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Abstract

adrenocortical malignancy.

Background: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with high mutational heterogeneity
and a generally poor clinical outcome. Despite implicated roles of deregulated TP53, IGF-2 and Wnt signaling
pathways, a clear genetic association or unique mutational link to the disease is still missing. Recent studies suggest
a crucial role for epigenetic modifications in the genesis and/or progression of ACC. This study specifically evaluates
the potential role of epigenetic silencing of RASSF1A, the most commonly silenced tumor suppressor gene, in

Results: Using adrenocortical tumor and normal tissue specimens, we show a significant reduction in expression of
RASSFTA mRNA and protein in ACC. Methylation-sensitive and -dependent restriction enzyme based PCR assays
revealed significant DNA hypermethylation of the RASSFIA promoter, suggesting an epigenetic mechanism for
RASSF1A silencing in ACC. Conversely, the RASSFIA promoter methylation profile in benign adrenocortical
adenomas (ACAs) was found to be very similar to that found in normal adrenal cortex. Enforced expression of
ectopic RASSF1A in the SW-13 ACC cell line reduced the overall malignant behavior of the cells, which included
impairment of invasion through the basement membrane, cell motility, and solitary cell survival and growth. On the
other hand, expression of RASSF1A/A133S, a loss-of-function mutant form of RASSFIA, failed to elicit similar
malignancy-suppressing responses in ACC cells. Moreover, association of RASSFT1A with the cytoskeleton in
RASSF1A-expressing ACC cells and normal adrenal cortex suggests a role for RASSFTA in modulating microtubule
dynamics in the adrenal cortex, and thereby potentially blocking malignant progression.

Conclusions: Downregulation of RASSFTA via promoter hypermethylation may play a role in the malignant progression
of adrenocortical carcinoma possibly by abrogating differentiation-promoting RASSF1A- microtubule interactions.
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Background

Adrenocortical carcinoma (ACC) is a rare endocrine
malignancy, with an annual incidence of approximately
0.5 - 2 cases per million [1,2]. Despite recent progress,
including the first randomized controlled trial of con-
ventional chemotherapy in ACC patients [3], these
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tumors remain a clinical challenge, with an overall
5-year survival of 16-38% even with aggressive surgical
and oncologic therapy [4]. The major reasons for this
include (a) an initially silent clinical course that ultim-
ately manifests in advanced disease, with 30-40% of pa-
tients having metastatic disease upon initial diagnosis
[5,6] and, (b) the incomplete understanding of the mo-
lecular pathogenesis of the disease.

Several well-known tumor suppressor- and oncogene-
signaling pathways have been previously described as
implicated in ACC tumorigenesis. In addition to somatic
mutations in exons 5-8 and 2-11, germ-line variants in
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TP53 also has been reported in sporadic ACCs [7-11].
Moreover, the Wnt signaling pathway is found fre-
quently altered in ACC, with abnormal accumulation of
[-catenin present in 85% of ACC, and somatic activating
mutations present in 30% of ACCs [12]. In patients with
Carney Complex and Isolated Primary Pigmented Nodu-
lar Adrenocortical Disease, somatic inactivating muta-
tions in PRKARIA have been associated with ACC [13].
Although controversial, deregulated IGF signaling also
has been implicated in the origin and/or progression of
ACC [14].

The Ras-Association Domain Family 1A (RASSF1A)
protein is a 37kDa ubiquitously expressed isoform
of the RASSFI gene with demonstrated tumor
suppressor function in a variety of tissues [15-17].
RASSF1 is expressed as multiple splice variants, with
each containing an RA domain, a C-terminal SARAH
protein-protein interaction motif, a phosphorylation
site for the DNA repair kinase ATM, and a cysteine-
rich domain homologous to the Raf-1 diacylglycerol
binding domain [15]. The RASSFI gene has two associ-
ated CpG islands (CpG islands A & C), with the smaller
737 bp-CpG island A spanning the promoter region for
RASSFIA while CpG island C spans exon 2 that en-
compasses promoter regions for isoforms RASFF1B
and RASFF1C [18].

Multiple studies have suggested a variety of roles for
RASSFIA in suppressing carcinogenesis. RASSF1A restricts
unscheduled proliferation, survival, and migration signaling
downstream of a variety of oncogenes, including RAS and
BRAF [19,20]. RASSFIA can regulate cell proliferation via
protein-protein interaction with RAS [21], can stabilize
microtubule formation via a domain near the ATM
phosphorylation target (S131) [22-25], and has demon-
strated pro-apoptotic effects downstream to multiple
pathways including Hippo, SAPK-JNK, and MST1/MST2
[26]. RASSF1A can also suppress K-Ras and TNF-alpha
induced resistance to apoptosis [22,25,27,28]. Further-
more, RASSFIA induction has been shown to suppress
anchorage-dependent colony formation in non-squamous
cell lung cancer cell-lines [29] and RASSFIA knockout
mice have increased susceptibility to spontaneous tumor
development [30]. However, its precise role and mechan-
ism of action in most tumor types remains to be further
clarified [31-34].

