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Abstract

Background: Long non-coding RNAs (lncRNAs) are recognized as pivotal players during developmental ontogenesis
and pathogenesis of cancer. The intronic microRNA (miRNA) clusters miR-99a ~ 125b-2 and miR-100 ~ 125b-1 promote
progression of acute megakaryoblastic leukemia (AMKL), an aggressive form of hematologic cancers. The function of
the lncRNA hostgenes MIR99AHG (alias MONC) and MIR100HG within this ncRNA ensemble remained elusive.

Results: Here we report that lncRNAs MONC and MIR100HG are highly expressed in AMKL blasts. The transcripts were
mainly localized in the nucleus and their expression correlated with the corresponding miRNA clusters. Knockdown of
MONC or MIR100HG impeded leukemic growth of AMKL cell lines and primary patient samples. The development of a
lentiviral lncRNA vector to ectopically express lncRNAs without perturbing their secondary structure due to improper
termination of the viral transcript, allowed us to study the function of MONC independent of the miRNAs in cord blood
hematopoietic stem and progenitor cells (HSPCs). We could show that MONC interfered with hematopoietic lineage
decisions and enhanced the proliferation of immature erythroid progenitor cells.

Conclusions: Our study reveals an unprecedented function of lncRNAs MONC and MIR100HG as regulators of
hematopoiesis and oncogenes in the development of myeloid leukemia.
Background
It has become apparent that the vast majority of the
eukaryotic genome underlies prevalent transcription [1].
Both DNA strands are pervasively transcribed, giving
rise to numerous different classes of non-coding RNAs
(ncRNAs), including long intergenic RNAs (lincRNAs),
antisense RNAs and enhancer RNAs (eRNAs) [2]. This
abundant mixture of long (> 200 nt) and short (< 200 nt)
non-coding RNAs was misapprehended in the past as
transcriptional noise or junk. However, accumulating
evidence suggested that transcription factors and other
global regulators are prevalent targets of ncRNAs [3].
Thereby, ncRNAs induce changes in histone marks and
gene expression in cis and in trans. For example, XIST is
crucial for random inactivation of the X chromosome [4].
Beyond that, Xist RNA acts as a suppressor of hematologic
cancer [5]. Deletion of Xist results in the development
of a highly aggressive myeloproliferative neoplasm and
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myelodysplastic syndrome. In contrast, HOTAIR regu-
lates expression of the HOXD gene family as well as other
genes throughout the genome via re-targeting of Poly-
comb repressive complex 2 (PRC2) [6,7]. Enforced expres-
sion of HOTAIR in epithelial cancer cells leads to altered
histone H3 lysine 27 methylation, gene expression, and in-
creased cancer invasiveness and metastasis. Similarly,
HOTTIP affects expression of the HOXA gene family [8].
Recently, E2F1 transcription factor has been shown to ac-
tivate lncRNA ERIC, which restricts E2F-induced apop-
tosis during cell cycle progression [9].
Acute myeloid leukemia (AML) is an aggressive form of

