Deep et al. Molecular Cancer 2014, 13:37
http://www.molecular-cancer.com/content/13/1/37 ® MOLECULAR
P CANCER

RESEARCH Open Access

SNAIT is critical for the aggressiveness of prostate
cancer cells with low E-cadherin

Gagan Deep'?’, Anil K Jain', Anand Ramteke'?, Harold Ting', Kavitha C Vijendra', Subhash C Gangar’,
Chapla Agarwal'? and Rajesh Agarwal*"

Abstract

Background: A better molecular understanding of prostate carcinogenesis is warranted to devise novel targeted

preventive and therapeutic strategies against prostate cancer (PCA), a major cause of mortality among men. Here,
we examined the role of two epithelial-to-mesenchymal transition (EMT) regulators, the adherens junction protein
E-cadherin and its transcriptional repressor SNAIT, in regulating the aggressiveness of PCA cells.

Methods: The growth rate of human prostate carcinoma PC3 cells with stable knock-down of E-cadherin (ShEC-PC3)
and respective control cells (Sh-PC3) was compared in MTT and clonogenic assays in cell culture and in nude mouse
xenograft model in vivo. Stemness of ShEC-PC3 and Sh-PC3 cells was analyzed in prostasphere assay. Western blotting
and immunohistochemistry (IHC) were used to study protein expression changes following E-cadherin and SNAI1
knock-down. Small interfering RNA (siRNA) technique was employed to knock- down SNAIT protein expression in
ShEC-PC3 cells.

Results: ShEC-PC3 cells exerted higher proliferation rate both in cell culture and in athymic nude mice compared
to Sh-PC3 cells. ShEC-PC3 cells also formed larger and a significantly higher number of prostaspheres suggesting
an increase in the stem cell-like population with E-cadherin knock-down. Also, ShEC-PC3 prostaspheres disintegration,
in the presence of serum and attachment, generated a bigger mass of proliferating cells as compared to Sh-PC3
prostaspheres. Immunoblotting/IHC analyses showed that E-cadherin knock-down increases the expression of
regulators/biomarkers for stemness (CD44, cleaved Notch1 and Egr-1) and EMT (Vimentin, pSrc-tyr416, Integrin 33,
-catenin, and NF-kB) in cell culture and xenograft tissues. The expression of several bone metastasis related
molecules namely CXCR4, uPA, RANKL and RunX2 was also increased in ShEC-PC3 cells. Importantly, we observed
a remarkable increase in SNAIT expression in cytoplasmic and nuclear fractions, prostaspheres and xenograft
tissues of ShEC-PC3 cells. Furthermore, SNAIT knock-down by specific siRNA strongly inhibited the prostasphere
formation, clonogenicity and invasiveness, and decreased the level of pSrc-tyr416, total Src and CD44 in ShEC-PC3
cells. Characterization of RWPE-1, WPE1-NA22, WPE1-NB14 and DU-145 cells further confirmed that low E-cadherin
is associated with higher SNAIT expression and prostasphere formation.

Conclusions: Together, these results suggest that E-cadherin loss promotes SNAIT expression that controls the
aggressiveness of PCA cells.
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Background

Prostate cancer (PCA) is the most common non-cutaneous
cancer, and is the second leading cause of cancer-related
deaths in American men. According to the American
Cancer Society, in 2013, there will be an estimated
238,590 new cases and 29,720 deaths from PCA in the
United States [1]. Patients with localized PCA have a
high 5-year survival rate and a relatively low mortality
to incidence ratio compared to other cancer types [2].
However, in patients with clinically detectable metastasis,
the median survival is reduced to only 12—15 months;
therefore, metastasis is the main cause of high mortality
among PCA patients [2-4]. PCA cells metastasize to several
organs; however, bone is the most frequent site for metas-
tasis [3,5]. Patients with bone metastasis suffer extreme
bone pain, spinal-cord compression and fractures [6-8]. In
addition, replacement of bone marrow by growing PCA
cells disrupts normal haematopoiesis, causing anemia
and enhanced susceptibility to infections [7]. Therefore, a
better understanding of the early events associated
with PCA metastasis is warranted to lower mortality and
improve patient’s quality of life.

Now it is known that PCA metastasis involves multiple
steps including the acquisition of invasiveness through
‘EMT’ (epithelial to mesenchymal transition), access to
systemic blood or lymphatic systems (intravasation),
survival in the circulation, arrest in the microvasculature
and subsequent extravasation, and growth at distant organs
[9]. Among these events, EMT has often been described
as absolutely necessary and indispensable for metastasis
[9,10]. During EMT, cancer cells shed their epithelial
features, detach from epithelial sheets and undergo cyto-
skeletal changes towards a ‘mesenchymal phenotype’ and
acquire a high degree of motility and invasiveness [10,11].
Recent studies have suggested that EMT not only enhances
invasiveness and migratory potential but also confers sev-
eral aggressive attributes to cancer cells such as enhanced
stemness, drug and anoikis resistance, etc. [12-14]; and
that these features could provide a survival advantage to
cancer cells during the arduous metastasis journey from
primary organs to distant metastatic sites. Therefore,
understanding and targeting the role of EMT regulators in
conferring an aggressive phenotype to PCA cells could be
useful in effectively inhibiting metastatic progression.

