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Abstract

Background: Prostate cancer (PCa) cell lines and tissues differentially express CXCR5, which positively correlate
with PCa progression, and mediate PCa cell migration and invasion following interaction with CXCL13. However,
the differential expression of G protein q, 3, and y subunits by PCa cell lines and the precise combination of these
proteins with CXCR5 has not been elucidated.

Methods: We examined differences in G protein expression of normal prostate (RWPE-1) and PCa cell lines (LNCaP,
(C4-2B, and PC3) by western blot analysis. Further, we immunoprecipitated CXCR5 with different G protein subunits,
and CXCR4, following CXCL13 stimulation. To investigate constitutive coupling of CXCR5 with CXCR4 and PAR-1 we
performed invasion assay in PCa cells transfected with Gqqiz OF Gq13 SIRNA, following CXCL13 treatment. We also
investigated Rac and RhoA activity by G-LISA activation assay in PCa cells following CXCL13/thrombin stimulation.

Result: Of the 22 G proteins studied, Ggi1-3, Ggi-4, Gys, Gy7, and G0 were expressed by both normal and PCa cell
lines. Gqs was moderately expressed in C4-2B and PC3 cell lines, Goq/11 Was only present in RWPE-1 and LNCaP cell
lines, while G412 and Ggp3 were expressed in C4-2B and PC3 cell lines. G,o was expressed only in PCa cell lines.

Gare Ggs, Gy1-4, and G35 were not detected in any of the cell lines studied. Surprisingly, CXCR4 co-immunoprecipitated
with CXCR5 in PCa cell lines irrespective of CXCL13 treatment. We also identified specific G protein isoforms coupled to
CXCRS in its resting and active states. Gaq/11/Gp3/Gyo i LNCaP and Ggin/Gas/Gyo in C4-2B and PC3 cell lines, were
coupled to CXCR5 and disassociated following CXCL13 stimulation. Interestingly, G413 co-immunoprecipitated with
CXCRS in CXCL13-treated, but not in untreated PCa cell lines. Inhibition of G,q/» significantly decreased the ability of
cells to invade, whereas silencing G5 did not affect CXCL13-dependent cell invasion. Finally, CXCL13 treatment
significantly increased Rac activity in Gqqi2 dependent manner, but not RhoA activity, in PCa cell lines.

Conclusions: These findings offer insight into molecular mechanisms of PCa progression and can help to design
some therapeutic strategies involving CXCR5 and/or CXCL13 blockade and specific G protein inhibition to abrogate
PCa metastasis.
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Background

G protein-coupled receptors (GPCRs) are divided into
three broad classes based on the similarity of the trans-
membrane sequences and the nature of their ligand [1].
Chemokine receptors are categorized under the super-
family of Class A Rhodopsin-like GPCRs [2]. GPCRs
interact with heterotrimeric guanine nucleotide-binding
proteins (G proteins) composed of «, B, and y subunits
present on the inner surface of the plasma membrane.
After ligand binding, the receptor elicits a conform-
ational alteration resulting in the exchange of guanosine
diphosphate (GDP) for guanosine triphosphate (GTP) by
the G, subunit. This leads to heterotrimer dissociation
and stimulation of downstream effector molecules to ini-
tiate intracellular signaling cascades [1,3,4]. G, subunits
are divided into four families Gus, Geiy Gagri1, and Gaiz/13
based on sequence homology and functional similarities.
Gy proteins are known to stimulate adenylyl cyclases
(AC), while G; proteins inhibit AC and activate phospho-
diesterases. Alternatively, Guq/11 proteins regulate the ac-
tivity of phosphatidylinositol-specific phospholipases to
generate lipid second messengers, and Ggio/13 proteins
regulate the small guanine triphosphate (GTPases). On
the other hand, G protein § and y subunits function as a
tightly associated complex to modulate the activity of se-
veral effectors including AC, protein tyrosine kinases (e.g.,
Src family tyrosine kinases), phosphoinositide-3 kinase
(PI3K) y, GPCR kinases (GRKs), and Ca** as well as K* ion
channels [4,5].

