group into two distinct clusters, designated cluster | (corresponding to hypermethylator cell lines) and cluster Il (correspond-
ing to low-frequency methylator cell lines).

the six genes (CDH1, CEACAMG6, CST6, ESR1, LCN2,and  genes examined. For example, the hypermethylator cell
SCNN1A) that are differentially expressed between hyper-  lines express SCNN1A at undetectable or diminished lev-
methylator and low-frequency methylator cell lines els (Figure 1C), and MSP analysis of this gene revealed
revealed differences in the methylation status of specific ~ that 5/6 (83%) of these cell lines produce only a methyl-
CpGs within regulatory regions of each gene's promoter,  ated MSP product, while MSP analysis of SCNN1A in
in accordance with a given cell line's methylator status ~ MDA-MB-231 cells produced unmethylated and methyl-
(Figure 2A). The relationship between gene promoter  ated products. Conversely, all of the low-frequency meth-
methylation (as assessed by MSP) and loss of gene expres-  ylator cell lines (of which 5/6, 83% express SCNNIA at
sion is strong across all hypermethylator cell lines for the =~ normal levels) produced an unmethylated SCNN1A MSP
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Table I: Epigenetically Regulated Genes Chosen for Expression Analysis

Gene Designation Unigene Number Cancer-specific

methylation!

Gene Designation Unigene Number Cancer-specific

methylation!

ADAM23 Hs.591643 CIMP
APBAI Hs.592974 Breast, CIMP
APBA2 Hs.525718 Breast, CIMP

APC Hs. 158932 Breast, CIMP
BARD Hs.591642 Breast

BF Hs.69771 Breast
BRCAI Hs. 194143 Breast, CIMP
C8orf4 Hs.591849 Breast
CCND2 Hs.376071 Breast, CIMP
CDHI Hs.461086 Breast, CIMP

CDKNIA Hs.370771 CIMP

CDKN2A Hs.512599 Breast, CIMP

CDKN2B Hs.72901 CIMP

CEACAMS Hs.220529 Breast

CEACAMé Hs.466814 Breast

CSTé Hs.139389 Breast
CTCF Hs.368367 Breast, CIMP
CYPIBI Hs. 154654 Breast
DAPK | Hs.380277 Breast, CIMP
ESRI Hs.208124 Breast, CIMP
ESR2 Hs.443150 Breast, CIMP
GIP3 Hs.523847 Breast
GADD45A Hs.80409 Breast
GJB2 Hs.591234 Breast, CIMP
GNAI | Hs.73797 Breast
GPC3 Hs.567276 Breast
GSTPI Hs.523836 Breast, CIMP
HiCl Hs.72956 Breast, CIMP

HOXDI | Hs.421136 Breast, CIMP

HS3ST2 Hs.622536 Breast, CIMP
IFI27 Hs.532634 Breast
IGFBP5 Hs.369982 Breast

ISGI5 Hs.458485 Breast
ISGF3G Hs.1706 Breast
KRTHBI Hs.584773 Breast
LCN2 Hs.204238 Breast
LGALS3BP Hs.514535 Breast
MGMT Hs.501522 Breast, CIMP
MINT3 | AF1355312 Breast, CIMP
MLHI Hs.195364 Breast, CIMP
MYB Hs.531941 CIMP
PARPI2 Hs.12646 Breast
PCDHGB6 Hs.368160 Breast
PERI Hs.445534 Breast, CIMP
PGR Hs.368072 Breast, CIMP
PRDM2 Hs.371823 Breast, CMP
PRKCDBP Hs.434044 Breast, CIMP
RARc Hs. 137731 Breast, CIMP
RARS Hs.536687 Breast, CIMP
RASSFI Hs.476270 Breast, CIMP
RBI Hs.408528 Breast, CIMP
SASH|I Hs.193133 Breast
SSAT Hs.28491 Breast
SCNNIA Hs.591047 Breast
SERPINBS Hs.55279 Breast, CIMP
SFN Hs.523718 Breast, CIMP
SIM Hs.520293 Breast
STI8 Hs.147170 Breast
STYKI | Hs.515005 CIMP
TFAP2A Hs.519880 Breast
THBS| Hs.164226 CIMP
TMEM45A Hs. 126598 Breast
TP73 Hs.192132 CIMP
WTI Hs.591980 Breast, CIMP

I"Breast" signifies gene is reported in the literature to be methylated specifically in breast cancer; "CIMP" signifies gene is reported to be methylated
among CIMP-positive cancers other than breast, including: colorectal, gastric, hematopoietic, hepatocellular, neuroblastomas, ovarian, pancreatic,

and renal malignancies.

2MINT3I lacks a Unigene number; instead its accession number is provided.

product, and only two of these cell lines (BT20 and MDA-
MB-468) produced a detectable methylated MSP product
(Figure 2A). Methylated MSP products were detected for at
least 50% (3/6) of the genes examined in each of the
hypermethylator cell lines. MDA-MB-436 cells produced
methylated MSP products for three of the genes analyzed,
while BT549 and MDA-MB-435S cell lines displayed
methylated MSP products for each of the six genes evalu-
ated (Figure 2A). In contrast, unmethylated MSP products
were detected for at least 83% (5/6) of the genes examined
in each of the low-frequency methylator cell lines, with
MDA-MB-415 cells exhibiting unmethylated products for
each of the genes examined.