Epigenetic aberrations, including DNA methylation
and histone modifications, are increasingly being recog-
nized for their role in altering patterns of gene expres-
sion, potentially contributing to tumorigenesis [35].
Global DNA hypomethylation has been demonstrated in
ACC [36,37] with locus-specific patterns of hyper-
methylation [36,38]. Genome-wide studies of the DNA
methylomes of ACC and ACA have identified multiple
genes with differential DNA methylation patterns;
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notably, including several tumor suppressor genes
[38,39].

Hypermethylation of the RASSFI promoter respon-
sible for RASSF1A expression has a well-established
role in tumor progression in several organ systems
and tissue types [26,40-45], including several endo-
crine tumors. Specifically, epigenetic suppression of
RASSFIA expression in papillary thyroid carcinoma
has been strongly implicated in early tumor forma-
tion [31,32,46,47]. Similarly, epigenetic silencing of
RASSF1A has been demonstrated in neural crest tu-
mors such as neuroblastoma and pheochromocytoma
[46]. Alternatively, genetic silencing of RASSFIA
gene by mutations and other aberrations are pos-
sible, but rarely seen in human cancers [47]. In this
study, we hypothesized that RASSF1A functions as a
tumor suppressor in adrenal cortex and that its epi-
genetic suppression by promoter methylation may be
a key step in tumor progression. We also evaluated
whether RASSFIA suppression in ACC is correlated
with a more malignant phenotype. Furthermore, we
investigated the functional consequence of reversing
this suppression in an adrenocortical cell culture sys-
tem with the aim towards understanding the mech-
anism of RASSF1A function in the adrenal cortex.

Results

Increased hypermethylation of CpG island A of the
RASSF1 promoter in adrenocortical carcinoma

RASSF1 CpG island A hypermethylation is the most
common epigenetic mechanism observed in tumors
with silenced RASSF1A function [31,32,46,47]. To test
whether promoter hypermethylation and consequent
RASSFIA silencing contributes to adrenocortical tu-
morigenesis, we first determined the methylation status
of CpG island A of RASSFI in fresh-frozen ACC
(n=7), ACA (adrenocortical adenoma; n=38) and nor-
mal adrenal cortex (n=6) tissue specimens. Rarity of
the disease and scarcity of adequate amounts of the
specimens for assays constrained us from recruiting a
larger cohort. We used a methylation-sensitive and -
dependent restriction digestion based qPCR strategy to
evaluate the methylation status of the 737bp area that
spans RASSFI CpG island A. This technique enables
qualitative characterization (i.e. — regions demonstrating
hypo-/intermediate-/hyper- methylation) of DNA methy-
lation. The overall methylation profiles of normal and
benign ACA samples were found to be very similar
(57% and 60% respectively) while malignant ACCs showed
a distinct statistically significant increase (86%) in the
methylated fraction (Figure 1A). Analysis of methylation
patterns in individual samples showed very low levels of
hypermethylation (which represents >60% digestion by
methylation-dependent restriction enzyme) in all
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Figure 1 RASSF1A expression and regulation in adrenal tumor. (A) Averages of percentage methylated (FM) and unmethylated (FUM) CpGs
in CpG island A of RASSFIA promoters in Normal adrenal cortex (n=6), ACA (n=8), and ACC (n=7) samples are shown. FM includes both
Hypermethylated (FHM) and intermediate methylated (FIM) fractions. (B) Methylation profiles of individual fresh-frozen normal adrenal cortex

(N1 = N6), 8 ACAs (A1 — A8) and 7 ACC samples (C1 — C7) as determined by Epitect methy! Il PCR assay. (C) Expression of RASSFTIA mRNA
determined by real-time gPCR in 7 ACC samples (C1 - C7) compared to the average expression in 6 normal samples (N) normalized to a value of
1.0. RASSF1A expressions in individual samples were also normalized to the average mRNA expression of house-keeping genes beta-actin (Actb)
and TATA-binding protein (7BP). C-Av represents the average expression of all ACC samples. Data shown is from one of triplicate experiments
that yielded similar results (mean =+ SD). Independent sample t-test used to derive the p value (p=<0.01). (D) RASSF1A protein expression in
normal (a & b) and ACC (c & d) FFPE tissue specimens demonstrated by immunohistochemistry through DAB staining (brown indicates RASSF1A
protein expression) followed by nuclear counterstaining by hematoxylin (blue).
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normal and ACA cases (Figure 1B). Hypermethylation
in normal adrenal cortex samples ranged from 0.2 — 2.0
% with an average of 0.35% and ACA samples ranged
from 0.03 — 1.7% with an average hypermethylation
of 0.7%. Conversely, all the ACC samples tested
showed hypermethylation in excess of the maximum
level observed in normal and ACA tissues.
60% (4/7) of ACC samples had very high (>20%)
hypermethylation of the CpG island A of the RASSFI

promoter (Figure 1B).