The molecular regulation of EMT is extremely complex
and involves numerous interconnected as well as independ-
ent pathways and signaling molecules [10,11,15]. However,
several of these pathways converge together to down-
regulate the expression of adherens junction molecule
E-cadherin [16]. E-cadherin is a transmembrane glycopro-
tein that regulates cell-cell adhesion, cell polarity and shape
through its interactions with E-cadherin molecules on
adjacent cells as well as with the actin microfilament
network via catenins (a, f and p120) [16]. The loss of
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E-cadherin frees catenins from the membranous pool,
thus making them available for nuclear signaling, which
then promote cancer cell proliferation, invasiveness and
EMT [10,17]. E-cadherin expression is regulated through
a combination of genetic, epigenetic, transcriptional and
post-transcriptional mechanisms [10,16]. Major transcrip-
tional repressors of E-cadherin are zinc finger family
members SNAI1 (SNAIL1 in drosophila) and Slug, the
basic helix-loop-helix factors E47 and Twist, and two-
handed zinc factors ZEB1 and SIP1 [10]. Importantly,
the loss of E-cadherin function has been implicated in the
progression and metastasis of several malignancies including
PCA [18,19]. Furthermore, reduced E-cadherin expression
has been correlated with higher tumor grade and poor
prognosis in PCA patients [20-23]. However, the molecular
changes associated with E-cadherin loss that are responsible
for PCA aggressiveness are still not clear. Results from the
present study suggest that E-cadherin loss could enhance
proliferation and stemness in PCA cells through altering
the expression of several signaling molecules but mainly
through its transcriptional repressor SNAII.

SNAII is one of the master EMT regulators and is a
promoter of metastasis, that represses the expression of
several epithelial markers (E-cadherin, claudin, occludin,
etc.) and enforces a mesenchymal phenotype by promoting
the expression of mesenchymal genes (fibronectin, vimen-
tin, a-SMA etc.) [10,24,25]. SNAIL is overexpressed in
several cancer cells including PCA where it is suggested to
be upregulated at early stages of PCA development [26].
High SNAI1 expression in tumors often correlates with
disease aggressiveness and poor prognosis [23,27,28].
SNAI1 has been implicated in cancer cell survival, cell
cycle regulation, apoptosis evasion, cell adhesion, neuro-
endocrine differentiation, and chemoresistance [24,25].
In the present study, we analyzed the role of SNAII in the
aggressiveness of PCA cells with low E-cadherin expres-
sion (via Stable E-cadherin knock-down). Our results
for the first time showed that SNAI1 could control the
clonogenicity, stemness and invasiveness of PCA cells with
low E-cadherin expression.

Results

E-cadherin knock-down increases proliferation of human
PCA PC3 cells

First we analyzed the effect of E-cadherin loss on the
proliferation of PC3 cells where ShEC-PC3 cells with E-
cadherin knock-down showed higher proliferation at 24,
48, and 72 hrs after seeding compared to vector control
Sh-PC3 cells (Figure 1A). MTT assay results were further
confirmed in a clonogenic assay which showed that E-
cadherin knockdown significantly (p < 0.001) enhanced the
clonogenicity of PC3 cells (Figure 1B). Next, ShEC-PC3
and Sh-PC3 cells were subcutaneously injected in athymic
male nude mice to compare their in vivo growth rate. As
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Figure 1 E-cadherin knock-down increases the proliferation of human PCA PC3 cells. (A) Multiplication rate of Sh-PC3 and ShEC-PC3 cells
was determined by MTT assay. Data shown is mean + SD of 12 samples. (B) Clone formation by Sh-PC3 and ShEC-PC3 cells was examined in a
clonogenic assay as detailed in the methods. Number of clones with more than 50 cells were counted and presented in a bar diagram. Data shown is
mean + SD of 6 samples. (C-D) Sh-PC3 and ShEC-PC3 cells were injected subcutaneously in athymic nude mice, and average tumor volume (mean £ SEM)
as a function of time is presented. Tumor tissues were analyzed for proliferation biomarkers (PCNA and Ki-67) by IHC. Percentage of PCNA and Ki-67 positive
cells was calculated by counting the number of positive stained cells (brown stained) and the total number of cells at five arbitrarily selected fields from
each tumor at 400x magnification. The data shown in the bar diagrams is the mean+SEM of 7-10 samples. * p < 0.001; #, p < 001; $, p < 0.05.

shown in Figure 1C, both Sh-PC3 and ShEC-PC3 cells
formed xenografts, however, the tumor volume was con-
sistently higher in ShEC-PC3 cells compared to Sh-PC3
cells. At the end of the study, xenograft tissues were
analyzed for proliferation biomarkers (PCNA and Ki-67)
by IHC. ShEC-PC3 tumors showed a higher expression
of both PCNA and Ki-67 positive cells (Figure 1D),
suggesting an increased proliferation rate in vivo. Taken
together, these results suggested that E-cadherin knock-
down increases the proliferation rate of PC3 cells both
in vitro and in vivo.

E-cadherin knock-down enhances the stemness of human
PCA PC3 cells

Next we examined the effect of E-cadherin knock-down
on the stemness of PCA cells in a prostasphere assay.
The prostasphere assay is considered the ‘gold standard’

to determine the self-renewal capability of a stem-like cell
population (CSC) in cell culture [29-31]. This assay is
based upon the principle that only CSC can survive
and grow without attachment in the absence of serum.
As shown in Figure 2A, ShEC-PC3 cells formed a signifi-
cantly (p <0.001) higher number and bigger sized prosta-
spheres compared to Sh-PC3 cells. These results suggested
that E-cadherin knock-down increases the stemness in
PC3 cells.

