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Abstract

Efforts aimed at deciphering the molecular basis of complex disease are underpinned by the
availability of high throughput strategies for the identification of biomolecules that drive the disease
process. The completion of the human genome-sequencing project, coupled to major technological
developments, has afforded investigators myriad opportunities for multidimensional analysis of
biological systems. Nowhere has this research explosion been more evident than in the field of
transcriptomics. Affordable access and availability to the technology that supports such
investigations has led to a significant increase in the amount of data generated. As most biological
distinctions are now observed at a genomic level, a large amount of expression information is now
openly available via public databases. Furthermore, numerous computational based methods have
been developed to harness the power of these data. In this review we provide a brief overview of
in silico methodologies for the analysis of differential gene expression such as Serial Analysis of Gene
Expression and Digital Differential Display. The performance of these strategies, at both an
operational and result/output level is assessed and compared. The key considerations that must be
made when completing an in silico expression analysis are also presented as a roadmap to facilitate
biologists. Furthermore, to highlight the importance of these in silico methodologies in
contemporary biomedical research, examples of current studies using these approaches are
discussed. The overriding goal of this review is to present the scientific community with a critical
overview of these strategies, so that they can be effectively added to the tool box of biomedical
researchers focused on identifying the molecular mechanisms of disease.

|. Background ing point in mechanisms of disease research is deciding

Investigations aimed at deciphering the molecular events
that underpin the initiation and progression of disease are
primarily targeted towards the profiling of biomolecules,
whose aberrant expression, contributes to alterations in
cellular function and ultimately lead to disease. By focus-
ing on the mechanisms of disease, biomedical researchers
aim to identify critical molecular events that can be tar-
geted with novel therapeutic strategies. Thus, a key start-

how to identify these disease-associated biomolecules.

Historically such investigations focused on the characteri-
sation of single molecules and studying their role in dis-
ease. The inherent weakness of such focused disease
research strategies lies in the fact that complex diseases are
usually polygenic and single molecule studies will not
provide insights into the orchestrated response of a cell as
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it evolves within a diseased tissue. Thus, it is accepted that
an overall view of the biomolecular composition of dis-
eased tissue provides extraordinary opportunities to
observe the global molecular response to disease. By visu-
alising the entire response, researchers begin to under-
stand the complex inter-relationships between
biomolecules that contribute to changes in cell pheno-
type, and ultimately disease. A significant hurdle for bio-
medical researchers to overcome in the past has been how
to access and analyse molecular information at such a
detailed level. The answer to this has been the develop-
ment of novel experimental and analytical methodologies
that have, in many ways, redefined the biologists' toolkit.

A major enabling factor in molecular analysis of disease
has been the recent completion of the human genome
project. This landmark project has detailed and defined
our genetic make-up provides all the information needed
to understand both health and disease. Although greeted
with much fanfare the completion of the genome-
sequencing project is best seen as a new beginning for bio-
medical research, as the sequence merely lists our genetic
composition and does not interpret the relevance of the
information in health and disease. However the availabil-
ity of this data coupled with ongoing sequence determina-
tion initiatives has provided a huge repository of sequence
data for use in assembly projects and also for enabling
continued developments in human transcriptomics, thus
facilitating investigations of biological and disease mech-
anisms to be carried out on a genome wide scale.

All biological events in the cell are governed primarily by
changes in the expression of key genes. The ability of a cell
to switch on and off gene expression drives all biological
function and activity. Gene transcription is crucial in nor-
mal events such as cell division, proliferation, differentia-
tion and cell death. Conversely, gene transcription is a
facilitator of the pathogenomic events that drive the
development and progression of disease, as well as gov-
erning response to therapy. Much interest is therefore
focused on the delineation of gene expression profiles to
identify those key genes and gene clusters whose expres-
sion is altered in disease states. Research into the mecha-
nism of diseases is underpinned by identifying these gene
alteration patterns. By comparing gene expression profiles
under different conditions, individual genes or groups of
genes can be identified that play a key role in particular
signalling cascades or particular cellular process or in dis-
ease aetiology. Expression profiling is also important for
understanding gene functions and identifying therapeutic
targets. Gene expression profiling is also crucial to identi-
fying diagnostic, prognostic and predictive markers of dis-
ease. Effective methods are therefore required that can
compare the expression of many genes within one tissue
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type and also to as compare the expression of one gene in
various tissues or disease types.