hematologic cancers with a 5-year overall survival between
30 and 40% in adults [10]. While AML is generally less
common in children, inherited molecular lesions can cause
a genetic background, which predisposes to malignant
transformation and AML. Particularly children with Down
syndrome (DS), i.e. trisomy 21, have a 400-fold increased
risk [11] to develop acute megakaryoblastic leukemia
(AMKL). Patients with DS-AMKL have an excellent prog-
nosis with 5-year overall survival rates of about 80%, while
non-DS-AMKL patients have poor survival rates of only
al Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:Klusmann.Jan-Henning@mh-hannover.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Emmrich et al. Molecular Cancer 2014, 13:171 Page 2 of 12
http://www.molecular-cancer.com/content/13/1/171
14% to 34% despite high intensity chemotherapy [12,13].
The molecular mechanisms underlying this AML subtype
remain incompletely understood. We recently reported the
characterization of an oncogenic microRNA (miRNA) on
chromosome 21 (hsa21), miR-125b-2, which is highly
expressed in DS-AMKL and non-DS-AMKL. miR-125b-2
increased proliferation and self-renewal of human and
mouse megakaryocytic progenitors (MPs) and megakaryo-
cytic/erythroid progenitors (MEPs) [14]. This small RNA is
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Figure 1 MiR-99a/100 ~ 125b cluster host genes in hematopoietic cell
(hsa21) and miR-100/let-7a-2/miR-125b-1 (hsa11) cluster. MIR99AHG (alias MONC)
were determined by 5’RACE-PCR [15]. B) Transcript quantification of MONC and
CD41+/ CD42b+ megakaryocytes, CD15+/ CD66b+ neutrophil granulocytes, CD1
respectively, CD56+/ CD3− NK cells and CD19+/ CD3−/ CD56− B-cells (left panel;
used as reference; A.U., arbitrary units. C) Correlation plots and statistics of MONC
NOMO-1, THP-1, Kasumi-1, Jurkat, K562, M-07e, Meg-01, CMK and CMY cells mea
located in a phylogenetically conserved ncRNA ensemble,
consisting of two other miRNAs (miR-99a and let-7c)
and the lncRNA hostgene MIR99AHG, which we termed
megakaryocytic oncogenic non-coding RNA (MONC)
(Figure 1A). A homolog of the miR-99a ~ 125b-2 polycis-
tron on hsa21 can be found in identical configuration in
the intron of the lincRNA MIR100HG on hsa11 (miR-100 ~
125b-1). We could previously demonstrate that miR-100 ~
125b-1 and miR-99a ~ 125b-2 protect megakaryoblasts
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s and leukemia. A) Genomic architecture of the miR-99a/let-7c/miR-125b-2
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n = 5 each) as well as indicated cell lines (right panel). The B2M gene was
and D) MIR100HG expression with their cluster miRNA expression in NB4,
sured by qRT-PCR. (B-D) Data are presented as mean ± s.d.
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and leukemic cells from TGFβ1-mediated proliferation
arrest and apoptosis [15]. However, the role of the
lncRNA hostgenes in this ncRNA ensemble remained
elusive.
In the present study, we characterized the function of

MONC and MIR100HG and demonstrate an unprece-
dented role of lncRNAs MONC and MIR100HG during
hematopoiesis and the pathogenesis of AMKL.

Results
MiR-99a/100 ~ 125b cluster lincRNAs are overexpressed in
AMKL
The miR-99a/100 ~ 125b clusters on hsa11 and hsa21
are central regulators of stem cell homeostasis and
leukemogenesis and are hosted in introns of MIR100HG
and MONC, respectively. We mapped the transcriptional
start sites (TSS) of both clusters by 5’RACE-PCR and
demonstrated that the miRNAs are transcribed as one
polycistronic transcript together with their host genes
[15]. qRT-PCR expression profiling of spliced MONC
and MIR100HG trancripts throughout hematopoietic line-
ages demonstrated higher expression of MONC in mega-
karyocytes, HSPCs and B-cells and higher expression of
MIR100HG in erythroid cells, HSPCs and B-cells as com-
pared to the other blood lineages (Figure 1B). Further-
more, MONC and MIR100HG are higher expressed in
AMKL cell lines compared to various other leukemic cell
lines (Figure 1B). Regression analysis confirmed positive
correlation of MONC and MIR100HG with their respect-
ive miRNA polycistrons (Figure 1C,D). However, both
mature let-7 isoforms did not show a strong positive cor-
relation with their lincRNA host genes, suggesting active
LIN28- and/or miR-107-mediated suppression of let-7 in
MONC- and MIR100HG-high expressing cells [16,17].
Thus, expression patterns of splicedMONC and MIR100HG

transcripts implicate an independent, yet unknown func-
tion in hematopoietic regulation and transformation.