We also analyzed the disintegration or differentiation
of prostaspheres in the presence of attachment with or
without the addition of serum. Prostaspheres were pipet-
ted and re-plated on normal attachment culture plates
with or without 10% FBS. In the absence of serum, both
ShEC-PC3 and Sh-PC3 prostaspheres attached to the bot-
tom of the plate but their disintegration was hardly visible
even after 5 days. However, in the presence of serum both
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Figure 2 E-cadherin knock-down enhances the stemness of human PCA PC3 cells. (A-B) Sh-PC3 or ShEC-PC3 cells were plated on 6 well
Corning ultra-low attachment plates in DMEM/F-12(Ham) media containing supplements B27 and N2. Prostasphere formation was measured after
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Sh-PC3 and ShEC-PC3 cells disintegrated into bulk of
growing cells; though, in general, ShEC-PC3 prostaspheres
generated a bigger mass of growing bulk cells compared
to Sh-PC3 prostaspheres (Figure 2B).

E-cadherin knock-down increases the expression of
stemness, EMT, and bone metastasis biomarkers in
human PCA PC3 cells both in vitro and in vivo

Next, we analyzed the effect of E-cadherin knock down on
stemness and mesenchymal biomarkers in human PCA
PC3 cells. Western blot analysis showed that E-cadherin

knock-down resulted in increased expression of CD44 and
cleaved Notchl in ShEC-PC3 cells (Figure 3A), which are
well known biomarkers for stemness [32-34]. E-cadherin
knock-down also increased Egr-1 expression (Figure 3A),
which is a regulator of CD44 promoter activity [35].
Furthermore, E-cadherin knock-down resulted in a strong
increase in EMT biomarkers, the intermediate filament
protein Vimentin and Integrin B3 expression (Figure 3A).
However, E-cadherin knock-down resulted in only a slight
or no significant increase in the expression of other
cadherins namely N-cadherin and OB-cadherin (Figure 3A).
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Figure 3 E-cadherin knock-down increases the expression of
stemness, EMT, and bone metastasis biomarkers in PC3 cells.
(A-B) Sh-PC3 or ShEC-PC3 cells were collected at similar confluency
and total cell lysates were prepared and analyzed for the protein
expression of E-cadherin, CD44, cleaved Notch-1, Egr-1, Vimentin,
Integrin 33, N-cadherin, OB-cadherin, CXCR4, uPA, RANKL, and RunXx2.
Tubulin and B-actin were used as loading controls.

Besides, we have earlier reported a strong increase in the
levels of phosphorylated pSrc-tyr416 following E-cadherin
knock-down in PC3 cells [36], a kinase associated with
increased PCA invasiveness and bone metastasis [37].
E-cadherin knock-down also increased the expression
of several other proteins that are important in bone
metastasis. As shown in Figure 3B, ShEC-PC3 cells showed
higher expression of CXCR4, which is known to play an
important role in the migration of PCA cells towards the
chemotactic signal (SDFla) secreted by bone endothelial
cells [8,38]. We also observed increased expression of uPA,
RANKL and RunX2, which are considered important for
initiating/promoting osteoclastogenesis in bone by PCA
cells (Figure 3B) [7,8]. Next, we examined the expression
of the above mentioned biomarkers in ShEC-PC3 and
Sh-PC3 tissues from the xenograft experiment (Figure 1C).
As shown in Figure 4, ShEC-PC3 xenograft tissues showed
low E-cadherin level but exhibited significantly higher ex-
pression of CD44, Notchl, pSrc-tyr416, 3-catenin, CXCR4
and RANKL compared to Sh-PC3 xenograft tissues.

E-cadherin knock-down increases SNAI1 expression in
human PCA PC3 cells both in vitro and in vivo

Next, we examined the expression of several transcriptional
factors (SNAI1, B-catenin, and NF-kB) in Sh-PC3 and
ShEC-PC3 cells. We observed a strong increase in the
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expression of SNAI1 in both cytoplasmic and nuclear
fractions of ShEC-PC3 cells compared to Sh-PC3 cells
(Figure 5A). However, we observed only a modest increase
in nuclear B-catenin and a slight increase in nuclear
NF-kB subunit p65 expression without significant changes
in the cytoplasmic -catenin and p65 expression between
ShEC-PC3 and Sh-PC3 cells (Figure 5A). Importantly, we
also observed a strong increase in SNAII expression in
the prostaspheres formed by ShEC-PC3 cells compared to
Sh-PC3 cells (Figure 5B). Furthermore, SNAI1 expression
was also increased in ShEC-PC3 xenograft tissues both in
terms of increase in the overall immunoreactivity score as
well as the percentage of SNAI1-positive cells (Figure 5C).