Thus, biomedical researchers are equipped with both the
map of the genome and an understanding of how gene
expression events contribute to health and disease. How-
ever, to truly capitalise on this wealth of information,
novel tools are required to permit identification of what
genes are activated and suppressed in disease. Techniques
capable of quantifying gene expression enable the devel-
opment of our understanding of the distribution and reg-
ulation of gene products in normal and abnormal cell
types. These include a variety of microarray and Serial
Analysis of Gene Expression (SAGE) techniques, all of
which have the ability to quickly and efficiently survey
genome-wide transcript expression. The development of
microarrays has improved our ability to simultaneously
study the expression of many genes in a particular tissue.
However there are also opportunities to exploit computa-
tional methodologies that profile expression of all genes,
not just known genes on chips, in a quantitative and
straightforward way. The availability of vast amounts of
sequence data, coupled to advances in computational
biology provides an ideal framework for in silico gene
expression analysis. The last two decades have seen tre-
mendous advances in computational approaches to
understanding the molecular basis of disease, advances
that have heralded a new era in biomedical research. The
exponential growth of biologically relevant datasets has
transformed the biological and biomedical research enter-
prise from a very data light to an information-heavy pur-
suit. This growth in available information has been
matched by advances in our ability to understand and
mine this new information. Biologists now routinely ana-
lyse huge microarray datasets, recreate biological net-
works, identifying protein folding patterns and model
whole cell activity using computational strategies. All
these advances are driven by computational strategies that
match the availability of data, with the clear goal of iden-
tifying biologically relevant patterns in data. Indeed these
technologies have been used to investigate the molecular
events underpinning various malignancies, including
breast, colon, lung, ovarian, pancreatic and prostate can-
cers [1]. In this review a number of these strategies and
their important, emerging roles in disease research are dis-
cussed.

2. The assembly and organisation of in silico gene
expression data

The growth in the number of EST mining projects is due
mostly to the public availability of transcribed sequences.
However, one of the major problematic issues associated
with such gene-mining analysis is the high level of redun-
dancy found among these sequences. Because a single
gene may be expressed as mRNA many times, EST libraries
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may contain many identical or similar copies of the same
EST derived from this mRNA. This overlap means that
when one searches for a particular EST, they may retrieve
a list of tags, many of which may represent the same gene.
The development of Unigene began as an effort to eradi-
cate such redundancy problems associated with EST anal-
ysis and also to establish a consensus regarding protocols
among analysts. Maintained by the National Centre for
Biotechnology Information (NCBI), Unigene is an auto-
mated analytical system for producing an organized view
of the transcriptome. Unigene also addresses issues such
as normalisation of data to allow the representation of
rare transcripts by reducing the abundance of highly
expressed genes [2].

High throughput cDNA sequencing is used to obtain EST
sequences based on a study described in 1991, whereby
cDNA clones were chosen at random and sequenced from
one or both ends of their inserts [3]. The term EST was
introduced to refer to this type of sequence, characterized
by its short length (400-600 bases). ESTs are therefore
powerful in the search for known genes because they
greatly reduce the time required to locate a gene. Unigene
partitions EST sequences into a non-redundant cluster,
where each cluster represents a unique gene. The number
of EST sequencing projects has grown and continue to
grow [4-6] and the organisation of ESTs has allowed
searching them to be used as an established and successful
gene discovery tool in disease research [7,8].

An EST depository, dbEST, was developed as part of Gen-
bank, the NIH sequencing database [9,10]. dbEST
addresses the increasing amount of EST data being gener-
ated. Furthermore, a large amount of ESTs deposited into
Genbank originate from the Cancer Genome Anatomy
Project (CGAP), a collaborative network dedicated to
deciphering the genetic changes that occur during the ini-
tiation and progression of cancer [11,12]. Because of the
efforts of CGAP, a large variety of normal and transformed
tissues are represented in the Unigene database including
117 different cancerous and 13 different precancerous cell
types. The power of these libraries lies in their ability to
allow the evaluation of the expression patterns of thou-
sands of genes in a quantitative way without prior
sequence information.