About

Reduced expression of RASSF1A in adrenocortical
carcinoma (ACC)

A direct correlation between RASSFI promoter hy-
permethylation and reduced RASSF1A expression is
observed in a variety of cancers (15). To test whether
the observed CpG Island A hypermethylation in ACC
(Figure 1B) is associated with a corresponding reduction
in RASSF1A expression, we compared the mRNA and
protein expression in ACC samples to that of normal ad-
renal cortex tissue samples. Quantitative PCR analysis of
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gene expression showed significantly decreased expression
of RASSFIA mRNA in ACC samples (P<0.01) ranging
from 1% to 24% of average RASSF1A expression in nor-
mal adrenal cortex (Figure 1C). All ACC samples tested
showed reduced expression of RASSF1A, irrespective of
their clinical characteristics or malignant stages status
(Table 1; Figure 1C). We also assessed the expression
levels of RASSF1A protein in ACC samples by immuno-
histochemical staining. Histopathologically normal speci-
mens (Figure 1D; a & b) showed markedly higher
RASSF1A expression, while RASSF1A was undetectable
in areas dominated by malignant cells (Figure 1D; ¢ & d),
suggesting a correlation between low mRNA expression
and undetectable RASSF1A protein levels in ACC
samples.

To investigate the functional significance of promoter
hypermethylation and consequent RASSF1A silencing in
adrenocortical carcinogenesis, we sought to utilize a cell
culture model. To identify a suitable model, we analyzed
the RASSF1A expression pattern in two widely used
ACC cell lines NCI-H295R and SW-13, by indirect im-
munofluorescence (Figure 2A). As shown in Figure 2A,
both ACC cell lines revealed undetectable levels of
RASSF1A, when compared with the expression in a thy-
roid cancer cell line ACT-1. Next, we examined the
methylation pattern of NCI-H295R and SW-13 cells
which showed very high levels of methylation in both
cell types (Figure 2B). However, the methylation pattern
appeared to be different between the two ACC cell lines.
While NCI-H295R cells showed no hypermethylation,
similar to ACA and normal adrenal tissue methylation,
SW-13 cells showed more than 99% hypermethylation in
the RASSF1 promoter (Figure 2B), similar to the
hypermethylation levels observed in some ACC samples
(note Figure 1B). Therefore, we chose SW-13 cells for
further functional studies. To confirm RASSFIA pro-
moter hypermethylation as the cause of RASSFI1A
downregulation in SW-13 cells, we treated the cells
with a widely used de-methylating agent 5-aza-2’-
deoxycytidine [35]. After 48 hours of treatment with
5-aza-2’-deoxycytidine, RASSFIA promoter analysis

Table 1 Clinicopathological characteristics of patients
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showed a dose-dependent reversal of hypermethylation
(Figure 2C) and a consequent dose-dependent increase
in the expression levels of RASSFIA mRNA (Figure 2D).

Enforced expression of RASSF1A in SW-13 cells
To test whether RASSFIA silencing contributes to
the malignant progression of ACC, we re-expressed
RASSFIA in SW-13 ACC cells that did not express de-
tectable levels of RASSF1A (Figure 2A). In addition to
the empty vector transfection controls (Figure 3A; a, e),
we also expressed a variant of RASSF1A (RASSF1A/
A133S) with demonstrated inability to elicit tumor
suppressor function [48], as a control. Expression of ec-
topic RASSF1A (Figure 3A; b-d) and RASSF1A/A133S
(Figure 3A; f-h) were confirmed using anti-RASSF1A
antibody (Figure 3A; b & f) or anti-DDK antibody
(Figure 3A; ¢ & g), both of which co-localized to the
same epitope (Figure 3A; d & h). After confirming the
transfection efficiency to be in excess of 70% (Figure 3A)
one day post-transfection, we determined the cell prolif-
eration efficiency and cell survival for a period of 6 days
post-transfection. Constitutive expression of RASSF1A
(SW-13/A) or RASSF1A/A133S mutant (SW-13/AM)
showed no significant impact on the proliferation
(Figure 3B) or viability (Figure 3C) of SW-13 cells in
comparison with SW-13 transiently transfected with
the empty vector (SW-13/V) alone (Figures 3B & 3C).
The tumor suppressor function of RASSFI1A is
context-dependent and is elicited via multiple and alter-
nate signaling events such as pro-apoptotic, cell cycle ar-
rest, mitotic arrest and/or cytoskeletal modifications
[15]. After confirming the lack of apoptosis-inducing
and cell cycle arrest functions in SW-13 cells via transi-
ent transfection experiments (Figures 3B & 3C), we
generated stable SW-13 cell derivatives that expressed
RASSF1IA and RASSF1A/A133S mutant proteins, to
study potential tumor suppressor functions of RASSF1A
in adrenal carcinomas. Expression of RASSF1A (SW-13/
A) and RASSF1A/A133S (SW-13/AM) was verified fol-
lowing neomycin selection and subsequent population
expansion, using Western immunoblots (Figure 4A;

ID Age Gender ENSAT 2008 Stage Metastasis Diameter Hormonal profile Recurrence
cl 58 F 1 13 cm Non-functional