SNAI1 is critical for the stemness, clonogenicity and
invasiveness of ShEC-PC3 cells

Since we observed a strong increase in SNAIL expression
following E-cadherin knock-down, we next examined
whether the increase in SNAI1 controls the stemness,
clonogenicity and invasiveness of ShEC-PC3 cells. Accord-
ingly, we knocked-down SNAI1 expression in ShEC-PC3
cells using SNAI1 specific siRNA and performed pros-
tasphere, clonogenic and invasion assays. As shown in
Figure 6A-6C, SNAII knock-down strongly decreased
the number as well as size of prostaspheres and clones
(=50 cells) (p<0.001). SNAI1 knock-down also compro-
mised the invasiveness of ShEC-PC3 cells (p < 0.001). Fur-
thermore, SNAI1 knock-down resulted in decreased pSrc-
tyrd16, Src and CD44 levels, suggesting a role for SNAI1
in regulating their expression. These results confirmed the
central role of SNAI1 in controlling stemness, clonogeni-
city, and invasiveness in ShEC-PC3 cells.

Low E-cadherin is associated with high SNAI1 and
prostasphere formation

Next, we employed 4 cell lines (RWPE-1, WPE1-NA22,
WPE1-NB14 and DU-145) and compared their E-cadherin
and SNAII expression as well as capability to form prosta-
spheres. RWPE-1 is a non-tumorigenic HPV18 immortal-
ized cell line derived from peripheral zone of an adult
human prostate [39]. WPE1-NA22 and WPE1-NB14 were
derived from RWPE-1 following 50 and 100 pug/ml MNU
(N-methyl-N-nirtosourea) exposure, respectively [39]. These
cell lines have been well characterized [39], and WPE1-
NB14 cells are considered more aggressive than WPE1-
NA22 cells in terms of their proliferation, invasiveness and
xenograft formation in vivo [39]. DU-145 is an androgen-
independent human PCA cell line derived from brain
metastasis. Together, these cell lines represent various
stage of PCA development i.e. from normal to advanced
metastatic stage. Immunoblot analysis showed low E-
cadherin expression in the membrane fraction of DU-145
and WPE1-NB14 cells compared with WPE1-NA22 and
RWPE-1 cells (Figure 7A). Relatively low E-cadherin was
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Figure 4 (See legend on next page)
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Figure 4 Expression of stemness, EMT, and bone metastasis biomarkers in Sh-PC3 and ShEC-PC3 xenograft tissues. Sh-PC3 and ShEC-PC3
xenograft tissues were analyzed for the expression of E-cadherin, CD44, Notch1, pSrc-tyr416, 3-catenin, CXCR4 and RANKL by IHC as detailed in
the methods. Immunoreactivity was analyzed in 5 random areas for each tumor tissue and was scored as 0+ (no staining), 1+ (weak staining),
2+ (moderate staining), 3+ (strong staining), 4+ (very strong staining). IHC scores (as mean + SEM) are shown as bar diagram of 5-10 samples.

observed in cytoplasmic fraction of all the cell lines tested  for E-cadherin and SNAI1 expression in these 4 cell lines
with least expression in DU-145 cells (Figure 7A). On  were further confirmed by confocal microscopy (Figure 7B).
the contrary, nuclear SNAI1 expression was highest in  Immunofluorescence analysis also showed that RWPE-1
DU-145 cells followed by WPE1-NB14, WPE1-NA22 cells have polygonal morphology with intact cell-cell
and RWPE-1 cells (Figure 7A). Immunoblotting results  contact that was progressively lost in WPE1-NA22,
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Figure 5 Effect of E-cadherin knock-down on the expression of SNAI1 and other transcriptional factors. (A) Sh-PC3 and ShEC-PC3 cells were
collected at similar confluency and nuclear/cytoplasmic fractions were prepared and analyzed for SNAI1, B-catenin, and p65 expression by Western
blotting. Tubulin and histone H1 were used as loading control for cytoplasmic and nuclear fractions respectively. (B) Sh-PC3 and ShEC-PC3 prostaspheres
were collected following centrifugation and cell lysates were prepared and analyzed for SNAIT expression by Western blotting. (C) Sh-PC3 and ShEC-PC3
xenograft tissues were analyzed for the expression of SNAIT by IHC. Immunoreactivity score was analyzed in 5 random areas for each tumor tissue and
was scored as 0+ (no staining), 1+ (weak staining), 2+ (moderate staining), 3+ (strong staining), 4+ (very strong staining). Percentage of SNAIT positive
cells was calculated by counting the number of positive stained cells (brown stained) and the total number of cells at five arbitrarily selected fields
from each tumor at 400x magnification. The data shown in the bar diagrams is the mean+SEM of 7-10 samples. *, p < 0.001.
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WPE1-NB14 and DU-145 cells together with a decrease in
E-cadherin and an increase in SNAI1 expression (Figure 7B).
Next, we compared the prostasphere formation in these
4 cell lines. As shown in Figure 7C, RWPE-1 and WPE1-
NA22 cells did not form prostaspheres or formed rela-
tively smaller sized prostaspheres, while WPE1-NB14 and
DU-145 cells formed larger number and bigger sized pros-
taspheres. Overall, DU-145 cells (with lowest E-cadherin
and highest SNAI1 expression) formed highest number
and biggest sized prostaspheres among all the four cell
lines studied here (Figure 7C).