G, subunits are encoded by 17 genes (Gnas, Gnasxl,
Gnal, Gnail, Gnai2, Gnai3, Gnao, Gnaz, Gnag, Gnatl,
Gnat2, Gnaq, Gnall, Gnal4, GnalS, Gnal2, and
Gnal3). There are five known genes encoding Gg sub-
units (Gnbl, Gnb2, Gnb3, Gnb4, and Gnb5) and 12
genes encoding G, subunits (Gngtl, Gngt2, Gng2, Gng3,
Gngd, GngS, Gng7, Gng8, Gngl0, Gngll, Gngl2, and
Gngl3) [3,6,7]. A large number of potential combina-
tions of G/, heterotrimers can form; however, not all
associations are functional and they vary in their affinity
for distinct GPCRs [8,9]. G proteins also exhibit tissue-
specific expression. Most G proteins are ubiquitously
present in several tissues, but a smaller subset is con-
fined to specialized cell types [7,10].

Several studies have reported the role of G proteins in
different human diseases [11]. Comparatively, less is
known regarding the expression of these signaling pro-
teins by PCa cells. PCa cells express a repertoire of che-
mokine receptors that contribute to disease progression
and metastasis [12,13]. In this regard, we have shown
that PCa cell lines differentially express CXCR5, and this
expression positively correlates with the ability of cell
lines to migrate and invade extracellular matrix com-
ponents following interaction with CXCL13 [14,15].
To our knowledge, neither the differential expression
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of G protein «, B, and y subunits by PCa cell lines nor
specific G protein interactions with CXCR5 have been de-
scribed. Here, we elucidate the differences in G protein
isoforms expressed by normal and tumorigenic prostate
cell lines. We also identified the specific G protein
isoforms coupled to CXCRS5 in the presence or absence of
CXCL13 stimulation.

Results

Endogenous expression of G, protein subunits by PCa cells
In light of the diversity of G protein isoforms and func-
tions, we revealed the differential expression of G protein
a, B, and y isoforms by Western blot analysis of total ly-
sates of untreated PCa and normal cell lines. Our results
show that Gg; subunit (isoforms 1, 2, and 3) are widely
expressed by RWPE-1, LNCaP, C4-2B, and PC3 cell lines
(Figure 1A). The G, subunit was expressed by all cell
lines studied, with reduced levels in C4-2B and PC3 cell
lines. G412 was expressed by hormone refractory cell lines
C4-2B and PC3, but was absent in RWPE-1 and LNCaP
cell lines. G433 was unequally distributed among the four
cell lines examined, showing elevated levels in C4-2B and
PC3 cell lines (Figure 1A). The Guq/11 subunit was con-
fined to the androgen-dependent cell lines - RWPE-1 and
LNCaP and not detected in hormone refractory cell lines,
C4-2B and PC3 (Figure 1A). Lastly, G416 was not detected
in any of the tested cell lines (data not shown), probably
due to its specificity for hematopoietic cells [16].

Endogenous expression of Gg, -protein subunits by
prostate cells

Except for the Ggs isoform (data not shown), which
reported to be largely expressed by brain tissue [5,9], all
other Gg isoforms were present in all prostate cell lines
examined (Figure 1B). The expression of G, subunits
exhibited a distinctive pattern where only isoforms
[5,7,9,10] were detected in the cell lines studied. As
expected, Gy14 and Gy, 3 were not detected in any of the
cell lines tested (data not shown) (Figure 1C), because
they have previously shown to be confined to retinal
rods, brain tissue, and taste buds respectively [3]. Inter-
estingly, G, was expressed at very low levels in the nor-
mal prostate cell line, but was significantly expressed in
all of the PCa cell lines tested.