2 32 F 1] N 12 cm Androgen-producing N

c 62 F 1] Y 14 cm Cortisol-producing Y

c4 48 M 1 N 9 cm Non-functional N

cs5 48 F n N 13 cm Cortisol-producing Y

cé6 55 F \" Y 5.5 cm Cortisol-producing Y

c7 60 F \" Y 7.8 cm Cortisol-producing Y

Diverse clinical and pathological characteristics of adrenocortical cancer (n =7) patients selected for the study, is shown. ENSAT 2008 Staging: European Network

for the Study of Endocrine Tumors; Y = Yes, N = No, F = Female, M = Male.
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Figure 2 RASSF1A expression and promoter methylation in ACC cell lines. (A) Indirect immunofluorescence detection of RASSF1A protein
(FITC - green) expression in SW-13, NCI-H295R and ACT-1 (a thyroid cancer cell line used as a positive control for RASSF1A expression) cells. Cell
nuclei fluoresces blue due to DAPI fluorescence. (B) RASSFTA promoter methylation pattern in exponentially growing cultures of NCI-H295R and
SW-13 cells as determined by Epitect methyl Il PCR assay. Averages of percentage Hypermethylated (FHM) intermediate methylated (FIM), and
unmethylated (FUM) CpGs are shown. (C & D) SW-13 cells were grown in the presence of varying (0, 0.1, 1, 5 and 10 uM) concentrations of 5-
aza-2-deoxycitidine for 48 hours and (C) Epitect methyl Il assay was performed on genomic DNA to determine RASSF1A promoter methylation,
and (D) RASSF1A mRNA expression was assayed by real-time gqPCR. Average mRNA expression values of house-keeping genes beta-actin (Actb)
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lanes a2, a3 & b2) and immunofluorescence (Figure 4B).
Wild-type RASSF1A were found distributed both in the
cytoplasm and nucleus of cells (Figure 4B; b) while
RASSF1A/A133S mutant proteins were found predom-
inantly localized in the cytoplasm (Figure 4B; c). Note
lack of expression of endogenous RASSF1A in SW-13/V
cells (Figure 4A: lane bl and Figure 4B; a). Similar to the
observation in transiently transfected cells (Figure 3B &
3C), no significant detrimental effects on cell viability

or growth were observed following stable expression
in SW-13/V, SW-13/A, or SW-13/AM populations
(Figure 4C & 4D), suggesting alternate roles for RASSF1A
silencing in ACC and possibly in SW-13 cell behavior.

Re-expression of RASSF1A reduces malignant behavior of
SW-13 cells

Advanced features of malignancy, such as invasion of or
migration to adjacent tissues, degradation of the extra
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Figure 3 Enforced expression of RASSF1A in ACC cells. (A) SW-13 ACC cells that do not express RASSF1A (a) were transfected with empty (a
& €), RASSFIA (b - d) or RASSF1A/A133S (f - h) expression vectors. Expression of RASSF1A was determined by immunofluorescence detection of
RASSF1A protein (b & f) or DDK tag (c & g) using anti-RASSF1 goat polyclonal and anti-DDK mAb respectively followed by anti-goat-FITC and
anti-moue-TR secondary antibodies and DAPI for nuclear staining. Note co-localization of RASSF1A and DDK antigens (d & h) and absence of
both in a & e. (B & C) Transient transfection was carried out in 6-well plates with a starting density of 80,000 cells/well and allowed to grow for 6
days to test the effect of RASSF1A and RASSF1A/A133S expression on growth potential (B) and survival (C) of SW-13 cells. Graphs represent one
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cellular matrix (ECM), and clonogenic survival and
growth, are hallmarks of aggressive tumors such as ACC
that portend a poor clinical outcome. We evaluated
whether constitutive expression of RASSF1A have any
effect on the malignant phenotype of SW-13 cells. Cell
invasiveness was evaluated using an overnight Matrigel
invasion assay, which showed a significant reduction
in the invasive potential of SW-13 cells constitutively
expressing RASSF1A (SW-13/A) compared to empty
vector (SW-13/V) or RASSF1A mutant (SW-13/AM)
(Figure 5A). To test whether the reduced invasive poten-
tial is through an impaired migratory response, cells

were allowed to migrate through 8um pore-carrying
cell culture inserts following a nutrient gradient. After
4 hours, SW-13 cells expressing RASSFIA showed a
5-fold reduction in the number of cells migrated across
the membrane (Figure 5B), suggesting a strong motility-
inhibitory response from re-expressed RASSF1A. Simi-
larly, cells constitutively expressing high levels of
RASSF1A also showed a significantly impaired clonogenic
survival/growth response when compared to cells not
expressing RASSF1A or cells expressing high levels
of RASSF1A/A133S mutant proteins (Figure 5C). In
summary, RASSF1A expression resulted in an overall
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Figure 4 Stable expression and selection of RASSF1A-expressing ACC cell lines. SW-13 ACC cells were transfected with CMV-promoted

Days in Culture

RASSF1A and RASSFIA/AT133S mutant genes and G-418 resistant clones were selected under low-seeding densities. Multiple clones were pooled to
make populations to avoid variability in expression levels. (A) Western Immunoblot detection of RASSF1A and RASSF1A/A133S (arrows point to
the RASSF1A bands) expression using anti-DDK (a) or anti-RASSF1A (b) antibody (lanes al: transfected with empty vector; lane a2: RASSF1A; lane
a3: RASSF1A/A133S; b1 empty vector, and lane b2 RASSF1A expression vectors). (B) Immunofluorescence detection of RASSF1A expression in (a)
SW-13/N, (b) SW-13/A, and (c) SW-13/M cells, using anti-RASSF1A mAb followed by anti-mouse-FITC antibody (green). DAPI stained nucleus
appears blue. (C & D) Established populations were grown for 7 days to determine the effect of constitutive expression of RASSF1A or RASSF1A/

independent experiments with similar results.