Discussion

Lately, targeted therapies are being exploited to develop
personalized medicines based upon the specific mutations
and molecular alterations in cancer cells. Accordingly, the
identification and functional characterization of important
early molecular alterations, which are involved in the
growth and progression of prostate cancer (PCA), remain
vital towards devising novel targeted preventive and thera-
peutic strategies. In PCA patients, the main cause of death

is the metastatic spread of the disease; however, it remains
extremely difficult to predict indolent versus aggressive
tumor when diagnosed at an early stage. Now, EMT has
been suggested to be required by stationery cancer cells
to acquire phenotypic and functional characteristics for
metastasis. Therefore, EMT biomarkers have been exten-
sively examined to predict disease outcome [20-23,26]. In
this regard, E-cadherin loss or reduced expression at the
membrane of neoplastic cells has often been associated
with worsening histological grade and clinical stage along
with poor prognosis in a variety of cancers including pros-
tate, gastric, and breast [18,19,23,40,41]. However, hetero-
geneity in E-cadherin expression has been observed in
PCA metastatic tissues with few studies reporting reduced
E-cadherin expression while others reporting normal or
higher E-cadherin expression in metastatic tissues com-
pared to primary tumor tissues [21,22,42-45]. Putzke et al.
even reported difference in the E-cadherin expression
dependent upon the metastatic organ site with signifi-
cantly higher E-cadherin expression observed in bone
metastatic tissues compared to soft tissue metastases
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Figure 7 (See legend on next page.)
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Figure 7 Low E-cadherin is associated with high SNAI1 and prostasphere formation. (A-B) E-cadherin and SNAI1 expression was analyzed
in RWPE-1, WPE1-NA22, WPE1-NB14, and DU-145 cells via immunoblotting and confocal microscopy methods. Representative confocal pictures
are shown (at 1500x) where Alexa Fluor 555-red is for E-cadherin, Alexa Fluor 488-green is for SNAI1, while DAPI-blue stains nuclei. (C) RWPE-1,
WPET-NA22, WPET-NB14, and DU-145 cells were plated on 6 well Corning ultra-low attachment plates in DMEM/F-12(Ham) media containing
supplements B27 and N2. Prostasphere formation was measured after 8 days. Representative prostasphere pictures are shown at 100x. Data
shown is mean + SEM of 3 samples. * p < 0.001 (compared to RWPE-1 prostasphere number).

[41]. The expression of another EMT regulator i.e. SNAI1
has also been correlated with an increased risk of tumor
relapse and poor survival in breast cancer patients, and
with the progression of colorectal cancer [23,46,47].
Recently, Whiteland et al. [23], using 215 archival PCA
patient tissue samples analyzed the expression and sub-
cellular localization of several EMT biomarkers to correlate
them with disease outcome. This study revealed that loss
of E-cadherin expression at the cellular membrane of PCA
cells is significantly associated with increasing Gleason
score and clinical stage, and a poor survival. Furthermore,
nuclear SNAII expression was significantly increased in
PCA tissue and was strongly associated with increasing
Gleason score and clinical stage but did not demonstrate a
significant association with PSA (prostate specific antigen)
recurrence or patient survival. Therefore, E-cadherin and
SNAI1 are important in the clinical progression of the
disease; and in the present study, we demonstrate the role
of E-cadherin and SNAII in conferring several aggressive
characteristics to PCA cells such as higher proliferation
rate, clonogenicity, stemness and increased expression of
biomarkers for stemness, EMT, and metastasis.

There have been several studies suggesting that EMT
not only enhances the motility and invasiveness of cancer
cells, but also provide several additional aggressive features
such as stemness, therapeutic and anoikis resistance etc.
Gupta et al. [13] have shown that E-cadherin down-
regulation not only induces EMT but also enhances the
CSC population in breast cancer cells. In fact, a greater
degree of overlapping has been observed in the CSC
population as well as invasive or metastatic cells. Balic et al.
reported that most of the early disseminated cancer cells
detected in the bone marrow of breast cancer patients have
a putative CSC phenotype [48]. In another study, Aktas
et al. showed that a major proportion of circulating tumor
cells in the blood of breast cancer patients has stem
cell characteristics [49]. One explanation put forward
to describe high-stemness in metastatic cancer cells is
that ‘stationary CSC’ could undergo EMT and give rise to
‘metastatic CSC’ [50-52]. Another line of experimental
evidence suggests that EMT induction in differentiated
neoplastic epithelial cells (non-CSC population) not only en-
hances invasiveness but also their stemness [13,14,51,53,54].
In any case, increased stemness might provide the neces-
sary plasticity to cancer cells required to adapt to varying
microenvironments during the arduous metastatic journey

and colonization at distant organ sites. Results from the
present study also support the argument that ‘EMT en-
hances stemness’ as E-cadherin knock-down significantly
enhanced the clone and prostasphere formation by PC3
cells. However, Celia-Terrassa et al. have reported that
PC3-derived clonal populations enriched for epithelial
phenotype exhibit a stronger expression of self-renewal/
pluripotency gene networks and more aggressive attri-
butes [55]. Furthermore, the suppression of epithelial
program inhibited the self-renewal/pluripotency gene
network of tumor cells, their capacity to grow under
attachment-independent conditions, and their tumorigenic
and metastatic potentials [55]. This study also suggested
the coexistence of heterogeneous populations with epi-
thelial or mesenchymal phenotype interacting and co-
operating to impact on the tumor’s potency for local
invasiveness and distant metastasis. Together, these studies
highlight the plasticity in PCA cells where epithelial,
mesenchymal, and intermediate or a mix of these states
could impart contextual advantages dependent upon cancer
stage and/or tumor microenvironment.