Specific G proteins coupled to CXCR5 in PCa cell lines

It is now well established that chemokine receptors are
often up-regulated and potentially influence the tumor
behavior in a variety of human cancers including pros-
tate cancer. Here, we demonstrate that CXCR5 is highly
expressed by PCa cell lines (LNCaP, C4-2B, and PC3),
but in low to undetectable amount by the normal pros-
tate cell line, RWPE-1 (Figure 2A). Chemokine receptors
are usually, but not exclusively, coupled to Gg; subclass
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Figure 1 G protein a subunit isoforms expressed by PCa cell lines. Equal protein amounts (50 ug) from RWPE-1, LNCaP, C4-2B, and PC3 cell
lysates were resolved by SDS-PAGE and the expression of (A) G4 (B) Gg and (C) G, subunits were determined by immunoblot. The blots in each
panel were re-probed to stain different G-proteins subunits. GAPDH served as loading control. All experiments were repeated three times with
unvarying results.
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Figure 2 Expression of CXCR4, CXCR5 and associated G proteins in PCa cell lines. (A) Equal protein amounts (50 pg) from RWPE-1, LNCaP,
(C4-2B, and PC3 cell lysates were resolved by SDS-PAGE and the expression of CXCR5 (37 kDa) was determined by immunoblot. (B) Western blot
analysis of CXCR4 expression with and without CXCL13 treatment. (C) & (D) Cell lines were treated with or without CXCL13 and lysed. CXCR5 was
immunoprecipitated (IP) to pull down associated proteins from total cell lysates. The IP cell lysates were resolved by SDS-PAGE and the
expression of (C) Gai1, Gaizr Gaizr Gasi Gag/i1: Gar2, Gars (D) Ggi, Ggo, Ggs, Gga, and Gys, Gz, Gyo, Gy1o were examined by immunoblot. The blots in
panel C and D were stripped each time and re-probed to stain different G, Gg, and G, protein subunits. In all the experiments, GAPDH served as
loading control. All experiments were repeated three times with unvarying results.
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of G proteins [17]. In this study, we demonstrate that
only Ggpp co-immunoprecipitated with CXCR5 in un-
treated C4-2B and PC3 cell lines in the absence of agon-
ist, while Ggq/11 associates with CXCR5 in untreated
LNCaP cells. G413 co-immunoprecipitated with CXCR5
in all three PCa cell lines treated with CXCL13, but was
not detected in untreated cells (Figure 2C). Ggz and Gy
co-immunoprecipitated with CXCR5 in the absence of
CXCL13 in all PCa cell lines used (Figure 2D). This Ggs/yo
complex was not detected following CXCL13 stimulation
indicating its ligand-induced dissociation from the recep-
tor. The other G (1, i3), Gs, Gaa2 Gg (1, 2, 4 and Gy (5, 7, 10)
subunits which were detected in PCa cell lines (Figure 1B
and 1C) were not co-immunoprecipitated with CXCR5 in
presence or absence of agonist (data not shown).

Validation and significance of Guq/11/Gp3/Gyo and Ggio/Ggs/
Gy binding to CXCR5 in LNCaP, and C4-2B, and PC3 cell
lines respectively

To further validate differences observed in G, subunit(s)
coupling and uncoupling to CXCR5 in CXCL13-treated
versus untreated cells, we separately immunoprecipitated
Gag/11 and G, subunits in untreated and CXCL13-treated
PCa cells and immunoblotted for CXCR5. Our results pro-
vide the first evidence of multifunctional coupling of
CXCR5 to different types of G proteins favoring a pertussis
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toxin-insensitive signaling pathway mediated by Guq/11 in
LNCaP cells and a pertussis toxin-sensitive signaling path-
way mediated by Gy, in C4-2B and PC3 cells (Figure 3).

Association of G,;3 protein, CXCR4, and PAR-1 with
CXCR5 in CXCL13-treated PCa cell lines

One surprising result was the association of the Ggi3
subunit with CXCR5 in PCa cell lines treated with
CXCL13, but not in untreated cells. Thus, it was critical
to confirm this finding by immunoprecipitating Ggis
protein from CXCL13-treated and untreated PCa cells,
and immunoblotting for CXCR5. Results confirm that
coupling of Gg3 to CXCR5 is specific to CXCL13-
treated cells (Figure 3C). It has been reported that pro-
teinase activated receptor-1 (PAR-1) is capable of
bypassing signaling through Gg;-pathway to support
Gq12/13-dependent mechanisms, enhancing cellular pro-
liferation, invasion, and metastasis [18]. We therefore
examined the association of PAR-1 with Gg3 and
showed that CXCR5 and PAR-1 are linked to G,;3 fol-
lowing treatment with CXCL13 (Figure 4A).

The presence of CXCR4 in CXCR5 immunoprecipitants
(with or without CXCL13 treatment) offers the first evi-
dence of CXCR5 association with CXCR4 (Figure 2B).
These interactions could potentially support CXCR4-
CXCR5 signaling crosstalk. Moreover, the ability of
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Figure 3 Validation of Guq/11, Gaiz, and Gqq3 protein association with CXCR5. Cell lines were treated with or without CXCL13 and lysed.

(A) Gag/11 and (B) G were immunoprecipitated (IP) from total cell lysates. The IP cell lysates were resolved by SDS-PAGE and CXCRS5 expression

was examined by immunoblot. (C) Identification of CXCR4 and CXCR5 coupled to Gg3 following CXCL13 stimulation. Cell lines were treated with
or without CXCL13 and lysed. Antibody against Gq;3 was used to immunoprecipitate (IP) it from total cell lysates. The IP cell lysates were resolved
by SDS PAGE and immunoblotted for CXCR5 followed by CXCR4, after stripping. In all the experiments, GAPDH served as loading control. All
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each other.