Knockdown of MIR100HG impairs cell proliferation and
viability
Therefore, we investigated the consequences of MIR100HG
knockdown in the AMKL cell line Meg-01 with a high en-
dogenous expression (Figure 1B). To achieve sufficient
knockdown of endogenous MIR100HG, we designed two
different shRNAs and verified a knockdown efficiency of
65% for sh-MIR100HG #1 and 80% for sh-MIR100HG #2
by qRT-PCR (Additional file 1: Figure S1A).
Proliferation of Meg-01 cells was impaired uponMIR100HG

knockdown (Figure 2A). In competition assays, where sh-
MIR100HG-transduced Cerulean-positive (Cer+) Meg-01
cells were mixed with non-silencing control shRNA-
transduced mCherry-positive (mCh+) Meg-01 cells, both
shRNAs against MIR100HG conferred a strong growth
disadvantage (Figure 2B). In contrast, proliferation of
K562 cells with low to absent endogenous MIR100HG
expression was mainly unaffected by sh-MIR100HG-
transduction (Additional file 1: Figure S1B-C). The colony-
forming capacity of Meg-01 cells was decreased upon
MIR100HG-knockdown (Figure 2C). This effect was even
aggravated in replating experiments for sh-MIR100HG #2,
the construct with the stronger knockdown efficacy
(Figure 2D). In BrdU cell cycle analyses of Meg-01 cells,
we observed an increase in the apoptotic subG1 fraction
accompanied by a decrease of cycling cells in S phase upon
MIR100HG knockdown (Figure 2E). Accordingly, we mon-
itored a significant increase of Annexin+ apoptotic cells
(Figure 2 F). Interestingly, MIR100HG knockdown changed
the surface marker expression on the leukemic megakaryo-
blasts (Figure 2G). While the percentage of CD36+ cells
increased from 11% in controls to 32%, the percentage of
CD41+ cells was ~1.8-fold reduced.
Taken together, knockdown of MIR100HG impaired cell

viability and replating-efficiency of AMKL cells, while
changing lineage surface marker expression.

Knockdown of MONC reduces cell proliferation and viability
MONC is encoded on hsa21 and highly upregulated in
both DS-AMKL (trisomy 21) and non-DS-AMKL cell
lines (Figure 1B). Therefore we sought to evaluate the
consequences of MONC knockdown in CMK and Meg-01
cell lines, representing those two entities. As a control,
we used K562 cells with low to absent MONC ex-
pression (Figure 1B). We designed a total of 8 different
shRNAs covering different sites of MONC. Only one
shRNA had sufficient knockdown efficacy (Additional
file 2: Figure S2A).
Cell proliferation was impaired by MONC-knockdown

in AMKL cells, yet was unaffected in K562 cells (Figure 3A,
Additional file 2: Figure S2B). In growth competition as-
says we noticed a strong decline of Cer+ sh-MONC-trans-
duced AMKL cells (Figure 3B). Similarly, monitoring
of cell growth by automated microscopy in K562, CMK
and M-07 cell lines showed a reduction of sh-MONC-
transduced AMKL cells, whereas their number was in-
significantly changed in K562 cells (Additional file 2:
Figure S2C). Accordingly, the colony-forming capacity
of sh-MONC-transduced Meg-01 and CMK cells -but
not K562 cells- was reduced (Figure 3C, Additional file 2:
Figure S2D). Also replating experiments showed a de-
crease in the cumulative CFU number for both AMKL
cell lines (Figure 3D). Cell cycle analysis demonstrated in-
significant changes upon MONC knockdown (Figure 3E).
sh-MONC favored apoptosis in Meg-01 but not in CMK
cells as measured by Annexin V staining (Figure 3F). Quanti-
fication of megakaryocytic-erythroid surface markers (CD41
and CD36) revealed a reduction of CD36+ Meg-01 cells
upon MONC knockdown (Figure 3G,H), while this effect
was not observed in CMK cells.



c
tr
l

s
h
-M
IR
1
0
0
H
G
#
1

s
h
-M
IR
1
0
0
H
G
#
2

0

50

100

subG1c
e
ll
s
 (
%
)

G1**

**

**

ns

S

G2/M

c
e
ll
s
 (
x
1
0
6
)