A133S on proliferation (C) and survival (D) in comparison to vector-transfected and selected cells. Graphs represent data from one of two

J

reduced malignant behavior of SW-13 ACC cells which
was not observed in cells expressing the RASSF1A/
A133S mutant protein.

RASSF1A alters malignant behavior of ACC cells by
modulating microtubule organization

To test whether the observed malignant-dampening ef-
fect of RASSF1A in SW-13 cells is through modulating
cytoskeletal function, we examined the localization pat-
tern of RASSF1A (Figure 6A; b & c)) and RASSF1A/
A133S mutant (Figure 6A; e & f) proteins in the context
of localization of microtubule-binding phalloidins

(Figure 6A; a, ¢, d & f). Co-localization of microtubules
with RASSF1A was observed predominantly in cells ex-
pressing the wild-type RASSF1A protein (Note the ar-
rows in Figure 6A; c), which was found significantly
reduced (6B) in cells expressing RASSF1A/A133S mu-
tant proteins (Figure 6A; f), suggesting a potential
microtubule modulatory role for RASSF1A, not the mu-
tant A133S mutant, in eliciting the observed reduced
malignant behavior in SW-13 cells constitutively ex-
pressing RASSF1A. Despite the absence of RASSF1A/
A133S co-localization with microtubules, the overall
microtubule distribution appeared to be similar between
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Figure 5 Constitutive expression of RASSF1A reduces the invasive, migratory and clonogenic potentials of SW-13 cells. (A), SW-13/A
and SW-13/AM cells were allowed to invade through Matrigel from upper chambers containing serum-free medium to lower chambers

SW-13/V. SW-13/A SW-13/AM

containing 10% FBS medium. After 24 hours, and invaded cells were fixed, stained with crystal violet and tabulated. Data represent results from
one of two independent experiments with similar results. (B) SW-13/V, SW-13/A and SW-13/AM cells were allowed to migrate through modified
Boyden Chambers (8 uM pore size) for 4 hours and migrated cells to the lower side of the membrane were fixed, stained with crystal violet and
tabulated. Data from a representative experiment of triplicate experiments with similar results are shown. (C) SW-13/V, SW-13/A and SW-13/AM
cells were seeded in 6-well plates in low densities (5000 cells/well) and allowed to grow for 7 days in G-418 containing medium. Cells were
washed with PBS, fixed in 3.7 % formaldehyde solution stained with crystal violet and colonies with 10 +/— 2 cells were counted and averaged

from 6 wells. Data from a representative experiment of quadruplicate experiments with similar results are shown.

RASSF1A-expressing and A133S mutant-expressing
cells (6A; a & b). We also observed a similar co-
localization pattern for RASSF1A and microtubules
(Figure 6C; a) in normal adrenal cortex where microtu-
bules appeared to have a punctate co-localization pattern
of distribution with RASSF1A, in comparison to a more
dispersed distribution found in ACC specimens that lack
RASSF1A expression (Figure 6C; b). Although indirect,
the co-localization of RASSF1A with microtubules both in
normal adrenal cortex and ACC cells with reduced malig-
nant properties (SW-13/A) suggests an anti-motility role
for RASSF1A in adrenocortical carcinogenesis.

Discussion

Neoplasias of the adrenal cortex present unique chal-
lenges in diagnosis and treatment, largely due to an in-
complete understanding of the molecular pathogenesis
of the disease. In this study, we examine the role of
RASSF1A, a well-known tumor suppressor that has
demonstrated roles in numerous other malignancies

including several endocrine cancers, in adrenocortical
carcinogenesis. Recent studies in gene expression profil-
ing have suggested a potential role for aberrant DNA
methylation events (both hypo- and hypermethylation)
in the origin and/or progression of ACC, as in many
other malignancies, including endocrine tumors such as
neuroblastoma and pheochromocytoma [35-38,46,49,50].
RASSF1A, the most frequently silenced tumor suppres-
sor via promoter methylation [15], thus is an attractive
candidate to explore in the context of adrenocortical
tumorigenesis.

Interrogation of the CpG Island A of the RASSFI pro-
moter using the methyl screen technology showed a
markedly increased hypermethylation pattern in ACC
tissue samples. The promoter hypermethylation pattern
observed in ACC was distinctly different from both nor-
mal adrenal cortex samples and benign adenomas,
suggesting RASSF1A silencing as a possible later event
in the overall adrenocortical tumorigenesis process. Ex-
pression analysis of RASSF1A in ACC demonstrated the
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Figure 6 Co-localization of RASSF1A with microtubules. (A) SW-13/A (a, b & c) or SW-13/AM (d, e & f) cells were grown on glass cover slips
in medium containing 400 ug/ml G418 and after 24 hours, cells were fixed in cold Acetone-Methanol (1:1) for 10 minutes followed by
immunofluorescence detection of cytoskeleton (using Rhodamine-Phalloidin; a & d) or RASSF1A (using anti-RASSF1A antibody and FITC-

conjugated secondary antibody; b & e) or both (c & f). Cell nuclei fluoresces blue with DAPI. Arrows indicate areas of co-localization of RASSF1A
and cytoskeleton (c & f). (B) RASSF1A-microtubule co-localization points in comparable number of photomicrographs of SW-13/A and SW-13/AM
cells representing multiple views from duplicate experiments were manually counted, tabulated and presented as a graph. (C) Representative
photomicrographs showing indirect immunofluorescence detection of RASSF1A and microtubules in the normal adrenal cortex (a) and ACC (b)