Selected MSP products were sequenced to examine the
methylation status of a greater number of CpGs within
regulatory regions of selected genes of interest and to eval-
uate promoter methylation for genes that produced both

unmethylated and methylated MSP products (Figure 2A).
The results of the bisulfite sequencing analysis support a
direct association between gene promoter methylation
and gene expression status in the present panel of methyl-
ation-sensitive genes (Figure 2B). For example, hyper-
methylator cell line MDA-MB-435S lacks detectable
expression of CDH1 (Figs. 1B and 1C) and MSP suggests
that the CDH1 promoter is methylated (Figure 2A).
Bisulfite sequencing of the intervening CpGs within the
MSP product demonstrated that the majority of CpGs in
this region of the CDH1 promoter are methylated (TMI =
95%, Figure 2B). Sequencing of the same region of the
CDH1 promoter in low-frequency methylator BT20 cells
(which express CDH1) revealed that all 19 CpGs are
unmethylated (TMI = 0%). Additionally, bisulfite
sequencing of the CDH1 promoter in hypermethylator
MDA-MB-231 cells (which display low level expression of
CDH1 and exhibit both a methylated and unmethylated
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Figure 2

Methylation analysis of CST6, LCN2, SCNNIA, CDHI,
CEACAMS6, and ESRI among putative hypermethyla-
tor and low-frequency methylator cell lines. (A) Rep-
resentative agarose gels of methylation-specific PCR (MSP)
products corresponding to CSTé, LCN2, SCNNIA, CDH |,
CEACAMG, and ESRI are shown. U = unmethylated MSP
product, M = methylated MSP product. Cell line abbrevia-
tions are as follows: 231 = MDA-MB-231, 415 = MDA-MB-
415, 435S = MDA-MB-435S, 436 = MDA-MB-436, 453 =
MDA-MB-453, and 468 = MDA-MB-468. All other cell lines
are designated by their full name. (B) Representative bisulfite
sequence analysis for CDH . Methylated CpGs are desig-
nated by closed circles, unmethylated CpGs are designated
by open circles for MDA-MB-435S, BT20, and MDA-MB-23 1
cell lines (5 replicates each). (C) Representative agarose gels
of RT-PCR products for CSTé, SCNNIA, CDH I, CEACAM6,
and ESRI demonstrating 5-aza induction of gene expression
in hypermethylator cell lines. RT-PCR results using cDNA
template from untreated (-) and 5-aza treated (+) are shown.

CDH1 MSP product) revealed one highly methylated
allele (TMI = 84%), and one sparsely methylated allele
(TMI = 4%, Figure 2B).

The six cell lines of the hypermethylator cluster (BT549,
Hs578T, MDA-MB-231, MDA-MB-435S, MDA-MB-436,
and MDA-MB-453) were treated with the demethylating
agent 5-aza and changes in methylation and expression
patterns for five genes (CEACAMG6, CDH1, CST6, ESRI,
SCNN1A) were examined. Representative RT-PCR results
are shown in Figure 2C. Whereas these genes are not
expressed in the majority of hypermethylator cell lines
(Figure 1), treatment with 5-aza results in robust expres-
sion (Figure 2C). Bisulfite sequencing of CDHI,
CEACAMG, and ESR1 confirmed that promoter demethyl-
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ation following 5-aza treatment coincided with gene
expression for these genes (data not shown).

Hypermethylator Phenotype Status is Predicted by
Indicator Gene Expression

A Bayesian analysis was performed to evaluate the value of
each gene in predicting correctly which of the two clusters
a given cell line was sorted. Five genes emerged as excel-
lent individual indicators (predictors) of cluster assign-
ment, having correct assignment values of 75% or greater:
CDH]1 (83%), CEACAMG (CA = 92%), ESR1 (75%), LCN2
(75%), and SCNN1A (92%). These genes individually dis-
play excellent sensitivity (range: 71-100%) and specificity
(range: 63-86%), good positive predictive value (range:
50-83%), and excellent negative predictive value (range:
67-100%). Additionally, CST6 had high sensitivity, spe-
cificity, and negative predictive values (75%, 63% and
86%, respectively) and produced 67% correct assign-
ments. Cell lines of the hypermethylator phenotype fre-
quently do not express these genes (hypermethylator cell
lines express between 0-2 genes at normal levels). Fur-
thermore, BT549, MDA-MB-453S, and Hs578T cells do
not express any of the indicator genes (Figure 1C). In con-
trast, the cell lines belonging to the low-frequency meth-
ylator group frequently express these genes at normal
levels (with low-frequency methylator cell lines retaining
some level of expression at 3-6 genes, p = 0.00045).
MDA-MB-468, MDA-MB-415 and BT20 cells retain detect-
able levels of expression of 100% (6/6) of these genes
(Figure 1C).