G
F
P
+
 c
e
ll
s
 /
 c
tr
l

0

50

100

150

200

250

**
*

BA

FEDC

G

c
tr
l

s
h
-M
IR
1
0
0
H
G
#
2

10
3

10
4

10
5

c
u
m
u
la
ti
v
e
 C
F
U
s

*

c
tr
l

s
h
-M
IR
1
0
0
H
G
 #
1

s
h
-M
IR
1
0
0
H
G
#
2

0

10

20

30

40

*

*

ctrl sh-MIR100HG #1 sh-MIR100HG #2

11.4±1.9%

72.5%

±4.5

CD41

C
D
3
6

32.4±0.6%

39.3%

±1.3

32.4±5.9%

43.5%

±5.6

0.2±0.1%

0%

±0

isotype

Figure 2 Knockdown of MIR100HG confers growth disadvantage to AMKL cells. A) Number of shRNA- or ctrl-transduced Meg-01 cells
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Two-way ANOVA was performed to compare the mean of each construct at each time point to ctrl). C) Number of colonies from methylcellulose-based
CFU assays of shRNA-transduced Meg-01 cells (n = 2). D) Cumulative number of CFUs after one round of replating of sh-MIR100HG #2 in Meg-01 cells
(n = 2). E) Percentage of shRNA-transduced Meg-01 cells in subG1 (BrdU−/7-AAD−), G1 (BrdUlow/7-AADlow/high), S-phase (BrdU+/7-AADlow/high) and
G2/M fraction (BrdUlow/7-AADhigh) (n = 2). Asterisks are indicated for subG1 and S phases. F) Percentage of apoptotic/dead (Annexin V+)
shRNA-transduced Meg-01 cells after 5 days of culture (n = 2). G) Representative density plots of viable, Cerulean+ Meg-01 cells for indicated surface
markers as measured by flow cytometry after 5 days of culture (n = 4). (A-G) Data are presented as mean ± s.d. *P < 0.05; **P < 0.01.
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Experiments in primary AML cells are challenging.
However, they are pertinent to extrapolate observation
made in cell lines to the situation in vivo. Strikingly, when
DS transient leukemia (DS-TL) blasts were transduced
with sh-MONC, colony-forming capacity was diminished
(Figure 3I), implicating a role of hsa21-encoded MONC
in the development and maintenance of trisomy 21-
associated leukemia.
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Figure 3 Knockdown of MONC reduces proliferation and viability of AMKL cells. A) Number of shRNA- or ctrl-transduced CMK and Meg-01
cells (n = 3). B) Fraction of Cerulean+ shRNA-transduced cells at indicated time points of culture is shown in relation to the ctrl construct
(n = 3; Two-way ANOVA was performed to compare the mean of each construct at each time point to ctrl). C) Number of colonies from
methylcellulose-based CFU assays of indicated shRNA-transduced CMK and Meg-01 cells (n = 3). D) Cumulative number of CFUs after one
round of replating of sh-MONC in CMK and Meg-01 cells (n = 3). E) Percentage of shRNA-transduced Meg-01 cells in subG1 (BrdU−/7-AAD−), G1
(BrdUlow/7-AADlow/high), S-phase (BrdU+/7-AADlow/high) and G2/M fraction (BrdUlow/7-AADhigh) (n = 3). F) Percentage of apoptotic (Annexin V+/7-AAD−)
and dead (7-AAD+) cells for shRNA-transduced CMK and Meg-01 cells measured by flow cytometry after 5 days of culture (n = 3). G-H) Merged density
plots of viable, Cerulean+ G) Meg-01 and H) CMK cells for indicated surface markers as measured by flow cytometry after 5 days of culture (n = 4);
population frequencies with errors are displayed for respective framed gates. I) Number of colonies from methylcellulose-based CFU
assays of indicated shRNA-transduced Down-Syndrome transient leukemia blasts (n = 2; error bars show variation). (A-H) Data are presented as
mean ± s.d. *P < 0.05; **P < 0.01.
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Design and cloning of a lentiviral lincRNA expression
vector
To expand our knowledge about MONC in hematopoietic
cells, we sought to ectopically express the lincRNA in
CD34+-HSPCs from healthy donors. Expression of the
spliced lincRNA would also allow us to dissect its function
from the intronic miRNAs. However, there are several
challenges to consider. The transfection efficiency of plas-
mid DNA or RNA into CD34+-HSPCs is very low [18].
Furthermore, transfected nucleic acids are diluted out dur-
ing cell divisions. Thus, an integrating lentiviral vector sta-
bly overexpressing the transgene and a selection marker is
advantageous. However, the lincRNA transcript from the
lentiviral vector should be equivalent to the endogenous
lincRNA. Transcription of adjacent proviral DNA due to
improper termination downstream of the lincRNA tran-
script could alter the secondary structure of the lincRNA
and therewith its function [19]. Thus, conventional vec-
tors that are used for expression of protein coding genes
are not suitable for studying the function of lncRNAs.
Therefore, we modified the widely used LeGO-CeB vec-