Figure 4 G,,3 association with PAR-1 and CXCRS5, and G,;3 and G, contribution to PCa cell lines invasion and Rac/Rho activation.

(A) Cell lines were treated with or without CXCL13 and lysed. Antibody against G413 was used to immunoprecipitate (IP) it from total cell lysates.
The IP cell lysates were resolved by SDS PAGE and immunoblotted for PAR-1 followed by CXCRS5, after stripping. GAPDH served as a loading
control. (B) Invasion of LNCaP, C4-2B and PC3 cells was assessed using BD Matrigel™ invasion chamber. The assay was performed using LNCaP
(open bars), C4-2B (solid bars) and PC3 (hashed bars) cells transfected and/or treated with control siRNA, Gqq/qin SIRNA, or G413 SIRNA duplex, and
CXCL13 and/or Thrombin for 8 h and the cells that migrated to the lower surface of the membrane were counted by microscopy at 40X
magnification. CXCL13-treated cells exhibited an enhanced ability to invade Matrigel. Abrogation of Goq/i» decreased the ability of cells to invade
whereas silencing of Gq3 did not affect cell invasion. (C) Rac and RhoA protein expression were determined in CXCL13 and/or thrombin treated
LNCaP, C4-2B, and PC3 cells. (i) shows differential expression of Rac protein, involved in lamellipodia formation, in response to CXCL13, thrombin,
CXCL13 followed by thrombin and from cells transfected with Gaq/i2/13 SIRNA in different experiments. (ii) shows differential expression of RhoA
protein, involved in stress fiber formation and cell adhesion, in response to CXCL13, thrombin, CXCL13 followed by thrombin and from cells
transfected with Gqy3 SIRNA in different experiments. All experiments were repeated at least three times and results were in accordance with

CXCR4 to engage in Gy 3-mediated cell signaling events
that activate Rho pathways leading to cell adhesion has
been previously demonstrated [19]. G,;3 association with
CXCR5, CXCR4 and PAR-1 after CXCL13 treatment
(Figures 3C & 4A) alludes to chemokine receptor oligo-
mer formation or the recruitment of other GPCR-G,;3
associated signaling complexes after stimulation, which
could presumably potentiate synergistic or additional
biological events, respectively [20,21].

It is plausible that the CXCL13:CXCR5 axis regulates
cell migration by desensitizing CXCR4 and conditional
coupling of CXCR5 with PAR-1. Therefore, constitutive
coupling of CXCR5 with CXCR4 and PAR-1 after
CXCL13 ligation in PCa cells could be another mechan-
ism through which CXCL13 sequesters factors hamper-
ing cell migration. To investigate whether this
hypothesis holds true, we allowed LNCaP, C4-2B, and
PC3 cells previously transfected with Gggix or Gaisz
siRNA duplexes to invade across a Matrigel membrane
following treatment with CXCL13 or thrombin, which
are activating ligands of CXCR5 and PAR-1, respectively.
Control siRNA duplex-treated PCa cells exhibited in-
creased invasive potential to CXCL13 (Figure 4B). While
abrogation of Ggqi» significantly decreased the ability of
cells to invade, silencing Ggi3 did not affect CXCL13-
dependent cell invasion. In contrast, PCa cell lines did not
invade in response to thrombin alone, but were moderately
invasive in the presence of CXCL13 and thrombin. This
invasive potential was also Gyqi> -dependent, but Ggz -
independent. Taken together, these observations suggest
CXCL13 is signaling independently of the PAR-1/Gg3
complex and mainly through CXCR5/Gyqi> to promote
PCa cell invasion.

CXCL13, Thrombin, Goq/i> protein, and Gq,3 protein
mediated Rac and RhoA activation in PCa cell lines
G proteins have been shown to differentially activate
three members of the Rho family of GTPases (Rac,
Cdc42, and RhoA). Our data show that Guq11/83/v0 and

Gaiz/pasyo  proteins dissociated from CXCR5 after

CXCL13 stimulation. This uncoupling is thought to be
the result of G protein subunit activation, which stimu-
lates downstream effector molecules, including RhoA
and Rac. We therefore performed Rac and RhoA activity
assays on CXCL13 and thrombin-treated PCa cells.
CXCL13 treatment resulted in a 395% increase in Rac
activity, but no change in RhoA activity (Figure 4C).
Correspondingly, thrombin-treated PCa cells displayed
no significant increase in Rac activity. CXCL13-mediated
Rac activation was Ggqiz -dependent, while thrombin-
induced RhoA activation was Gq3 -dependent and Gegyiz -
independent. Interestingly, treatment of cells with
CXCL13, 5 min before thrombin stimulation did not sig-
nificantly effect Rac activation, but abrogated thrombin-
dependent RhoA activation. Together, our results show
CXCL13 stimulation biases PCa cells to invade or migrate,
instead of adhere, even in the presence of a potent adhe-
rence signal, i.e., thrombin-PAR-1 interactions.