Gene Expression Status Correlates with Promoter
Methylation Status Among Breast Cancer Cell Lines

To examine the relationship between gene expression sta-
tus and promoter methylation for each of the six indicator
genes, an expression score and a methylation score were
generated for each cell line. These scores reflect the com-
bined relative expression and the combined relative meth-
ylation status for these genes of interest (CEACAMG,
CDH1, CST6, ESR1, LCN2, and SCNNIA). A strong
inverse correlation (R = 0.82, p = 0.0003) exists between
these two parameters: cell lines with low expression scores
tend to have higher methylation scores, and those with
high expression scores tend to have low methylation
scores (Figure 3). Hypermethylator cell lines exhibit an
average expression score of 1.8 + 1.0, while low-frequency
methylator cell lines exhibit an average expression score
of 9.7 + 1.0. This difference in average expression score
was significant (p = 0.0003). Likewise hypermethylator
cell lines produced an average methylation score that was
significantly higher than that for the low-frequency meth-
ylator cell lines (7.0 + 0.7 versus 3.3 + 0.6, p = 0.003).
These results suggest that the loss of gene expression
observed in hypermethylator cell lines is a direct conse-
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Gene expression status correlates with promoter
methylation status among breast cancer cell lines.
Association between RT-PCR expression and MSP methyla-
tion status of the six indicator genes for the |12 breast cancer
cell lines. Scores were calculated for CEACAMé6, CDH I, CSTé,
ESRI, LCN2, and SCNNIA. Hypermethylator cell lines (black
triangles) and low-frequency methylator cell lines (white tri-
angles) demonstrate a statistically significant relationship
between gene expression status and promoter methylation
status.

quence of aberrant promoter methylation for the genes of
interest.

DNMT Analysis Reveals Aberrant DNMT Activity and
Elevated DNMT Protein Levels among Hypermethylator
Cell Lines

Hypermethylator cell lines exhibit total DNMT activity
levels that are higher than that of low-frequency methyla-
tor cell lines and non-neoplastic MCF12A cells (Figure
4A). Each of the hypermethylator cell lines exhibit DNMT
activity levels that are > 1.7-fold higher than that of
MCF12A cells (Figure 4A), whereas 5/6 (83%) low-fre-
quency methylator cell lines (MDA-MB-468, SKBR3,
BT20, MDA-MB-415, and MCF7) exhibit DNMT activity
levels that are < 1.4-fold that of MCF12A cells (Figure 4A).
The average DNMT activity level for the hypermethylator
cell lines (2.9 + 0.6) is greater than that of the low-fre-
quency methylator cell lines (1.4 + 0.5), but the difference
does not reach significance (p = 0.095, NS). This is due to
the level of DNMT activity in ZR-75-1 cells (3.8 + 0.2),
which is much higher than MCF12A cells, making it
unlike the other five cell lines in the low-frequency meth-
ylator group. When ZR-75-1 cells are excluded, the collec-
tive DNMT activity level of the low-frequency methylator
group becomes indistinguishable from that of MCF12A
cells and significance emerges between the total DNMT
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Figure 4

Analysis of DNA methyltransferase enzymes among
putative hypermethylator and low-frequency methyl-
ator cell lines. Results from triplicate determination of total
DNMT activity and individual DNMT protein assays are
shown. Hypermethylator cell lines are represented by black
bars, low-frequency methylators are represented by cross-
hatched bars, and MCFI12A cells are represented by a white
bar. Error bars represent S.E.M. One unit of DNMT activity
or DNMT protein level corresponds to the equivalent
amount of activity or protein expressed in MCF|2A cells. (A)
Total DNMT enzymatic activity; (B) DNMTI protein; (C),
DNMT3a protein; and (D), DNMT3b protein.

activity levels of the hypermethylator and low-frequency
methylator groups (p = 0.027).
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No significant differences were detected for DNMT1 or
DNMT3a protein levels between hypermethylator cell
lines, low-frequency methylator cell lines, and MCF12A
cells (Fig. 3b-3C). The average DNMT1 protein level for
the hypermethylator cell lines (0.8 + 0.15) and the low-
frequency methylator cell lines (0.88 + 0.29) are indistin-
guishable from those of MCF12A cells (p = 0.82, NS, Fig-
ure 4B). MDA-MB-415 cells overexpress DNMT1 (2.3-fold
compared to MCF12A), but the other cell lines exhibit a
DNMTT1 protein level of 1.3-fold or lower regardless of
their methylation status (Figure 4B). Likewise, the average
DNMT3a protein level for the hypermethylator cell lines
(1.24 + 0.17) and the low-frequency methylator cell lines
(1.39 £ 0.2) are indistinguishable from that of MCF12A
cells (p = 0.59, NS, Figure 4C). In contrast to DNMT1 and
DNMT3a, the average DNMT3b protein levels for the
hypermethylator cell lines are higher (2.5 + 0.67) than
those of the low-frequency methylator cell lines (1.5 *
0.64, Figure 4D), but this difference was not statistically
significant. Among the hypermethylator cell lines, 5/6
(83%) express > 1.7-fold MCF12A levels of DNMT3b pro-
tein. In contrast, among the low-frequency methylator cell
lines, only ZR-75-1 cells (which also displays high DNMT
activity) exhibit an elevated level of DNMT3b protein
level expression (Figure 4D). While ZR-75-1 cells display
a similar methylation defect to the hypermethylator cells
(elevated DNMT3b protein and total DNMT activity),
they fail to silence the same methylation-sensitive genes
that are methylated in the hypermethylator phenotype
cell lines. Thus, ZR-75-1 is more similar to the low-fre-
quency methylator cell lines with respect to gene expres-
sion and methylation of the six indicator genes. When the
cell line ZR-75-1 is excluded from the low-frequency
methylator group, the average DNMT3b protein level for
the low-frequency methylator cells is 0.91-fold that of
MCF12A cells, approaching significance when compared
to the hypermethylator cell lines (p = 0.069).