tor [20] by removing the murine U6 expression cassette
for small RNAs and inserting a bovine growth hormone
polyadenylation signal (BGH polyA) followed by the phos-
phoglycerate kinase (PGK) promoter. This created the
LeGO-CeB/lnc vector, featuring a spleen focus-forming
virus promoter (SFFV)-driven lincRNA expression cas-
sette terminated by a polyA signal, and an independent
PGK-driven marker cassette (Figure 4A). Although an in-
sense oriented polyA signal interferes with viral genome
RNA replication resulting in generally low titer yields, in-
fective viral particles are generated in sufficient amounts
to transduce primary cells as outlined below.
Spliced MIR100HG RNA has a length of 3082 nt

(NR_024430.1), precluding its cloning and evaluation
with the described lentiviral vector. MONC has a length of
710 nt (ENST00000445461) (Additional file 3: Figure S3),
which allowed successful cloning and production of
functional lentiviral particles. Using genomic DNA (gDNA)
of LeGO-CeB/lnc:MONC and LeGO-CeB/lnc:empty (vec-
tor) transduced HT1080 cells, we could confirm genomic
integration of both vectors by PCR (Figure 4B, left gel
charts). PCR using a forward primer (fwd2) binding to
the MONC insert and a reverse primer binding to the
downstream PGK promoter (rev1) validated the presence
of MONC proviral DNA in the genome of MONC-trans-
duced cells only (Figure 4B, left gel charts). RT-PCR
with the same primer pair on cDNA of transduced
HT1080 cells could not detect a corresponding transcript.
In contrast, RT-PCR with a primer pair binding to MONC
detected expression of the transgene, demonstrating that
transcription of the lincRNA from the SFFV promoter
was efficiently terminated by the polyA signal before
the PGK promoter. qRT-PCR showed 40-fold upregu-
lation of MONC expression in LeGO-CeB/lnc-MONC-
transduced HT1080 cells (Figure 4B, right graph). Hence,
we engineered a lentiviral lncRNA expression vector, LeGO-
CeB/lnc, which was validated to produce integration-
competent virus and to express the lncRNA insert
without vector-derived RNA.

Ectopic MONC interferes with myeloid differentiation of
HSPCs
Next we overexpressed MONC in cord-blood (CB)
CD34+-HSPCs to determine its impact on hematopoietic
lineage decisions. qRT-PCR in transduced HSPCs re-
vealed more than 500-fold increased MONC levels
(Figure 5A). This expression levels are comparable with
the leukemic setting, asMONC levels are ~450-fold elevated
in CMK cells compared to CD34+-HSPCs (Additional
file 4: Figure S4). In CFU-megakaryocyte (CFU-MK) as-
says, the number of colonies was slightly reduced upon ec-
topic MONC expression (Figure 5B). Concordantly, in
methocellulose-based myeloid CFU-assays MONC led
to a decrease of granulocytic CFU-Gs, while erythroid
BFU-Es were expanded (Figure 5C). However, in both
CFU assays the total number of colonies was not sig-
nificantly changed. Interestingly, culturing of HSPCs
in a growth medium promoting multilineage progeni-
tor expansion resulted in a more than 2-fold increase
of CD117+/CD71+ erythroid progenitor cells by MONC
(Figure 5D). Strikingly, the percentage of CD13+
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myelomonocytic progenitors was strongly reduced by
MONC (Figure 5E). In liquid cultures promoting mega-
karyocytic and erythroid differentiation, we noted a switch
in lineage decision. This was evident by a sharp increase
of CD36+/CD235a+ erythroid cells (Figure 5F) and de-
crease of CD41+/CD42b+ megakaryocytes (Figure 5G).
These data are in concordance with the BFU-E expansion
and CFU-MK reduction in the CFU-assays.
In conclusion, enforced MONC expression in normal