Serial Analysis of Gene Expression (SAGE) is a method
with the ability to efficiently quantitate and compare large
numbers of transcripts [13]. The following articles give
detailed accounts of SAGE library construction [13,14]. By
isolating only a portion of the cDNA transcript, which is
known as a SAGE tag, 50,000 transcripts for a given tissue
can be analysed at once. Thus allowing an expression pro-
file for that particular tissue to be generated (Figure 1).
Analysis is achieved by forming concatamers (DNA seg-
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ments composed of repeated sequences linked end to
end) of SAGE tags and subsequently sequencing up to 30
tags at once. The frequency of each tag in the concatenated
sequence reflects the cellular abundance of the corre-
sponding transcripts allowing statistically significant com-
parisons of expression levels between two populations to
be made [15]. SAGE produces a digital output, a format
that makes it easily comparable, thus SAGE libraries con-
structed in different laboratories at different times can be
compared. SAGE libraries are therefore used to analyze
the differences in gene expression between cells or tissues
where the frequency of each SAGE tag directly reflects
transcript abundance thus generating an accurate picture
of gene expression at both a qualitative and the quantita-
tive level.

The EST and SAGE libraries described above represent
ideal tools for the investigation and identification of dis-
ease related gene expression. These resources can be used
in a wide range of applications, for example to identify
genes of importance in disease or to analyze the effect of
drugs on cells, ultimately providing insights into the dis-
ease pathways. Nevertheless, the power of these libraries
as a comprehensive and quantitative transcript profiling
method relies on efficient computational tools for data
generation, management and analysis. These libraries are
currently being exploited to define the transcriptomes of
various tissues and diseases and furthermore to analyse
the differences between the gene expression patterns of
diseased cells and their normal counterparts. Various
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An overview of the SAGE process. The SAGE method for
the comprehensive analysis of gene expression patterns con-
sists of the following steps; |. SAGE tags containing sufficient
information to uniquely identify a transcript are isolated by
amplification; 2. Tags are then linked and sequenced; 3. The
resulting sequence data are analyzed to identify each gene
expressed in the sample and the levels at which each gene is
expressed; 4. This information forms a library that can be
used to compare gene expression between tissues or cell
types. For a review see [14].
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examples of the application of these tools to biomedical
research are described herein.

Finally, these methods in comparison with microarray
analysis, require no initial laboratory work in terms of
sample generation and therefore demand less time and
effort. Furthermore in comparison with the relatively
expensive microarray where the price of an analysis often
limits the amount of samples analysed, most of these in
silico approaches are free of charge.

3. Analysis of differential gene expression

This review serves as an introduction and critical overview
of computational methods for gene discovery and their
applications in disease research. A key area of this research
involves attempts to define the population of genes that
are differentially expressed in a diseased tissue or in mod-
els of the disease process. Knowledge of the identity of
such transcripts provides a useful starting point in the
search for the critical molecular events contributing to the
disease. To this end, there is currently immense interest in
methodologies that allow a snapshot of the genetic
machinery at work during a pathological process to be
taken. These methodologies include microarray or 'gene
chip' analysis or those computational techniques dis-
cussed herein. Although both microarray and in silico
approaches can be publicly accessed, this review will focus
primarily on in silico SAGE and EST profiling techniques.
As gene discovery techniques, the in silico methods dis-
cussed herein have the advantage over microarray analysis
of being relatively inexpensive. No specialised hardware
or lab reagents are required. This allows many more com-
parisons between many tissue types and tissue collections
to be easily made. Furthermore, in an effort to integrate
the abundance of data generated from these various
sources, many open-source tools, have been developed to
compare and integrate microarray data with in silico data.

3.1 In silico est profiling strategies

For the modern biologist, there are numerous computa-
tional strategies that can be employed to assay gene
expression. Many of these are based on utilising collec-
tions of expressed sequence tags (ESTs), unique segments
of cDNA with base sequences identical to at least part of
the coding region of a gene [3]. Because a large number of
ESTs from diverse organ- and disease-derived cDNA
libraries are being deposited in different databases, EST
libraries are therefore an ideal source for expression pro-
filing since EST clone frequency is in principle, propor-
tional to the corresponding gene's expression level in a
given tissue [16,17]. This article reviews the many open-
source online tools that have been developed to aid the
handling, analysis and exchange of gene expression data
in the public forum.