A correlation analysis was performed to identify signifi-
cant relationships between DNMT protein levels and
DNMT activity among the hypermethylator and low-fre-
quency methylator cell lines. No significant association
was found between DNMT activity and DNMT1 or
DNMT3a protein levels (R<0.3, NS). However, a strong
association (R=0.79, p = 0.0007) between DNMT activity
and DNMT3b protein levels was observed (Figure 5). Sta-
tistically significant correlation coefficients were deter-
mined for the relationship between DNMT3b protein and
DNMT activity for both hypermethylator cell lines (0.71,
p = 0.0036), and the low-frequency methylator cell lines
(R = 0.90, p = 0.0028). This observation suggests that
DNMT3b significantly contributes to total DNMT activity
among breast cancer cell lines. Consistent with this sug-
gestion, in cell lines with DNMT activity > 1.8-fold higher
than MCF12A cells (n = 7), 86% (6/7) exhibit elevated (>
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Figure 5

DNMT activity levels in breast cancer cell lines corre-
late with DNMT3b expression. Association between
DNMT total activity and DNMT3b protein levels for the 12
breast cancer cell lines and MCF|2A cells. Hypermethylator
cell lines (black triangles), low-frequency methylator cell lines
(white triangles), and MCFI2A cells (black circle) demon-
strate a statistically significant relationship between DNMT
total activity and DNMT3b protein levels.

1.7-fold higher than MCF12A) DNMT3b levels. With the
exception of ZR-75-1 cells, all of these cell lines belong to
the hypermethylator group (MDA-MB-436, BT549, MDA-
MB-453, Hs578T, and MDA-MB-231). Significant associ-
ations were recognized between DNMT activity and the
additive values of (i) DNMT1 and DNMT3b (R = 0.74, p
= 0.002), (ii) DNMT3a and DNMT3b (R = 0.74, p =
0.002), and (iii) DNMT1, DNMT3a, and DNMT3b (R =
0.70, p = 0.004). However, these relationships primarily
reflect the contribution of DNMT3b to DNMT activity
rather than a true additive effect of the various DNMT
enzymes. These findings combine to demonstrate signifi-
cant correlation between hypermethylator status, elevated
total DNMT activity, and overexpression of DNMT3b pro-
tein.

Microarray Data Mining Identifies a Distinct Cluster of
Basal-like Breast Tumors that Express the
Hypermethylation Signature

Gene expression data from the microarray analysis of 92
primary breast tumors (from the UNC Microarray Data-
base) were analyzed for expression of the six genes
(CEACAMG, CDH1, CST6, ESR1, LCN2, and SCNNI1A)
whose loss characterizes the hypermethylator phenotype
among breast cancer cell lines. Unsupervised cluster anal-
ysis of these data identified four strong clusters (Figure 6).
Eighty-eight of 92 primary breast tumors clustered in this
analysis, while four tumors did not cluster and were
excluded from further analysis. The 88 breast cancers that
clustered in this analysis reflect the following molecular
classification: 34/88 (39%) luminal A, 23/88 (26%)
basal-like, 16/88 (18%) luminal B, 13/88 (15%) Her2+,
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Figure 6

Basal-like breast cancers express a hypermethylator signature. Gene expression data from 92 primary human breast
tumors from the UNC Microarray Database were subjected to unsupervised cluster analysis based upon the mRNA expres-
sion of six genes (CEACAMé6, CDH I, CST6, ESRI, LCN2, and SCNNA) which define the hypermethylator phenotype. Four
tumors failed to cluster and were excluded from further analysis. Gene designations are depicted vertically and tumor designa-
tions are shown horizontally. Four clusters (designated A-D) were identified: Cluster A (majority of which are luminal), Cluster
B (majority Her2+), Cluster C (majority luminal), and Cluster D (all basal-like). The expression level for each gene is shown
relative to the median expression of that gene across all samples, with high expression shown in red and low expression shown
in green, while genes with median expression are shown in black. Tumors were classified as luminal A or luminal B (shown in
blue), Her2+ (shown in purple), basal-like (shown in red), or normal-like (shown in green).

and 2/88 (2%) normal-like. Of the four major clusters
(designated A-D), Cluster D is composed of 18 tumors
that express a hypermethylation signature, characterized
by lack of or low expression of the six genes analyzed.
Strikingly, 100% (18/18) of these putative hypermethyla-
tor tumors are of the basal-like subtype, and this cluster
contains 75% (18/24) of basal-like tumors in the dataset.
This observation suggests that expression of the hyper-
methylator phenotype represents a major biological prop-
erty of basal-like breast cancers. As shown in Figure 6,
Clusters Aand C (n = 14 and n = 41, respectively) are com-
posed primarily of luminal A and luminal B breast tumors
(93% and 90%, respectively), and Cluster B (n = 15) is
composed primarily of Her2+ breast tumors (80%).

Discussion

The CpG island methylator phenotype (CIMP) was first
used to describe a distinct subset of colorectal tumors that
display high rates of concordant methylation of specific
genes [4]. Subsequently, similar epimutational phenom-