SNAII is a member of the zinc-finger transcription
factor family and is known to repress E-cadherin expression
[56]. SNAII is located on chromosome 20q13 that exhibits
gene amplification in tumor samples from metastatic PCA
[57]. Increased SNAI1 expression is considered an early
event in the progress of prostate carcinogenesis but is
limited to cells with invasive properties [26]. SNAII is also
reported to enhance RANKL expression, osteoclastogenesis
and bone colonization [58]. Furthermore, SNAI1 regulates
CSC activity and tumorigenicity in breast and colorectal
carcinoma cells [14,28]; and CRC patients with abundant
SNAI1 expression exhibit high metastasis [28]. Baygi et al.
reported that SNAI1 knock-down significantly reduced
the viability of human PCA cells and prevented their re-
attachment potential through modulating the expression
of Integrins [24]. This study also suggested that SNAI1
primarily acts as a survival factor and inhibitor of cellular
senescence. SNAI1 overexpression in ARCaP PCA cells
induced EMT through ROS (reactive oxygen species)
generation, increase in the expression of inflammatory
chemokine CCL5 and ERK activation [59]; and SNAI1
knock-down in C4-2 and ARCaP cells overexpressing
SNAII significantly compromised their migration potential
[60]. Neal et al. have reported that higher SNAI1 expres-
sion could promote migration and invasion in PCA cells
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through negatively regulating the expression of protease
inhibitor Maspin [61]. SNAI1 has also been reported to
increase the expression of mesenchymal markers Vimentin
and Fibronectin as well as other proteins involved in cancer
invasion such as metalloproteinases 2 and 9, and various
transcription factors such as ZEB-1 and LEF-1 [62,63].
SNAI1 expression is inversely correlated with RKIP (Raf
kinase inhibitor protein), a metastatic suppressor protein
that inhibits cell survival, proliferation and invasiveness
through targeting Raf-1/MEK/ERK and NF-kB signaling
pathways [63,64]. In the present study, we observed that
knock-down of E-cadherin expression in PC3 cells resulted
in a strong increase in SNAII expression both in cell
culture (cells and prostaspheres) as well as xenograft
tissues; and that SNAII inhibition reduced the stemness,
clonogenicity and invasiveness of ShEC-PC3 cells. It is
possible that SNAI1 inhibition reduces the survival of
ShEC-PC3 cells potentially by inducing senescence and/or
apoptosis involving down-regulation of Integrins, Vimentin
or other EMT regulators, decrease in ROS level, and in-
crease in Maspin and/or RKIP as reported in above studies.
Our results also suggested that SNAI1 inhibition could re-
duce the stemness of ShEC-PC3 cells through a decrease
in CD44 expression (as shown in Figure 6D). Also, SNAI1
knock-down in ShEC-PC3 cells could reduce the invasive-
ness through inhibiting Src phosphorylation (Figure 6D).
Therefore, there could be several molecular mechanisms
possible for the inhibitory effect of SNAI1 knock-down on
the stemness and invasiveness of ShEC-PC3 cells, and
these need to be investigated further in future.

It is now well established that SNAII transcriptionally
down-regulates E-cadherin expression; however, here we
report an interesting finding that SNAI1 expression is
increased following E-cadherin knock-down in PC3 cells.
Therefore, the loss of E-cadherin and SNAI1 up-regulation
could be inter-related during prostate carcinogenesis, where
SNAI1 increase could repress E-cadherin expression,
and vice versa. Earlier studies have shown that GSK-3[
(glycogen synthase kinase-3 beta) phosphorylates SNAI1L
and promotes its export from the nucleus and subsequent
degradation by the proteasome in the cytosol [19,65].
Conversely, PAK1 (p21-activated kinase) could phos-
phorylate SNAII to promote its nuclear localization and ac-
tivity as a transcriptional factor [19,66]. Du et al. reported
that protein kinase D1 (PKD1) could also phosphorylate
SNAIL at Serll, triggering its nuclear export via 14-3-3¢
binding [19]. Wu et al. have shown that NF-«B also plays
an important role in the stabilization of SNAI1 [19,67].
One possibility for the observed increase in SNAI1 ex-
pression with E-cadherin knock-down could be increased
nuclear p-catenin which could enhance SNAI1 expression.
Similarly, there was a slight increase in nuclear p65 ex-
pression with E-cadherin knock-down, which could also
enhance SNAI1 expression. Also, E-cadherin knock-down
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could modify the phosphorylation status of SNAI1 favoring
its nuclear localization and stabilization possibly through a
decrease in GSK-3f and/or PKD1 or an increase in PAK1
and/or NF-«B activity. Further studies are warranted to
clearly define the molecular mechanisms through which
E-cadherin loss results in higher SNAI1 expression.