http://www.molecular-cancer.com/content/6/1/50

The aforementioned EST and SAGE data collections repre-
sent virtual goldmines of information for the modern
biologist. Furthermore, these libraries are excellent start-
ing points for disease-related gene discovery. For example,
the EST database (dbEST) currently contains > 28 million
public entries. Nevertheless, in any expression profiling
experiment, be it in vitro or in silico, appropriate consider-
ations need to be taken into account. These include the
quantity and quality of RNA, where increasing these fac-
tors will invariably increase the yield of reliable and com-
prehensive experimental results. Concern over these
issues is reduced by performing computational expression
profiling and further careful in silico analysis can signifi-
cantly reduce the amount of lab work required. Another
caution worth considering is the source tissue. Many of
these tools allow the user to select micro-dissected tissue
as apposed to bulk tissue, therefore making the gene
expression profile generated more specific. It is apparent
from the amount of genomic information assembled in
databases such as Unigene, that efficient tools are needed
to mine these collections in search of meaningful infor-
mation. To exploit this large amount of information,
computer algorithms have been developed for the discov-
ery of both novel genes [18] and genes with limited tissue
distribution and/or disease-specific expression [19].

3.2 Sagemap

One of these algorithms, SAGEmap, is an online tool, spe-
cifically designed to interpret SAGE data [18]. SAGE data
from any source may be submitted to this repository and
SAGE data from a wide variety of sources may therefore be
studied. SAGE data from both bulk tissues and cell lines
from various species are collected in SAGEmap. Data is
available on all SAGE data, including tissue type, deposi-
tor and any treatment the tissue has undergone. Compar-
isons of individual SAGEmap tag libraries can be
performed to provide a list of differentially expressed tags
in specific tissue libraries. SAGEmap is a user-friendly tool
maintained by the NCBI and undergoes frequent updat-
ing. However, one weakness associated with SAGEmap is
that tags with a count of one are excluded due to single-
pass sequencing associated with tag production. This has
little effect on tags with high abundance (i.e. more than
one count) but can result in the loss of tags with counts of
less than one. Nevertheless, such analysis involving tags
with high counts enables differences of statistical signifi-
cance to be easily identified.

3.3 X profiler

The ¢cDNA XProfiler is another tool that compares gene
expression between two pools of libraries, where each
pool can be a single library or a grouping of several librar-
ies [21]. For example, a user may compare diseased lung
tissue with healthy lung tissue or furthermore a user may
compare two different types of diseased lung tissue. For a
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gene to be "present” in a library pool, there must be at
least one EST sequence found in the UniGene cluster for
that gene. XProfiler lists all the genes found in each pool
and categorises them as unique or non-unique. XProfiler
further classifies them into known or unknown genes. The
results are finally tabulated to show how these genes are
distributed between both pools (Figure 2). A typical X-
profiler analysis proceeds as follows;

Firstly the user selects tissue types (organ of origin) for
each pool. The user then decides what tissue preparation
methodology they want to include for each pool (e.g. cell
line, bulk tissue, microdissected etc.). The next step is to
select the library protocol that is of interest (e.g. normal-
ised libraries, subtracted libraries etc.). The user then
decides what tissue histology is to be included in each
pool (e.g. normal tissue in one pool and cancer tissue in
another) and finally pools are named and the query is
submitted.

X-Profiler populates the pools with libraries that corre-
spond to the user requirements. Pools can then be
reviewed and modified if necessary. Following review the
pools are submitted for comparison.

The results page contains three sets of information:

¢ The UniGene Build number for this analysis.

The Cancer Genome Anatomy Project

XProfiler Results

UniGene build: Hs.194/Mm. 156

Libraries in A: 1

Libraries in B: 1
Non-Unique Genes |
A 0 0 579 36 l
B 20 4520 374 ‘
AorB 120 4904 |400 |
AandB |0 0 |
Aminus B | 0 0 |
\

Bminus A|1 0 4325 73

120

A or B Unique:
Found in A or in B (poasibly in both), but not found in any library other than the libraries in A and B
A or B Non-Unique:
Found in A or in B (possibly in both), and also found in some library other than the libraries in A and B
A and B Unique:
Found in both A and B, but not found any library other than the libraries in A and B
A and B Non-Unique:
Found in both A and B, and also found in some library other than the libraries in A and B
A minus B Unique:
Equivalent to A Unigue
A minus B Non-Unique:
Found in A and also found in some library other than the libraries in A and not found in B

Figure 2

A typical output from the CGAP XProfiler online tool. In this
example bulk breast cancer tissue is compared with normal
tissue. This sample comparison was made on 21-October-
2006.

http://www.molecular-cancer.com/content/6/1/50

e Links to each set of libraries.
¢ The gene expression comparison results in tabular form.

Gene Expression alterations are classified as unique or
non-unique according to the pools of interest. The possi-
ble outputs for unique genes include.