RASSF1A and microtubules. (Total magnification: 1000X).

tissue specimens. Red fluorescence represents microtubules, green RASSF1A and blue DAPI-stained nuclei. Arrows indicate co-localization of

functional consequence of hypermethylation as a signifi-
cant decrease in both gene transcription and translation
of RASSFIA in ACC cells as determined by qPCR, and
immunohistochemistry respectively.

To test the hypothesized role for RASSF1A silencing
in promoting adrenocortical malignancy, we sought to
use a well-established cell culture model. We chose SW-
13 ACC cell line that showed a comparable RASSFI pro-
moter CpG Island A hypermethylation and undetectable
RASSF1A protein expression. As the tumor suppressor
function of RASSFIA manifests in promotion of

apoptosis and downregulation of cell proliferation, via-
bility and proliferation of SW-13 cells was first assessed
following transient transfection with RASSF1A-expressing
vector and found to be unaffected. Lack of promotion
of cell death or cell cycle arrest by RASSF1A re-
expression allowed us to generate SW-13 cell derivatives
constitutively expressing RASSF1A. After confirming no
growth disadvantage consequent to enforced over expres-
sion of RASSF1A, SW-13 cell variants constitutively
expressing RASSFIA and RASSFIA/A133S were then
assayed for other advanced malignancy or metastasis
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associated tumor behaviors such as invasion and solitary
cell growth. Using a reconstituted basement membrane
(Matrigel) invasion assay, a significant reduction in inva-
siveness was observed in SW-13 cells with forced
RASSF1A expression (SW-13/A). To test whether the re-
duced invasive potential we observed in SW-13 cells with
forced RASSF1A expression was due to decreased migra-
tory ability, transwell migration assays were performed.
The results mirrored the invasion assay, demonstrating sig-
nificantly lower migratory potential with forced wild-type
RASSF1A expression that was absent in SW-13/AM. The
RASSF1A-mediated inhibition of the migratory response
appeared to be sufficient to account for the observed anti-
invasive effect and therefore, we did not investigate poten-
tial involvement of matrix metalloproteinases (MMPs)
or their inhibitors in mediating the observed Matrigel
invasion-inhibitory response. Finally, under low seeding
conditions that mimic solitary cell growth, constitutive ex-
pression of RASSF1A reduced the clonogenicity of solitary
SW-13 cells with decreased ability to establish, survive
and grow into individual clones. The solitary growth in-
hibitory effect was not found in RASSF1A/A133S-
expressing SW-13 cells.

Changes in microtubule dynamics are essential events
in initial local tumor invasion as well as later metastatic
spread. RASSF1A has demonstrated ability in influencing
cytoskeletal dynamics by physically binding to filamentous
actin as well as inhibiting tubulin polymerization
[23,24,28,51,52]. To test whether ectopically-expressed
RASSF1A physically interacts with microtubules, we
treated cells with microtubule-binding phalloidin along
with RASSF1A-detecting antibodies. In cells expressing
RASSF1A, but not in cells expressing the A133S mutant,
we observed sporadic co-localization of RASSF1A with
microtubules, which may have a stabilizing effect on
microtubule dynamics. Interestingly, it has been recently
suggested that the A133S point mutation in RASSF1A ab-
rogates its ability to modulate cytoskeletal interactions,
contributing to loss of its tumor suppressor function
[53]. Stabilization of microtubules by RASSF1A has
been shown to disrupt malignant behavior in many
cancer cell types [54]. Although RASSF1A-microtubule
co-localization was not ubiquitously observed throughout
the cell, the detected limited interaction may lead to
partial global disruption of microtubule dynamics and
contribute to the observed dampening of malignant be-
haviors in SW-13 cells. To assess whether the implicated
cytoskeleton-stabilizing role is absent in ACC tissue, we
compared the general organization of cytoskeleton in
ACC tissue to that of normal adrenal cortex. In ACC,
the cytoskeleton appeared to be very diffuse while
in the normal cortex, the cytoskeleton co-localized
with RASSF1A into a pattern of punctuated structures
(Figure 6C), suggestive of a more stabilized organization.
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However, more experiments are needed to confirm
the functional significance of such predicted RASSF1A-
cytoskeletal interactions.

In summary, the results of this study strongly suggest
functional evidence of a potential oncosuppressor role
for RASSF1A in adrenocortical carcinogenesis. Although
implicated to play a cytoskeleton-modulating role in
other tissues, this study provides the first evidence for a
cytoskeleton-stabilizing role for RASSF1A in adrenal
cortex. Whether silencing of RASSF1A serves as a driv-
ing event driving benign ACAs to malignant ACC status,
need further investigation.