ena have been described in a wide range of neoplasms [5-
12,14,20]. The results of the present study suggest that a
subset of human breast cancer cell lines express a hyper-
methylator phenotype that is characterized by concurrent
methylation-dependent silencing of a number of genes,
including a specific set of genes with excellent predictive
power (CDHI1, CEACAMG6, CST6, ESR1, LCN2, and
SCNN1A) that are involved in a wide range of neoplastic
processes. CEACAMG is a tumor-related gene that is
involved in adhesion, migration, invasion, metastasis,
apoptosis, and chemoresistance [21,22], although the
implications of its loss in breast cancers is not well under-
stood. Cystatin M (CST6) is a recognized breast cancer
tumor suppressor gene [23] that was recently reported to
be silenced due to promoter hypermethylation in numer-
ous breast cancer cell lines, as well as primary breast
tumors [24,25]. E-cadherin (CDH1) is a well-known sup-
pressor of invasion/metastasis that functions in the main-
tenance of cell-cell adhesion [26]. CDH1 and ESR1 are
frequently concurrently methylated in breast tumors [19],
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a relationship also discernible in the present study. The
nuclear hormone receptor ESR1, which is silenced by
methylation in the majority of estrogen-negative breast
tumors [19], may be the foremost important methylation-
sensitive gene in breast carcinogenesis, holding important
implications for sensitivity to hormone therapy and clini-
cal outcome. Much less well understood is the role of ion
transport gene SCNNIA in breast carcinogenesis,
although its epigenetic regulation in MCF?7 cells has previ-
ously been noted [24]. LCN2 is involved in invasion and
metastasis [27], and its expression has been linked to poor
prognosis in ER/PR-negative breast tumors [28,29]. Thus,
methylation-sensitive genes function in various aspects of
the normal biology of the breast epithelium. Therefore,
concurrent methylation-dependent silencing of multiple
genes in neoplastic breast epithelium (as observed in
hypermethylator cell lines) is likely to significantly con-
tribute to tumor biology and behavior.

A previous study that examined methylation patterns of
primary breast tumors in search of a hypermethylator
phenotype found frequent but essentially equally distrib-
uted methylation events at 12 genes among different his-
tologic subsets of neoplasms [15]. These authors
concluded that a CpG island methylator phenotype does
not occur in breast cancer [15]. The difference in conclu-
sions about the existence of a hypermethylator phenotype
in breast cancer between the current study and the earlier
report [15] is likely attributable to the number and choice
of genes examined in the two studies, as well as the anal-
ysis of primary breast tumors versus established cancer
cell lines. The previous study did not examine many of the
genes that we found to be highly predictive of a hyper-
methylator phenotype (CEACAMG, CST6, LCN2, and
SCNN1A), but did include several genes (including
GSTP1, RARp, RB, and others) which were less useful for
predicting the hypermethylator phenotype. Thus, our
results are consistent with the previous findings: when the
genes are analyzed by Bae et al [15], no distinct hyper-
methylator phenotype is detectible. It is only through a
survey of numerous methylation-sensitive genes that evi-
dence for a hypermethylator phenotype emerges. Addi-
tionally, we examined not only genes with conventionally
defined CpG islands, but also those with atypical CpG fea-
tures (such as CEACAMG), which have only recently been
reported as epigenetically-regulated [24]. Thus, we use the
term "hypermethylator phenotype" rather than "CpG
island methylator phenotype" to describe the hypermeth-
ylation defect in breast cancer cell lines, since the targets
of aberrant methylation are not restricted to genes with
large CpG islands.

The results of the current study suggest that the mecha-
nism that accounts for the hypermethylator phenotype in
human breast cancer cell lines is elevated DNMT activity
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secondary to overexpression of DNMT3b. DNMT3b pro-
tein is significantly elevated in hypermethylator cell lines,
and these cells exhibit aberrantly increased DNMT activity
and correspondingly high rates of methylation-dependent
gene silencing compared to both low-frequency methyla-
tor cells and non-neoplastic counterparts. These results
are in agreement with those of other recent studies, in
which aberrant DNMT3b overexpression was implicated
in the methylation abnormalities of breast cancers [30]
and other cancers [31]. Tumor cells exhibiting DNMT3b
overexpression are likely to exhibit methylation-based
aberrant gene expression; one study showed that breast
tumors that overexpress DNMT3b are more likely to be
ESR1-negative, display increased proliferation, and be
associated with poor patient prognosis [30]. Thus, it
seems reasonable to expect that aberrant expression of
DNMT3b protein may produce significant differences in
tumor biology for breast tumors of the hypermethylator
phenotype. In addition to the six hypermethylator cell
lines which had elevated DNMT3b protein and total
DNMT activity, one low-frequency methylator cell line
(ZR-75-1) exhibited a similar hypermethylation defect.
However ZR-75-1 cells retain expression of a number of
epigenetically-regulated genes, making it functionally
similar to other low-frequency methylator cell lines. A
number of explanations may account for this apparent
discrepancy: ZR-75-1 cells may methylate other epigenet-
ically-regulated genes which were not surveyed in the
present study; alternatively ZR-75-1 cells may possess the
same functional defect in the DNMT machinery as cells of
the hypermethylator phenotype but express additional
repressor proteins which block the methylation capacity
of the overabundant DNMT3b protein. Additional studies
will be required to resolve these possibilities. The detec-
tion of a hypermethylator phenotype in breast cancer cell
lines constitutes a first step towards determining if a
hypermethylation defect can be identified in primary
breast neoplasms in vivo. If a subset of primary breast can-
cers express a hypermethylator phenotype, we would pre-
dict these tumors to differentially express other important
characteristics related to tumor biology/behavior and
patient outcome. This is the case in colorectal cancer,
where CIMP status is associated with various clinical fea-
tures [32-34]. Likewise, CIMP-positive neuroblastomas,
esophageal tumors, and leukemias tend to have poorer
prognosis and are associated with significantly higher
relapse and mortality rates [12,35,36].