First Pool Gene is only found in first pool.
Second Pool Gene is only found in second pool.

First Pool or Second Pool The total number of genes in
both pools. These genes are found in either pools or
maybe both, but not in any other library.

First Pool and Second Pool Genes found in both pools,
but not in any other library.

In this way it is possible to identify all those genes whose
expression is significantly changed between both pools
(e.g. normal versus cancerous bulk breast tissue as sepa-
rate pools therefore identifying genes that are altered in
breast cancer). Figure 2 shows results obtained from this
example comparison.

3.4 Digital gene expression displayer

Digital Gene Expression Displayer (DGED) is a tool for
the comparison of gene expression between two pools of
libraries. It can be used to compare either cDNA libraries
or SAGE tag libraries. In contrast to XProfiler, it treats the
presence of a gene in a library pool as a matter of degree.
It compares the amount of a gene in one pool with the
amount of the same gene in another pool. This compari-
son is reduced to two numbers: the sequence odds ratio
and measure of significance. The formula used in DGED
to calculate the sequence odds ratio between two pools A
and B is; (Sequences in A/Total Sequences in pool A)/
(Sequences in B/Total Sequences in pool B). DGED results
are ordered by this odds ratio, with all cases of "NaN" (not
a number) topping the list. NaN occurs when the denom-
inator of the equation is 0, i.e., there are no sequences of
a gene in pool B. An advantage cDNA DGED has many
over other in silico gene expression techniques is that the
user may select microdissected tissue source over bulk tis-
sue thus giving a more specific gene expression output
[22]. Another strength of DGED is that unlike the cDNA
xProfiler, which lists every gene (even if an EST is seen
only once in a pool) in both groups, the DGED finds only
the statistically significant differences, based on the
sequence odds ratio and a Bayesian test.

3.5 Digital differential display
Digital Differential Display (DDD) is a powerful web-
based bioinformatic tool for the identification of differen-
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tial gene expression. DDD uses the EST profiles of normal
and disease cDNA libraries represented in the NCBI Uni-
Gene database. DDD compares the number of assign-
ments of ESTs from different libraries, or pools of libraries
to a specific UniGene cluster [1,23,24]. Fishers' exact test
is used to restrict the output to statistically significant dif-
ferences (P < 0.05). It is therefore straightforward for users
to then omit non-significant results from subsequent
analysis. The output from DDD provides a numerical
value denoting the fraction of sequences from each pool
that maps to a specific cluster [25]. An example of a DDD
experiment proceeds as follows;

3.5.1 Description of ddd experiment

In a typical DDD experiment the user must select which
tissue libraries are to be assinged to each pool. The pools
will then be compared. DDD compares the EST constitu-
ents of various tisue types, depending on which libraries
are selected thereby determining the relative representa-
tion of each sequence in the libraries being compared. The
DDD output is in the form of a web file that has links to
Unigene clusters that correspond to the EST's that are dif-
ferentially expressed between the two tissues (Figure 3).

DDD uses Fisher's extract test to restrict the output to sta-
tistically significant differences (P < 0.05) therby deter-
mining the statistical significance of the number of times
sequences from the selected libraries are assigned to a spe-
cific UniGene cluster. This is a statistical test for analyzing
categorical data when the sample sizes are small. It has
been argued that Fisher's exact test is too conservative, and

Statistically Significant Differences

A B Gene Gene
New po.. New po.. index description
65 20 Hs.644639 Eukaryotic translation elongation factor
1 alpha 1 2360422 (EEF1Al)
L)
A>B B<A
25 4 Hs.636480 Tubulin, beta 2143374 (TUBB)
L]
A>B B<A
22 Hs.534770 Pyruvate kinase, muscle 1371084
(PKM2)
L]
A>B B<A
Figure 3

Typical DDD output. Following the selection of pools (A and
B) for comparison, statistically significant differences are rep-
resented. Each line represents a gene. For each gene, the
numbers represent the number of times that gene is repre-
sented in that particular pool. The p value for the difference
is presented below that figure. Information on the gene,
including its name, abbreviated title and unigene number are
also presented.
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is not appropriate to a setting where the total number of
data values in the contingency table is not fixed [26]. The
Bayesian methods used in xProfiler have a less conserva-
tive statistical threshold. The analysis is also restricted so
that genes with over 1000 sequences in UniGene are
included. A limitation of DDD is that these requirements
place limitations on the capabilities of the analysis.
Unless there are a large number of sequences in each pool,
the frequencies of genes are generally not found to be sta-
tistically significant. Furthermore, the wide variety of tis-
sue types, cell types, histology, and methods of generating
the libraries can make it difficult to attribute significant
differences to any one aspect of the libraries.