Together, the existing literature as well as results from
the present study suggest that it is feasible to prevent
metastasis in PCA patients with localized disease through
re-activating/increasing E-cadherin expression or through
targeting SNAIL expression in PCA cells by using existing
or novel cancer preventive agents [68-70]. For example,
earlier we have reported that in TRAMP (transgenic
adenocarcinoma of the mouse prostate) mice E-cadherin
expression is lost while SNAI1 expression is increased
with disease progression from PIN to poorly differentiated
adenocarcinoma stages [70]; and the administration of
the cancer chemopreventive agent Silibinin, a natural
flavonoid from Milk thistle extract, strongly enhanced
E-cadherin expression while it decreased SNAIL1 expres-
sion and prevented PCA metastasis to distant organs [70].
Recently, Harney et al. developed a novel strategy to target
SNAIL expression in cancer cells [71]. They conjugated
Co(III)Schiff base complexes with specific oligonucleotide
ie. Co(Ill)-Ebox selectively targeting the E-box-binding
zinc finger family transcriptional factors resulting in
enhanced E-cadherin promoter activity in MCF7 cells
[71]. But it should be cautioned that SNAI1 plays an
important role during embryonic development and is also
considered an important stem cell regulator, therefore
SNAI1 inhibitors should be specifically targeted towards
cancer cells. Also, SNAI1 inhibition could possibly cause
the re-expression of E-cadherin as well as other epithelial
markers in metastatic tissues, where higher E-cadherin or
epithelial characteristics could favor better survival and
proliferation [41,55]. This clearly reflects the challenge of
understanding and targeting the epithelial plasticity in
PCA, as E-cadherin promotion and SNAI1 downregulation
could prevent growth and invasiveness in primary tumors;
however, could potentially enhance growth at certain
metastatic sites.

Conclusions

Overall, results from the present study suggest that the
EMT regulators- E-cadherin and SNAII could be used for
disease prognosis as well as suitably targeted to prevent
PCA metastatic progression.

Methods

Cells culture and reagents

Human prostate carcinoma PC3, RWPE-1, WPE1-NA22,
WPE1-NB14 and DU-145 cells were obtained from
American Type Culture Collection (Manassas, VA). Sh-PC3
and ShEC-PC3 cells were cultured in RPMI1640 medium
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supplemented with 10% heat inactivated fetal bovine serum
(EBS), 100 U/ml penicillin G, 100 pg/ml streptomycin
sulfate and puromycin at 37°C in a humidified 5% CO,
incubator. RWPE-1, WPE1-NA22, and WPE1-NB14 cells
were cultured in keratinocyte serum-free medium con-
taining 50 pg/ml bovine pituitary extract and 5 ng/ml
epidermal growth factor. DU-145 cells were cultured in
RPMI1640 medium supplemented with 10% heat inacti-
vated FBS, 100 U/ml penicillin G and 100 pg/ml strepto-
mycin sulfate. Media and other cell culture materials as
well as fluorescently conjugated anti-mouse and anti-
rabbit IgG antibodies were from Invitrogen Corporation
(Gaithersburg, MD). Antibodies for [B-catenin, Vimentin,
Egr-1 (early growth response-1), CXCR4, uPA (Urokinase
plasminogen activator), RANKL (receptor activator of
nuclear factor kappa-B ligand), p65, RunX2, Histone H1
and E-cadherin shRNA plasmid were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies
for E-cadherin, CD44, Integrin 3, SNAI1, cleaved Notchl,
pSrc-tyrd16, total Src, and anti-rabbit peroxidase-conjugated
secondary antibody were obtained from Cell Signaling
(Beverly, MA). SNAI1, N-cadherin, OB-cadherin and
TATA-binding protein (TBP) antibodies were from Abcam
(Cambridge, MA). Puromycin, DAPI (4',6-diamidino-
2-phenylindole), and B-actin antibody were from Sigma-
Aldrich (St Louis, MO). ECL detection system and anti-
mouse HRP-conjugated secondary antibody were from GE
Healthcare (Buckinghamshire, UK). On-Target plus smart
pool SNAII siRNA was purchased from Thermo Scientific
(Waltham, MA) and HiPerfect transfection reagent was
from Qiagen (Valencia, CA). Antibody for a-tubulin was
from Lab Vision Corporation (Fremont, CA). All other
reagents were obtained in their commercially available
highest purity grade.

Transfection

PC3 cells with stable knock-down of E-cadherin (ShEC-PC3
cells) and respective control cells (Sh-PC3 cells) were gen-
erated as published earlier [36]. For SNAI1 knock-down,
ShEC-PC3 cells (~5x10°) were plated in 60 mm dishes for
24 hrs. SNAI1 siRNA and transfection reagents were
mixed in 100 pl serum free media and added drop-wise
over ShEC-PC3 cells. Serum containing media was added
1 hr after transfection. Cells were collected after 48 hrs
and knock-down was confirmed by Western blotting.
In other studies, cells were also collected and analyzed
in clonogenic, prostasphere and invasion assays.

MTT assay

Sh-PC3 and ShEC-PC3 Cells were plated at a density of
1000 cells/well in 96-well plate under standard culture
conditions. At the end of indicated time-point, fresh media
containing 20 ul of MTT (5 mg/ml stock) was added, and
incubated for another 4 h in a CO2 incubator. At the end,
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media was removed and 200 pl of DMSO was added to
each well. Color intensity was measured by taking ab-
sorbance at 540 nm.

Clonogenic assay

Sh-PC3 and ShEC-PC3 cells (~ 1x10°® per well) were
plated in 6-well plates. Fresh media was added every
48 h. At the end of the 7™ day, cells were washed twice
with ice cold PBS, fixed with a mixture of methanol
and glacial acetic acid (3:1) for 10 minutes and then
stained with 1% crystal violet in methanol for 15 minutes
followed by washing with deionized water. Colonies with
more than 50 cells were scored and counted under the
microscope. Photomicrographs were taken using Canon
Power Shot digital camera.