Our findings suggest that breast cancer cell lines that
express the hypermethylation defect correspond to estro-
gen-receptor negative tumors, suggesting that the hyper-
methylator phenotype cosegregates with a subset of breast
cancers (ER-negative) that tend to have poor prognosis
[37]. A number of molecular subtypes of breast cancer
have been described (including luminal A, luminal B,
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HER2+ and basal-like), and these different subtypes corre-
late with important differences in tumor biology, clinical
behavior, and patient survival. Luminal A and luminal B
tumors are ER-positive and respond better to treatment,
resulting in better long-term patient outcome compared
to the ER-negative basal-like and HER2+ subtypes [38].
Our microarray data mining analysis of primary breast
cancer gene expression suggests that the hypermethyla-
tion defect observed in breast cancer cell lines can also be
identified in primary tumors. Preliminary investigation of
a limited dataset (n = 88 tumors) identified a strong clus-
ter of tumors that express the hypermethylator signature
(Figure 6), with low levels of expression of the six genes of
interest (CDH1, CEACAMG, CST6, ESR1, LCN2, and
SCNN1A). All of the tumors in this cluster were classified
as basal-like, and 75% of the basal-like tumors in the data-
set expressed the hypermethylation signature. This obser-
vation suggests that the hypermethylator defect represents
a biological property of basal-like breast cancers. Basal-
like breast tumors make up ~25% of all breast cancers but
contribute disproportionately to breast cancer deaths as
they tend to display more aggressive tumor characteristics
such as increased size, rapid tumor growth, increased rate
of metastasis, higher incidence of relapse, and lower over-
all patient survival [39,40]. In has also been observed that
this subtype of breast cancer is overrepresented in young,
African-American women [41]. These tumors lack expres-
sion of the hormone growth factor receptor genes (ER and
PR) that are targeted by some drug regimens, eliminating
options for targeted therapy. While further studies are
needed to understand fully the relationship between
basal-like breast cancers and the hypermethylator pheno-
type, recognition of this fundamental biological property
of the basal-like breast cancers may present new molecu-
lar targets for development of novel treatment strategies.

Conclusion

Unraveling the complexities of this hypermethylation
defect in neoplastic breast disease holds important impli-
cations for cancer diagnosis, identification of new targets
for therapy, and development of new strategies for clinical
management. Since overexpression of DNMT is thought
to be an early event in carcinogenesis [42-44], elevated
DNMT3b protein (which characterizes the hypermethyla-
tor phenotype in vitro) may constitute an important
biomarker for early detection in patients developing
breast tumors of the hypermethylator phenotype. Further-
more, the various proteins and enzymes of the DNA
methylation machinery may represent novel targets for
breast cancer therapy. It follows that patients with breast
cancer of the hypermethylator phenotype may benefit sig-
nificantly from a targeted demethylation treatment as an
adjunct to standard chemotherapeutic regimens. Epige-
netic chemosensitization has been shown to improve the
efficacy of standard chemotherapeutics against tumor
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cells with known methylation defects [45,46], and evi-
dence suggests that chemotherapeutic resistance can be
overcome with demethylating treatment in certain cases
[47]. While more research needs to be done to fully under-
stand the clinicopathological implications of the hyper-
methylator phenotype in primary breast tumors, the
existence of a subset of breast cancer cells with aberrant
DNA methylation and other epimutations that are poten-
tially reversible holds promise for better diagnosis and
improved treatment.

Methods

Cell Culture, RNA, and DNA Preparation

Human breast cancer cell lines BT20 (ATCC# HTB19),
BT549 (HTB122), Hs578T (HTB126), MCF7 (HTB22),
MDA-MB-231 (HTB26), MDA-MB-415 (HTB128), MDA-
MB-435S (HTB129), MDA-MB-436 (HTB130), MDA-MB-
453 (HTB131), MDA-MB-468 (HTB132), SKBR3
(HTB30), and ZR-75-1 (CRL-1500) were obtained from
the Tissue Culture Core Facility of the University of North
Carolina Lineberger Comprehensive Cancer Center
(Chapel Hill, NC), and the normal breast epithelial cell
line MCF12A [48] (CRL-10782) was obtained from the
American Type Culture Collection [49]. Cell lines were
propagated in growth medium specified by ATCC.
Growth medium was refreshed three times weekly, and
cell cultures were harvested for RNA preparation at con-
fluency using the method of Chomczynski and Sacchi
[50], modified to utilize TRIzol Reagent (Invitrogen Life
Technologies, Carlsbad, CA), according to the manufac-
turer's protocol. Cell lines selected for treatment with the
demethylating agent 5-aza-2'-deoxycytidine (Sigma
Chemical Company, St. Louis, MO) were propagated in
the appropriate ATCC-recommended growth medium
containing 250 nM 5-aza (with refreshing three times
weekly) for a total of three weeks, before RNA isolation.
As described previously [24], the concentration of 5-aza
used in this study is 4-6-fold lower than traditional meth-
ods which allows for long term 5-aza exposure without
the typically encountered cytotoxic effects [51,52]. Iso-
lated RNA was stored at -20°C as an ethanol precipitate
prior to use for RT-PCR. Genomic DNA from 2 x 10° cul-
tured cells was isolated using the Puregene DNA Purifica-
tion Kit (Gentra Systems, Minneapolis, PA). Bisulfite
modification of genomic DNA was performed using a
procedure adapted from Grunau et al [53], as described
previously [24].