Materials and methods

Tissue acquisition

Informed consent was obtained from patients prior to
surgical resection of adrenal tissue according to a proto-
col approved by the local Institutional Review Board and
Yale Pathology Tissue services. Tissue was flash-frozen
in liquid nitrogen and stored at -80°C until processed for
study. Specimens displaying unequivocal histopatho-
logical characteristics of ACC (n=7), ACA (n=8), and
normal adrenal cortical tissue (n=6) samples were se-
lected for use in the study. Consecutive unstained and
Hematoxylin & Eosin (H&E) stained 5 pum sections of
tumor and normal formalin-fixed paraffin embedded
(FFPE) tissue samples were obtained from Yale Tissue
Pathology services. All samples were evaluated by expe-
rienced endocrine pathologists before processing.

DNA, RNA, and Protein preparation

Genomic DNA from tissue samples were isolated using
the DNeasy blood and tissue kit from Qiagen (Valencia,
CA). Total RNA from the samples were isolated using
the RNeasy Mini Kit (Qiagen, Valencia, CA,) after rotor-
stator homogenization, per the manufacturer’s recom-
mendations. Quantity and quality of prepared DNA and
RNA was assessed by spectrophotometry (NanoDrop
Technologies, Inc., Thermo Fischer, Waltham, MA) and
1% agarose gel electrophoresis. Total protein from cul-
tured cells were extracted using Laemmli buffer
(BioRad, Hercules, CA) and protein concentrations
were measured using the Pierce BCA Protein assay Kit
(Thermo Scientific, Rockford, IL) and Multimax detec-
tion system (Promega, Madison, WI), per the manufac-
turer’s instructions.

Gene expression analysis

Total RNA (100 ng) was reverse transcribed using Super-
script III reverse transcriptase (Applied Biosystems,
Rockville, MD). Quantitative real-time PCR (qPCR) was
performed on triplicate samples using TagMan PCR mas-
ter mix with the FAM flurophore and probe/primer pairs
specific to RASSF1A (Applied Biosystems, Rockville, MD)
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according to the manufacturer’s cycling conditions using
CFX96 thermal cyclers (Bio-Rad, Hercules, CA). Gene ex-
pression levels were normalized to the averages of expres-
sion levels of beta-actin and TATA-binding protein probe/
primer pairs (Applied Biosystems, Rockville, MD). The
Cycle Threshold (Ct) values were calculated using the
recommended Livak method (Bio-Rad, Hercules, CA).

Methylation-specific PCR

Methylation status of CpG Island A of the RASSFIA
promoter was assessed by MethylScreen technology
using the Epitect methyl II PCR assay (Qiagen, Valencia,
CA). Briefly, 125 ng of genomic DNA was mock-
digested or digested with methylation-sensitive and
methylation-dependent restriction enzymes individually
or together, and the methylation status of the target se-
quence was measured using real-time qPCR with probes
specific to the target promoter sequences. The amplifica-
tion results that corresponds to >60% digestion by
methylation-dependent restriction enzyme represents
Hypermethylated sequences and 0% digestion indicates
completely unmethylated DNA. Any amount of diges-
tion between 0% and 60% represents the ‘intermediate
methylation’ fraction. The Cycle Threshold (Ct) values
were converted into percentages of unmethylated,
intermediately-methylated and hypermethylated CpG
values, using a quantitation algorithm provided by the
manufacturer (EpiTect Methyl IT PCR Assay Handbook —
Qiagen, Valencia, CA).

Immunohistochemical (IHC) and Immunofluorescence (IF)

detection

Five um-thick FFPE sections were processed for immuno-
histochemistry according to the protocol recommended
by the manufacturer of 3,3’Diaminobenzidine (DAB)
substrate (BD Biosciences, San Jose, CA). Mouse anti-
RASSF1A (1:100) primary antibody (Abcam, Cambridge,
MA), goat anti-mouse/Biotin antibody (Santa Cruz
Biotech., Santa Cruz, CA) and streptavidin-HRP (Life
technologies, Rockville, MD) were used prior to DAB sub-
strate development and detection (BD Biosciences, San
Jose, CA). Nikon Eclipse E600 microscope with Spot
3.5 program was used to take photomicrographs at a total
magnification of 400X. Immunofluorescence detection of
RASSF1A proteins and microtubules were carried out as
described [55]. Mouse anti-RASSFIA mAb (1:100;
Abcam, Cambridge, MA) or goat anti-RASSF1A goat
polyclonal (1:200; Santa CruZ Biotech, Santa Cruz, CA)
primary antibodies and anti-goat FITC, anti-goat TR, anti-
mouse FITC, or anti-mouse TR secondary antibodies
(1:1000; all from Santa Cruz Biotech., Santa Cruz, CA)
were used followed by ultracruz mounting agent
containing 4,6-diamidino-2-phenylindole - DAPI (Santa
Cruz Biotech., Santa Cruz, CA) for immunodetection.
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Anti-DDK (DYKDDDDK epitope) monoclonal antibody
(1:200; Origene, Rockville, MD) was used for detecting
DDK-tagged RASSFIA and RASSF1A/A133S in transfected
cells. Rhodamine Phalloidin, a high affinity F-actin
probe conjugated to the red-orange fluorescent dye,
tetramethylrhodamine (TRITC) (Biotium, Hayward,
CA) was used for immunofluorescence detection of mi-
crotubules. Dilutions and incubations were carried out
per the manufacturer’s recommendations. Zeiss AX10
confocal microscope with AxioVision 4.8 program was
used for immunofluorescence analysis and photomicro-
graphs were taken at a total magnification of 1000X.