Matrigel invasion assay

Invasion assay was performed using matrigel invasion
chambers from BD Biosciences as per vendor’s protocol.
Briefly, the bottom chambers were filled with RPMI1640
media with 10% FBS and the top chambers (inserts) were
seeded with 50,000 cells (mock or SNAI1 siRNA trans-
fected) per well in RPMI1640 media (with 0.5% FBS). Top
chambers have a thin layer of matrigel, and PCA cells in-
vaded through the matrigel layer and 8 micron membrane
pores. After 22 h of incubation under standard culture
conditions, cells on the top matrigel surface (non-invasive
cells) were scraped with a cotton swab and the cells
spreading on the bottom sides of the membrane (invasive
cells) were fixed, stained, and mounted. Images were
captured using Cannon Power Shot A640 camera on
Zeiss inverted microscope and total number of invasive
cells was counted and percentage of cell invasion was
calculated.

Prostasphere assay

Sh-PC3, ShEC-PC3, RWPE-1, WPE1-NA22, WPE1-NB14
and DU-145 cells (1000, 2500, 5000, or 10000 cells) were
plated in 6 well Corning ultra-low attachment plates in
DMEM/F-12(Ham) media containing supplements B27
and N2 (from Invitrogen). Cell culture was monitored
daily to assess that sphere originated from single cell;
however cells or spheres aggregation cannot be completely
ruled out. In each case, number of prostaspheres (with
average diameter more than 75 pm) formed after 5-8 days
was counted under a microscope. Prostasphere images
were captured using Cannon Power Shot A640 camera on
Zeiss inverted microscope.

Immunoblotting

Total or nuclear/cytoplasmic lysates were prepared following
published protocol [72,73] and sub-cellular fractionations
were prepared as per vendor’s protocol (ThermoFisher
Scientific, Rockford, IL). Approximately, 50—70 pg of protein
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lysate per sample was denatured in 2x sample buffer and
subjected to sodium dodecyl sulfate—polyacrylamide gel
electrophoresis (SDS-PAGE) on 6 or 12% Tris—glycine gel
(as required based upon the protein molecular weight).
The separated proteins were transferred on to nitrocellu-
lose membrane followed by blocking with 5% non-fat milk
powder (w/v) in Tris-buffered saline (10 mM Tris—HCl,
pH 7.5, 100 mM NaCl, 0.1% Tween 20) for 1 h at room
temperature. Membranes were probed for the protein
levels of desired molecules using specific primary anti-
bodies followed by the appropriate peroxidase-conjugated
secondary antibody and visualized by ECL detection sys-
tem. To ensure equal protein loading, each membrane
was stripped and re-probed with appropriate loading con-
trol. The autoradiograms/bands were scanned with Adobe
Photoshop 6.0 (Adobe Systems, San Jose, CA). In each
case, blots were subjected to multiple exposures on the
film to make sure that the band density is in the linear
range.

Xenograft study and Immunohistochemistry (IHC)
Athymic (nu/nu) male nude mice were housed at the
University of Colorado Denver (UCD) animal care facility.
Protocols were approved by UCD Institutional Animal Care
and Use Committee. Approximately, 1 million Sh-PC3 or
ShEC-PC3 cells were suspended in 0.05 ml of serum-free
medium (RPMI1640), mixed with 0.05 ml of matrigel and
were s.c. injected in each flank of male athymic nude mouse
(NCI-Frederick, Bethesda, MD) (n =5 with total 10 xeno-
grafts for each group) to initiate tumor growth. Once the
tumor xenograft started growing, their sizes were measured
(every 4™ day) in two dimensions using a digital caliper.
The tumor volume was calculated by the formula:
0.5236 L(L,)?% where L, is the long diameter and L, is
short diameter. At the end, each tumor was carefully
dissected and processed for IHC following published
methods [74]. Briefly, sections were incubated with desired
primary antibody followed by incubation with a specific
biotinylated secondary antibody, followed by conjugated
HRP streptavidin, DAB working solution, and finally
counterstained with hematoxylin. Stained tumor sections
were analyzed by Zeiss Axioscope 2 microscope and
images were captured by the AxioCam MrC5 camera at
400x magnifications.

Confocal imaging

RWPE-1, WPE1-NA22, WPE1-NB14 and DU-145 cells
were grown on cover slips and incubated in media for
24 hrs. Cells were then fixed in 3.7% formaldehyde,
washed with PBS, permeabilized with 0.2% Triton X-100
overnight at 4°C along with primary antibodies for E-
cadherin and SNAIL. Cells were then washed with PBS
and incubated with secondary antibodies and DAPI for
60 min. Cell images were captured at 1500x magnification
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on a Nikon inverted confocal microscope using 561/488/
405 nm laser wavelengths to detect E-cadherin (Red),
SNAI1 (Green) and DAPI (Blue) emissions, respectively.

Statistical analysis

Statistical analysis was performed using SigmaStat 2.03
software (Jandel Scientific, San Rafael, CA). Data was ana-
lyzed using one way ANOVA and a statistically significant
difference was considered at p < 0.05.
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