Semi-quantitative RT-PCR

Sixty-four genes were selected for analysis in this study
based on their status as marker genes for CIMP in other
tumor systems or genes that are known to be methylated
in breast cancer specifically (Table 1). Total RNA (2 ug)
collected from each cell line was reverse-transcribed into
cDNA using Superscript Il Reverse Transcriptase (Invitro-
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gen Life Technologies, Carlsbad, CA) and oligo(dT) as the
primer, according to standard methodology. Gene-spe-
cific oligonucleotide primers were designed using Primer3
software [54]| and were synthesized by the UNC Oligode-
oxynucleotide Synthesis Core Facility (Chapel Hill, NC)
based upon the known cDNA sequences [55] for selected
mRNAs of interest. The RT-PCR primer sequences and
thermocycling conditions for CEACAMG6, CST6, LCN2,
and SCNN1A have been described previously [24], while
those for CDH1 and ESR1 are as follows: CDH1, forward
5'-TCT-TGC-TGT-TTC-TTC-GGA-GG and reverse TGA-
CTC-TGA-GGA-GTT-CAG-GG (60°C, 30 cycles, 380 bp
product); ESRI1, forward 5'-TTG-TCC-CAT-GAG-CAG-
GTG-CC and reverse 5'-GTA-TGC-ATC-GGC-AAA-AGG-
GC (58°C, 30 cycles, 201 bp product). Verification of
equal cDNA template concentrations between samples
was accomplished using S-actin primers (forward 5'-AGA-
GAT-GGC-CAC-GGC-TGC-IT and reverse 5'-ATT-TGC-
GGT-GGA-CGA-TGG-AG,). PCR reactions were per-
formed in a 50 pl total volume of buffer containing 50
mM KCI, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl,,
0.001% gelatin, 200 uM of each ANTP (EasyStart Micro 50
PCR-mix-in-a-tube, Molecular BioProducts, San Diego,
CA), 0.4 uM of each primer, and 2.5 units AmpliTaq
enzyme (Perkin Elmer/Cetus, Foster City, CA). Reactions
were carried out in an Eppendorf Mastercycler Thermocy-
cler as follows: 30-35 cycles at 94°C for denaturing (1
minute), 58-65°C for annealing (1.5 minutes), and 72°C
for extension (2 minutes). PCR products were fractionated
on 2% agarose gels containing 40 mM Tris-acetate/1.0
mM EDTA and visualized by ethidium bromide staining.

Quantitative Real-time PCR

Total RNA samples (2 pug) from cell lines of interest were
DNAase treated (Promega, Madison, WI), purified using
the Qiagen Rneasy mini-kit (Qiagen, Valencia, CA), and
reversed transcribed using the High Capacity cDNA
Archive Kit (Applied Biosystems, Foster City, CA) accord-
ing to the manufacturer's protocol. Real-time primers and
probes for CDHI (Assay ID: Hs00170423_ml),
CEACAMOG (Hs00366002_m1), CSTo6
(Hs00154599_m1), ESR1 (Hs00174860_m1), LCN2
(Hs00194353_m1), SCNNIA (Hs00168906_m1), and £
actin (Hs99999903_m1) were purchased from Applied
Biosystems (Foster City, CA). Reactions were carried out
using TagMan Universal PCR Master Mix (Applied Biosys-
tems, Foster City, CA) and the following amplification
conditions: 95°C for 10 min, 40 cycles of 95°C for 15 sec,
and 60°C for 1 min. Gene expression levels were normal-
ized using S-actin for each cell line and differences in gene
expression were determined using the comparative Ct
method described in the ABI Prism 7700 User Bulletin #2
(Applied Biosystems, Foster City, CA).
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Cluster Analysis of Breast Cancer Cell Lines Based Upon
Gene Expression Patterns

Expression levels for genes of interest were analyzed by
RT-PCR using cDNA templates derived from 12 breast
cancer cell lines and normal MCF12A breast epithelial
cells. RT-PCR results for breast cancer cell lines were
expressed on a discrete scale (none, low, medium, high)
relative to the expression levels of MCF12A cells. Genes
from the original panel of 64 that were not expressed in
MCF12A cells (n = 16) were omitted from the cluster anal-
ysis, to ensure that cancer-specific methylation events
were captured. The expression data were mapped to a
quantitative scale (0, 1, 2, 3) for clustering purposes. For
some analyses, a combined expression score was gener-
ated for each cell line by adding the quantitative RT-PCR
expression levels of genes of interest. Clustering of cell
lines was carried out with SAS/STAT PROC CLUSTER (SAS
Institute, Cary, NC) using complete linkage with 5% trim-
ming and no squaring of distance. Kernel density estima-
tion for trimming used the 5 nearest neighbors.