Cell culture, expression vectors, transfections, and
Western blot detection

The human ACC cell line SW-13 was purchased from
American Type Cell Collection (Manassas, VA) and
was maintained under sterile conditions in DMEM
supplemented with 10% certified fetal bovine serum
and 10,000 U/mL penicillin/streptomycin (all from Life
Technologies, Inc., Rockville, MD) in a standard humidified
incubator at 37.0 C and 5% CO,. Myc-DDK tagged
pCMVe6-Entry, pCMV6-Entry/RASSF1A, and pCMC6-
Entry/RASSF1A/A133S plasmid vectors (Origene, Rockville,
MD) were used for transfection. Transfected SW-13 cells
were designated SW-13/V representing pCMV vector alone,
SW-13/A representing pCMV-RASSF1A, and SW-13/AM
representing pPCMV-RASSF1A/A133S mutant.

Transient transfection was carried out using Lipo-
fectamine2000 according to the manufacturer’s recom-
mendations (Life Technologies, Inc., Rockville, MD) in
6-well plates with a starting density of 80,000 cells/well.
Transfected cells were allowed to grow for 6 days, to test
the effect of RASSFIA and RASSF1A/A133S mutant
gene expression on growth potential and survival of
SW-13 cells. Total cell numbers and viability were
calculated by staining cells with 0.4% Trypan Blue
(GIBCO-BRL, Life Technologies, Inc., Rockville, MD)
and manual counting using a counting chamber (Housser
Scientific Co., PA). Experiments were performed in tripli-
cate, and parallel plates with cells growing on glass cover-
slips were used to determine transfection efficiency and
continued expression of transfected genes by indirect
immunofluorescence.

Stable clones expressing RASSF1A and RASSF1A/
A133S were selected in 800 pg/ml G-418 (Life technolo-
gies Inc.,, Rockville, MD) containing growth medium.
Multiple clones were then pooled into populations to
avoid expression variability between clones. Established
populations (designated SW-13/V, SW-13/A, and SW-13
/AM representing pCMYV vector alone, pPCMV-RASSF1A,
and pCMV-RASSF1A/A133S mutant, respectively) were
used to determine the effects of constitutive expression of
RASSF1A or RASSF1A/A133S on SW-13 cell’'s malignant
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behavior. Expression of transfected genes were confirmed
via Western blotting using anti-DDK mAb for (1:1000;
Origene, MD), anti-RASSF1A mAb (1:500, Abcam, MA),
anti-mouse-HRP (Santa Cruz Biotech.,, CA), mini-
PROTEAN TGX gel, PVDF blotting membrane (BioRad,
Hercules, CA), and enhanced chemiluminescnce (ECL)
detection reagents (Pierce Thermo Scientific, Rockford,
IL) according to the manufacturer’s protocols. Equal pro-
tein loading between lanes were confirmed by staining
PVDF membranes after chemiluminescence detection.

Cell migration, invasion, and clonogenicity assays

Stable SW-13/V, SW-13/A or SW-13/AM cells were
allowed to invade through a Matrigel layer from upper
chambers containing serum-free medium to the lower
chamber containing 10% FBS medium in BDBiocoat
matrigel invasion chambers (BD Biosciences, Bedford,
MA). After 24 hours, the Matrigel was removed, and in-
vaded cells were fixed in 3.7% formaldehyde/PBS for 10
minutes, stained with 0.5% crystal violet for 2 hours, and
counted using 10X magnification with a light micro-
scope. The Matrigel invasion assay was performed twice
in duplicate chambers. In the migration assay, the
stably-transfected cells were allowed to migrate through
8 uM pore size modified Boyden Chambers (BD Biosci-
ences, Bedford, MA) from upper chambers containing
serum free medium to the lower chamber containing
10% FBS medium. After 4 hours, cells that migrated to
the lower side of the membrane towards a higher FBS
concentration gradient were fixed in 3.7% formaldehyde/
PBS for 10 minutes, stained with 0.5% crystal violet and
tabulated in triplicate. For clonogenicity assays, the cells
were seeded in 6-well plates in low densities (5000 cells/
well) and allowed to grow for 7 days in 400 pg/ml G-418
containing growth medium with a change of medium
after 3 days. Cells were washed with PBS, fixed with
3.7% formaldehyde/PBS solution, stained with 0.5% crys-
tal violet, and colonies with 10 +/- 2 cells were counted
and averaged from 6 wells after performing the assay in
quadruplicate.

Statistical analysis

Significance of observed differences in sample means
was evaluated using independent samples t-tests or
ANOVA where appropriate after ensuring normality
of distribution (Shapiro-Wilk test) and equivalence
of variance (Levene’s test). P-values less than 0.05 were
considered to be significant in all cases. Analysis
was performed using SPSS v.19 (IBM Corporation,
Armonk, NY).
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