3.6 Digital extractor

A major limitation of in silico gene mining approaches is
the cumbersome nature of the subsequent data analysis.
The output from DDD is a list of Unigene clusters repre-
senting known genes, and sequences without homology
to known genes that are significantly altered between
selected tissue libraries. To expedite this strategy the data
derived from the DDD comparisons can be processed
using Digital Extractor. This application provides for high
throughput processing of DDD output, by performing
automated annotation of the output clusters. Digital
Extractor can be used to both compile the profiles of
known genes differentially expressed and also to annotate
those clusters containing cDNAs without homology to
known genes [27]. It utilises Contig Assembly Program-3
(CAP3) for assembly of EST clusters, Repeat Masker to
mask repetitive elements and BLAST for gene identifica-
tion [27].

3.7 How these methods compare

As is evident from the previous sections, there are a variety
of algorithms available to mine open source gene expres-
sion data. Table 1 provides a summary of the various tools
and websites described herein while Table 2 lists their
strengths and weaknesses. Given the variation in library
compilation, tag format (EST or SAGE), statistical thresh-
old, and data output associated with each method, they
are unsuitable for direct comparisons in analysis of spe-
cific expression profiles. In general, DDD and cDNA
DGED probably demonstrate most utility in terms of
number of libraries, tissue descriptions, and detailed
results output. It must be stressed that many of these tools
are subject to frequent updating and improvement. Nev-
ertheless, individual user preference is an apparent factor
in deciding which tool to apply. For example, a quick
search of the literature reveals that different investigators
are successfully employing the different tools outlined in
this review. Despite early hopes that such methods would
provide automated deciphering of transcriptional pro-
files, it has become clear that supplementary experimental
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insight is required to validate computational "discover-

1es .

4. Applications in biomedical research

The rapid expansion of nucleotide sequence data availa-
ble in public databases has revolutionised biomedical
research. The growth of nucleotide sequence databases
has made 'virtual' or electronic profiling of gene expres-
sion routine. For the purpose of this review, examples of
the applications of computational methods will be
refined mostly to cancer research projects.

4.1 Gene expression in health and disease

Homeostasis in healthy tissue is dependent on the expres-
sion of genes that ensure cells have the machinery to deal
with everyday events and furthermore ensure our well-
being. However, unchecked variations in gene expression
levels in a cell often lead to the initiation and progression
of a disease process, such as cancer. It is therefore a propri-
ety in modern biomedical research to determine and com-
pare what genes are turned on and off in disease tissue and
normal tissue. Using the approaches described herein,
groups of genes that are characteristic of disease and may
also be driving the disease process can be identified. Such
genes may furthermore provide attractive targets for novel
therapies in our efforts to overcome these debilitating dis-
eases. Due to the extensive information obtained from
genome sequencing, many of these techniques output
ESTs of known and unknown genes. It is therefore
dependent on the individual user whether known or
novel genes take priority for further studies.

4.2 Cancer-associated genes

Cancer is a genetic disease. Expression profiling, as a pow-
erful genomic tool, holds great promise in cancer molecu-
lar medicine and cancer research. This is because cancer is
a complex polygeneic and multifactorial disease, resulting
from successive changes in the genome of cells and from
the accumulation of molecular alterations in both tumour
and host cells [28]. Such genetic alterations effect regula-
tory pathways and cellular processes such as proliferation,

Table I: Summary of in silico gene expression tools

http://www.molecular-cancer.com/content/6/1/50

differentiation, cell cycle, DNA repair and apoptosis and
can also lead to genetic instability, tumourigenesis, malig-
nancy, and an invasive and drug-resistant phenotype.
Therefore, an understanding of the molecular behaviour
of tumours would aid their molecular classification and
also aid the decision-making regarding therapeutic
approaches [29].

Computational methods of transcriptional profiling have
been applied to further the understanding of all aspects of
cancer biology. For example the identification of highly
expressed genes may provide significant information
thereby enhancing our understanding of tumourigenesis
or serve as biomarkers or prognostic markers of malig-
nancy [24,25,30]. DDD has been used to investigate gene
expression in a wide variety of cancers including breast,
colon, lung, ovarian, pancreatic and prostate cancers [1].
In a study by Scheurle et al [1], these cancers were found
to share similar expression profiles, a concept that was
proven using other laboratory techniques such as RT-PCR.
In silico methods have identified the kallikrein genes,
KLK6 and KLK10 to be overexpressed in colorectal, pan-
creatic and ovarian cancers [24,31].