HSPCs changes the lineage bias towards the erythroid
compartment and leads to the expansion of immature
erythroid progenitor cells.

MONC and MIR100HG are located in the nucleus
To determine the subcellular localization, we applied
RNA fluorescence in situ hybridization (RNA-FISH) to
capture endogenous MONC and MIR100HG signals by
locked nucleic acids (LNA) probes in CMK cells. Both
MONC and MIR100HG probes showed predominantly a
textured staining of nuclear areas (Figure 6A), as com-
pared to polyadenylated mRNA (positive control). To con-
firm this localization pattern by an alternative method, we
applied subcellular RNA fractionation followed by qRT-
PCR to calculate a cytoplasma:nucleus ratio. As expected
beta-2 microglobulin (B2M) mRNA showed a clear cyto-
plasmic localization, while both MONC and MIR100HG
transcripts showed a strong prevalence for nuclear
localization (Figure 6B).

Discussion
Here we show the predominant expression of lincRNAs
MIR100HG and MONC in HSPCs and erytroid/
megakaryocytic cells and their dysregulation in megakaryo-
blastic leukemia. The growth of AMKL cells was dependent
on the continuous expression of both lincRNAs. Enforced
expression of spliced MONC in normal HSPCs led to
the predominant differentiation along the erythroid lineage
and expansion of CD117+/CD71+ immature erythroid
progenitor cells at the expense of myeloid and megakaryo-
cytic differentiation. Favoring fast growing progenitor
stages by MONC might therefore provide a context for
malignant transformation. Thus, it seems unlikely that
those lincRNAs act merely as host genes or byproducts of
miR-99a/100 ~ 125b cluster transcription by providing a
Polymerase II promoter, as exemplified for the miR-31
locus in breast cancer [21].
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Results of RNA-FISH and qRT-PCR on fractionated
RNA pointed towards a nuclear localization of MONC
and MIR100HG. Recently an interesting hypothesis re-
garding the biological function of lncRNAs suggested
that lncRNAs serve as subcellular address codes for
other biomolecules [22]. Especially the nucleus with its
higher order structures is an organelle suitable for
lncRNA-directed spatial organization. This is particularly
reflected by several lncRNAs interacting with chromatin
remodelers to recruit them to specific genomic loci or
subnuclear sites. E.g., Air mediates silencing of paternal
alleles of multiple genes, Xist controls inactivation of
one X chromosome in females, and Kcnq1ot1 regulates
imprinting of placental genes. All three lncRNAs act by
allele-specific directing of PRC2 or G9a, thereby leading
to histone methylation of H3K27me3 or H3K9me3
[23-25]. Meanwhile, a compelling discovery in Drosoph-
ila unravelled the distinction of five principal chromatin
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types by protein components, which form separate do-
mains [26]. Recently this model became complemented
by computational analysis of genome-wide epigenetic
marks distribution to 4 principal chromatin types with
virtually identical classification [27]. With this the gen-
ome can be compared with the design of a roadmap,
where districts are defined by chromatin-bound proteins
and epigenetic marks, lncRNAs form the street names and
the gene loci regulatory sequences represent the house
numbers. The fluorescence signals for both lincRNA probes
show a broad, irregular dispersion rather than singular site
distribution over the nucleus. This may indicate a contri-
bution of either host gene to a ternary chromatin modify-
ing or remodeling complex acting at multiple nuclear
domains. The chromatin modifying SWI/SNF complex
subunit BRG1 is associated with melanoma progression
[28]. However, the lncRNA SChLAP1 imparts functioning
of SWI/SNF complexes contributing to development of le-
thal prostate cancers [29]. Repression of the tumor sup-
pressor INK4b-ARF-INK4a locus by ANRIL lncRNA is
mediated by both Polycomb repressive complex-1 (PRC1)
and PRC2, increasing the likelihood of oncogenesis [30].
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Meanwhile a WDR5 mutant defective in RNA binding
fails to activate gene expression in embryonic stem
cells by the Trithorax Group/Mixed-Lineage-Leukemia
complex [31]. Further research identifying protein inter-
action partners and pinpointing precise subnuclear areas
and DNA target sequences of MONC and MIR100HG is
warranted.