Methylation-specific PCR, Cloning, and Sequencing

MSP reactions were carried out in EasyStart Micro 50 PCR-
mix-in-a-tube (Molecular BioProducts, San Diego, CA)
using bisulfite converted DNA template (described
above). The primers and thermocycling conditions for
CDH1, CST6, and ESR1 genes have been described previ-
ously [25,56,57]. MSP primers directed against methyl-
ated and unmethylated alleles of CEACAM6, LCN2, and
SCNNI1A are as follows: methylated CEACAMG, forward
primer 5'-AGG-GCG-GGT-CGT-TTT-GTT-AT, reverse
primer 5'-TCA-CGT-AAA-TCA-TAA-ATA-CGA-TCT-CT
(58°C, 35 cycles, 174 bp product); unmethylated
CEACAMG, forward primer 5'-AGG-GTG-GGT-TGT-TTT-
GTT-AT, reverse primer 5'-TCA-CAT-AAA-TCA-TAA-ATA-
CAA-TCT-CT (55°C, 35 cycles, 174 bp product); methyl-
ated LCN2, 5'-CGA-GAG-TTA-TTG-CGT-TTA-GTC-GA,
reverse primer 5'-CGA-ATA-AAT-CAC-GAA-ATC-AAA-
AAT-TCG-A (60°C, 35 cycles, 273 bp product); unmethyl-
ated LCN2, forward primer 5'-AGA-GTT-ATT-GTG-TTT-
AGT-TGA-GGA, reverse primer 5'-CAA-ATA-AAT-CAC-
AAA-ATC-AAA-AAT-TCA-A (55°C, 35 cycles, 273 bp prod-
uct); methylated SCNN1A, forward primer 5'-TCG-GGA-
GTT-TTT-TTT-TTT-TCG-GA, reverse primer 5'-CCG-CCC-
GCT-AAC-CGA (56°C, 40 cycles, 135 bp product);
unmethylated SCNN1A, forward primer 5'-TTG-GGA-
GTIT-TTT-TTT-TTT-TTG-GA, reverse primer 5'-AAC-CCA-
CCC-ACT-AAC-CAA (56°C, 40 cycles, 135 bp product).
PCR products were fractionated on 2% agarose gels and
visualized by ethidium bromide staining. For some anal-
yses, MSP results were converted from a discrete scale
(unmethylated product only, both methylated and
unmethylated products, or methylated product only) to a
quantitative scale (0, 1, 2) in order to generate a methyla-
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tion score for each cell line that reflects the combined
methylation status of select genes of interest.

Bisulfite-converted DNA was amplified using MSP prim-
ers directed to specific segments within the promoter
regions and/or exon 1 of selected genes. A portion of each
PCR product (1 to 5 ul) was cloned into pGEM-T Easy Vec-
tor (Promega, Madison, WI). Colonies (n = 5-10) were
selected per gene segment and expanded in liquid culture.
Plasmid DNA was purified using the Wizard Plus Mini-
prep DNA Purification Kit (Promega, Madison, WI), prior
to digestion with Ncol and Ndel (New England Biolabs,
Beverly, MA) to confirm the presence of the cloned insert.
Validated clones were sequenced using the universal
M13R3 primer with an Applied Biosystems automated
sequencer at the UNC Genome Analysis Facility (Chapel
Hill, NC). In some cases, the sequencing results are
expressed as total methylation index (TMI), which is cal-
culated by dividing the number of methylated CpGs
observed by the total CpGs analyzed for a given gene seg-
ment of interest [58].

DNA Methyltransferase Analysis of Human Breast Cancer
Cell Lines

Total DNA methyltransferase activity was measured using
EpiQuik DNA Methyltransferase Activity/Inhibition Assay
Kit (Epigentek, Brooklyn, NY) as previously described
[59], using nuclear extracts from 12 human breast cancer
cell lines and MCF12A cells. Nuclear extracts were isolated
using the EpiQuik Nuclear Extraction Kit (Epigentek,
Brooklyn, NY) and 3 pl of nuclear extract was added to
each reaction well, according to manufacturer's protocol.
The final volume of nuclear extract yield was used to nor-
malize the assay results for differences in cell number.
Nuclear extracts were incubated with methylation sub-
strate for 1 hour at 37°C, and then exposed to the capture
antibody for 60 minutes and the detection antibody for
30 minutes, at room temperature. Absorbance was deter-
mined using a microplate spectrophotometer at 450 nm,
and DNMT activity (O.D./h/ml) was calculated according
to the following formula: (Sample OD - blank OD)/
(sample volume x 1000), according to manufacturer's
instructions. Results are given in activity units expressed
relative to the activity level detected in MCF12A cells.

Nuclear extracts were assayed for individual DNMT pro-
teins of interest (DNMT1, DNMT3a, or DNMT3b) using
the Epiquik DNMT1, -33a, and -3b assay kits, respectively
(Epigentek, Brooklyn, NY). Protein standards of known
concentration (30 ng, 20 ng, 10 ng and 2 ng) were
included to generate a standard curve. The amount of
DNMT protein was calculated as follows: DNMT protein
(ng/ml) = (Sample OD - blank OD/standard slope) x
sample dilution, according to the manufacturer's instruc-
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tions, and are expressed relative to the protein levels of
MCF12A cells.

Cluster Analysis of Gene Expression

The publicly available microarray dataset utilized in this
study is available online at the UNC Microarray Database
[60] and includes gene expression data for 92 primary
breast tumors analyzed in previous studies [61-64]. Clus-
tering of transcripts was carried out with SAS (PROC
CLUSTER) based on distance of the log ratio values using
complete linkage with 5% trimming. The kernel density
estimation for trimming used the 10 nearest neighbors.

Statistical Analysis

The values for the mean and S.E.M. were calculated using
the statistical function of KaleidaGraph Version 3.5 (Syn-
ergy Software, Essex Junction, VT). Statistical significance
was determined using an unpaired t-test (KaleidaGraph).
Error bars depicted represent S.E.M. P values for correla-
tion coefficients (R values) were calculated using Vasser-
Stats Significance of Correlation Coefficient Calculator
[65]. The Bayesian analysis was performed as described
previously [66] and the percentage of correct assignments,
as well as sensitivity, specificity, and positive and negative
predictive values were calculated.
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