As apposed to simply identifying and compiling lists of
genes, many studies have displayed genes identified in sil-
ico to be of functional importance as exemplified in two
recent studies investigating gastric and colorectal cancer
respectively [32,33]. In these studies, genes identified as
being differentially expressed using DDD were confirmed
to have importance in key aspects of tumour cell biology
such as cell proliferation and invasion. In both studies
altered gene expression was confirmed with PCR using ex
vivo cancer tissue in comparison with normal tissue. RNAi
was used to knockdown gene expression, which resulted
in decreased tumour cell proliferation and invasion. DDD
has recently been used to identify genes with promoter
similarities and that are therefore co-regulated in colorec-
tal cancer [34]. Similarly, genes downregulated in gastric
cancer were recently identified using DGED. In this study
by Yanglin et al [35] KCNE2, a downregulated gene, was

Resource Application Web Address
CGAP Online genetics resource for cancer http://cgap.nci.nih.gov/
researchers including online analytical tools.
DDD Online EST comparison. http://www.ncbi.nlm.nih.gov/UniGene/ddd.cgi
DGED Online identification of significantly different http://cgap.nci.nih.gov/SAGE/SDGED
gene expression
GENBANK DNA, RNA & protein sequence database http://www.ncbi.nlm.nih.gov/
SAGEmap Resource for the analysis of SAGE data. http://www.ncbi.nlm.nih.gov/projects/SAGE/
UniGene A database of the transcriptome. Organises http://www.ncbi.nlm.nih.gov/UniGene
transcripts into specific clusters.
XProfiler Compares gene expression between two pools  http://cgap.nci.nih.gov/Tissues/xProfiler

of libraries
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Table 2: A comparison of the strengths and weaknesses of in
silico gene expression mining tools

DDD

Strengths:

Size of EST databases in Unigene

Conservative test (Fisher's exact test) used to determine significance
Absolute and relative counts given

Weakness:
Libraries with low EST count excluded by analysis
Limited number of "normal tissue" libraries

DGED

Strengths:

Statistically parameters can be varied

Results linked to tissue microarray data

Ability to select origin/type of tissue (e.g. micro dissected etc).
Genes with low abundance included

Weakness:
Comparison based on odds ratio

Sagemap

Strengths:
Wide variety in the source of SAGE data available.
Accounts for differences in sample size between groups

Weakness:
Exclusion of tags with low counts

XProfiler

Strengths:

Ability to compare groups and pools of libraries.

Outputs genes as unique/non-unique and known/unknown.
Ability to select origin/type of tissue (e.g. micro dissected etc).

Weakness:
Exclusion of tags with low counts

Common Strengths:
Freely available via internet
Unbiased view of transcriptome

Common Weaknesses:

Reliability of initial sequencing experiments.

Limited background knowledge of original tissues
Significant false positive rate/false negative rate unknown

identified as a novel gastric cancer associated gene. Fur-
thermore, the functional importance of KCNE2 was high-
lighted whereby overexpression resulted in growth
inhibition. A recent study has demonstrated the tissue
specific gene expression of various tumour types [22].
Dennis et al [22] employed SAGE and DDD to display
strict differences in the expression patterns of different
tumour types that could be used as markers of the various

http://www.molecular-cancer.com/content/6/1/50

tumour types and for a better assessment of patient prog-
nosis and optimal, tailored therapy. The study by Dennis
et al [22] also identified novel potential tumour markers.
Lipophilin B was identified to have expression restricted
to breast and ovarian cancers while glutathione peroxi-
dase 2 was specifically enhanced in colon and pancreatic
cancers.