Conclusions
This study characterizes for the first time lincRNAs during
megakaryopoiesis and AMKL. MONC and MIR100HG,
the human miR-99a/100 ~ 125b cluster host genes, reside
in the nuclear cell compartment, where they play a role in
the regulation of erythro-megakaryocytic development. In
AMKL they contribute to the maintenance of leukemic
growth. Given the central role of miR-99 ~ 125 polycistron
miRNAs in AML, advanced understanding of the gene
products from these loci will ultimately lead to therapy
improvements of this aggressive malignancy.

Methods
Patient samples and cell lines
The AML-‘Berlin-Frankfurt-Münster’ Study Group (AML-
BFM-SG, Hannover, Germany) provided all patient sam-
ples. CB HSPCs from donors were positively selected by
labeling CD34 expressing cells with magnetic cell-sorting
beads (Miltenyi Biotech). Culture conditions for mainten-
ance, megakaryocytic or megakaryocytic/erythroid in vitro
differentiation of CD34+-HSPCs were described else-
where [32-34]. Cell lines (CMK, Meg-01, K562, HT1080
and 293T) were purchased from the German National Re-
source Center for Biological Material (DSMZ) and main-
tained under recommended conditions. All investigations
had been approved by the local Ethics Committee.

Constructs and lentivirus
Cloning of shRNAs into a modified LeGO vector was per-
formed as previously described [32,35]. A non-silencing
shRNA in the miR-30 backbone (Open Biosystems) was
subcloned to the LeGO vector and used as control (re-
ferred to as non-silencing miRNA). ShRNAs against
human MONC were obtained from Open Biosystems
(Clone IDs V2LHS_206411, V2LHS_208623) or designed
by TRC (http://www.broadinstitute.org/rnai/public/) and
subcloned into the LeGO miR-30 backbone construct.
Stable lincRNA overexpression was achieved using a novel
modified LeGO vector, LeGO-CeB/lnc. Briefly, we re-
moved the murine U6 promoter by XhoI and XbaI diges-
tion with subsequent end filling by a proof reading
polymerase (Phusion II, Finnzymes) and religation. Next
we inserted the PGK promoter from pMSCV-Puro-IRES-
GFP [36] retrovector with a 5’ 20 nt spacer containing NsiI
site into the BamHI site adjacent to the SFFV promoter.
A BGH polyA signal from pMIRREPORT was inserted
into NsiI. An oligo with the MCS for lncRNA fragments
was inserted via NotI between SFFV and polyA. The
MONC isoform MIR99AHG-iso6 (ENST00000445461)
was synthesized by GeneArt (lifetech). Lentiviral super-
natant was generated and collected using standard proto-
cols as described [32].

Transduction and hematopoietic assays
CD34+ HSPCs were lentivirally transduced on RetroNectin-
coated (Takara) plates as described [32]. Methylcellulose-
based (Methylcellulose Base and Complete, RnD Systems)
and collagen-based (Megacult®, Stem Cell Technologies)
colony-forming assays were carried out according to the
manufacturers’ instructions. Serial replating was per-
formed as described previously [33]. Cumulative colony
numbers were calculated with the following equation:

CFU kð Þ ¼
Xk

n¼1

CFUn , where CFUn = number of counted

colonies from respective platings (n). Note that if a frac-
tion of cells (f) from the 1st plating was replated for the
2nd plating, then CFU kð Þ ¼ CFU1 þ CFU2

f1
.