The use of SAGE to identify genes associated with the lat-
ter stages of cancer has recently been displayed [36]. In a
study by Shen et al [36] the expression of advanced breast
cancer was compared with that of benign tissue libraries
and to identify fifty-three differentially expressed genes to
be correlated with breast adenocarcinoma, a subset of
which were successfully confirmed by RT-PCR. Likewise,
genes associated with breast metastasis have been identi-
fied using SAGE [37]. The role of estrogen in the progres-
sion of breast cancer has been elucidated using a SAGE
approach [38]. SAGE analysis has recently been used to
identify biomarkers of gastric cancer [39,40]. In a study by
Yasui et al [37] SAGE was employed to identify differen-
tially expressed genes in three categories; in gastric cancer
in comparison to normal gastric mucosa, in advanced gas-
tric cancer in comparison with early stage disease and in
lymph node metastasis in comparison with primary
tumours. A custom 395-element cDNA microarray repre-
senting these genes was then fabricated for use in diagnos-
tics. The study by Yasui et al [39] represents the
translational application of in silico gene expression profil-
ing.

A recent study applied in silico EST profiling techniques to
characterise various cancers including liver cancer where
Bcl-x2 was identified as a novel liver cancer-associated
gene [41]. Similarly, a combination of SAGE and micro-
aray analysis has been employed to identify biomarkers of
bladder cancer [42]. In this study by Wang et al [42] UCA1
was identified as a specific and sensitive biomarker of dis-
ease, which could be detected in the urine of bladder can-
cer patients. Another study utilised microarray analysis in
conjunction with the in silico analysis of CGAP EST librar-
ies to identify loss of annexin A1 expression in breast can-
cer [43]. This study and those studies outlined herein
exhibit the value of in silico strategies in discovering
biomarkers with clinical relevance in cancer detection and
disease classification.

4.3 Tissue-specific gene expression

Gene expression profiling techniques can be applied to
the identification of tissue specific transcripts or clusters
of transcripts. Successful identification of those genes with
specific expression in specific tissue types will aid our
understanding of diseases arising in these sites. The large
number of publicly available cDNA libraries correspond-
ing to different tissues can be exploited using techniques
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such as DDD to identify genes with tissue specific expres-
sion. This approach has recently been employed to iden-
tify transcripts with preferential expression in renal
podocytes [44]. This was the first study to use DDD to pre-
dict cell type specific gene expression. The authors success-
fully identified a protein SLM2 to be specifically expressed
in renal podocytes and upregulated in proteinuric glomer-
ular diseases and furthermore to be involved in VEGF
alternative splicing. The study by Cohen et al [44] displays
the potential that a gene discovery technique such as DDD
has to predict and further our understanding of cell type
specific gene expression.

5. Conclusion

Online open-source sequence data represents an excellent
resource for identifying differential gene expression.
Indeed, these resources are popular starting points in
many disease gene discovery research programmes. These
datasets are collected and annotated in highly organised
online databases. The modern biomedical investigator
therefore has the ability to genomically profile diseases or
distinctions of interest thereby identifying differentially
expressed genes. This article summarises the various tools
available to mine these collections. Although many of
these tools, and particularly their interfaces, are quite
basic in design, they nevertheless represent an excellent
resource for gene discovery. Furthermore, although these
tools can act at good starting points in disease gene dis-
covery there is a need for experimental validation of in sil-
ico-derived differential expression results.

EST and SAGE libraries are not without their limitations
[45,46]. One limitation associated with the use of EST
databases is that only highly expressed genes have been
sampled adequately to provide sufficient corresponding
EST counts for reliable molecular profiling. There is there-
fore a bias towards highly-expressed genes in libraries.
Investigators must therefore be cognisant that expression
profiles garnered from EST libraries may not contain these
low abundance transcripts. As single-read sequences, ESTs
are prone to sequencing error, although sequencing errors
do not preclude identification of the original gene. Fur-
thermore, the 5' ends of genes are underrepresented in
EST databases. Libraries from which ESTs are derived can
be contaminated with genomic material and using ESTs
will not detect genes from tissues or cells, which are diffi-
cult to obtain mRNA from. ESTs omit introns which may
contain important gene regulatory sequences [45]. SAGE
libraries are subject to variable tag specificity, and the
restriction enzymes used in tag generation yield fragments
of various lengths [46].

Nevertheless, genes identified and observations made by
EST library mining must be validated at a laboratory level
either using ex vivo tissue or in vitro cell line models. Fur-

http://www.molecular-cancer.com/content/6/1/50

thermore, as outlined herein, a majority of research
groups using these approaches are also identifying the
functional importance of these differentially expressed
genes in the disease setting.

In conclusion the use of in silico gene mining strategies
provides an excellent framework for the initial identifica-
tion of key genes and gene clusters whose expression is
altered in disease tissue. The data generated in these inves-
tigations provide a starting point for investigations aimed
at delineating the molecular basis of disease.
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