Cell growth, cell cycle and apoptosis assays
Apoptosis was detected with the Annexin V Apoptosis
Detection Kit II (Becton Dickinson) and cell cycle was
analyzed with the the BrDU Flow Kit (Becton Dickinson).
All assays were performed according to the manufacturer’s
instructions. Growth competition assays were performed
by mixing each transduced Cerulean + population 1:1 with
a control population expressing eGFP.

Flow Cytometry and Cell Sorting
Transduced HSPCs were sorted based on GFP-expression.
Flow Cytometry was performed on a Navios 10/3 (Beckman
Coulter). Kaluza 1.2 (Beckman Coulter) was used for data
analysis. Staining and measuring were performed accord-
ing to standard protocols and as described previously
using the antibodies PE-CD42b, PC5.5-CD13, PC7-CD41,
PC7-CD117, AlexaFluor®750-CD235a (all Beckman Coulter),
APC-CD36, APC-CD42b (both Becton Dickinson) and
PacificBlue-CD71 (Exbio) [14].

RNA isolation and Quantitative real-time PCR (qRT-PCR)
Standard RNA isolation, cDNA synthesis and mRNA
qRT-PCR were done as described [14]. qRT-PCR primer
sequences are available upon request, B2M was used as
reference gene. MiRNA-Detection was performed with
TaqMan miRNA assays (ABI), RNU44 was used as refer-
ence gene. All data were analyzed in a StepOnePlus
Cycler (ABI) using the geNORM ΔΔCt equations. RNA
fractionation into cytoplasmic and nuclear lysates was
done by PARIS Kit (Ambion, lifetech) according to manu-
facturers’ instructions.

http://www.broadinstitute.org/rnai/public/
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5’-RACE PCR
For rapid amplification of cDNA ends the GeneRacer®
Kit with SuperScript® III RT and Zero Blunt® TOPO®
PCR Cloning Kit for Sequencing (Invitrogen) were used.
The 5’ ends were amplified by nested PCR using HotStar
Mastermix (Qiagen) and Phusion Polymerase (Finnzymes).
Primers and sequenced clones are available upon request.

RNA Fluorescence in situ hybridization
RNA detection was performed according to de Planell-
Saguer [37]. Specifically, the LNA ISH with following tyra-
mide signal amplification protocol was used. CMK cells
were prepared as cytospins from fresh mock cultures. All
TAMRA-conjugated LNA probes were designed and syn-
thesized by Exiqon. Fluorescence microscopy was carried
out on a BZ9000 (Keyence), data analysis was performed
with Biorevo Software (Keyence).

Statistical analysis
Statistical evaluation between two groups was carried
out using Student’s t-test and for more than two groups
by 2-way ANOVA with Tukey’s or Sidak’s post-hoc ana-
lysis. The level of significance was set at P < 0.05. All
data are presented as mean ± s.d. Calculations were per-
formed using GraphPad Prism 6.

Additional files

Additional file 1: Figure S1. A) qRT-PCR of MIR100HG in shRNA-transdued
CMK cells. B) Number of shRNA- or ctrl-transduced K562 cells. C) Growth
competition assay. The fraction of Cerulean+ shRNA-transduced cells at
indicated time points of culture is shown in relation to the ctrl construct.

Additional file 2: Figure S2. A) qRT-PCR of MONC in shRNA-transdued
CMK cells. B) Number of shRNA- or ctrl-transduced K562 cells. C) Well
pictures of automated microscopy assays in indicated cell lines on day 4
(scale bar: 200 μm) (n = 1). D) Number of colonies from methylcellulose-based
colony-forming assays of sh-MONC transduced K562, CMK and M-07 cells.

Additional file 3: Figure S3. Sequence of MONC iso-6 transcript
(ENST00000445461.2) cloned into LeGO-CeB/lnc vector.

Additional file 4: Figure S4. Basal expression levels of MIR100HG and
MONC in CD34+ HSPCs compared to CMK cells as determined by qPCR.
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