Discussion

GPCR mediated heterotrimeric G protein signaling is
known to regulate cellular motility, growth and differen-
tiation, and gene transcription, three factors central to
the biology of cancer. Depending on the physiologic
function, expression of G protein(s) subunit isoforms
may vary from one cell type to other. G, subunit in-
hibits the production of cAMP from ATP. In our study,
we found constitutive expression of G; subunit isoforms
in all the cell lines tested. This is in tune with the earlier
reports stating that G,; subunit isoforms are the most
ubiquitously expressed G protein o isoforms [7,10].
Moreover, studies of tissue samples obtained from pa-
tients with T2 stage PCa revealed low levels of Gy sub-
unit compared to high levels in normal controls [22].
Ga12 and Ggg3 levels were significantly elevated by PC3
and DU-145 cell lines, than compared to PrEC and
LNCaP cell lines [23,24]. We found similar results,
where Gg,;, was detected only in hormone refractory
C4-2B and PC3 cell lines, whereas Gg;3 was significantly
elevated in these cell lines. Ggi4 and Gys7910 were
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expressed in all the cell lines tested. If all of these Gg;.4
and Gys7,0,10 proteins could combine to form a dimer,
there would be 16 potential arrangements in PCa cells.
Emerging evidences suggest that most pairs can indeed
form, with some noted exceptions in specific expression
systems [4,9,25]. For instance, Gg; can combine with G,
and Gys but not Gys; and Gg, can form a pair with Gys
but not with Gy, [26]. Also, Ggs pairing with G,; and
G, is structurally impossible [9]. Gy13 can form stable
dimers with Gg;, Ggs, and Gga, while Gy, is capable of
interacting with Gg,, Gpa, but not Ggs [9,27,28]. Future
X-ray crystallography studies will be necessary to unravel
the precise structural and functional relationship(s)
among G protein subunit isoforms.

Malignant cells, which express a wide repertoire of
chemokine receptors, respond to chemokines with in-
creased directional migration, proliferation, and/or sur-
vival [29]. We have recently demonstrated CXCR5
expression in tissues obtained from PCa patients, and
showed that elevated levels of CXCR5 correlate with ad-
vanced disease [15]. Furthermore, we established a role
for CXCL13 and CXCR5 interaction in prostate tumor
progression and elucidated some of the molecular and
cellular processes mediated by activation of this chemo-
kine receptor [14]. In confirmation we investigated the
expression of CXCR5 and its association with G protein
subunits in both androgen sensitive and hormone refrac-
tory PCa cells. However, five minutes after CXCL13
stimulation, the G protein subunits (Gup and Ggg/11)
that bind to CXCR5 were not detected in cell lysates.
The plausible explanation for this finding is that binding
of CXCL13 to CXCR5 causes conformational changes
that elicit the classical dissociation of these G proteins,
allowing them to stimulate downstream signaling cas-
cades. Indeed, static and dynamic light scattering mea-
surements of protein complexes will be used to quantify
the strength of these interactions, including potential
homo- and hetero-associations. In addition to the stoi-
chiometry of these protein-protein associations, future
studies will also include isothermal titration calorimetry
characterization of these interactions to provide infor-
mation on the enthalpy, entropy and binding kinetics be-
tween these proteins.

Oncogenic mutations of G, protein have been identi-
fied in ovarian and adrenocortical tumors suggesting a
potential role in cellular transformation [30]. Gg, has
also been reported to promote B lymphocyte trafficking
and motility within lymph nodes in response to CXCL13
[31]. The characteristic G, coupling to CXCRS5, a che-
mokine receptor aberrantly expressed by C4-2B and PC3
cell lines, offers a new perspective on the role of G pro-
teins in CXCL13:CXCR5-mediated PCa cell migration.

While the LNCaP cell line is androgen-responsive, C4-
2B and PC3 cell lines have hormone-refractory properties
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[20,32]. This might explain the differential expression of
G proteins we observed in LNCaP and C4-2B cell lines,
even though the C4-2B cell line was derived from
LNCaP cells. Androgen is known to regulate the cellular
composition of the normal prostate and acts on a set of
specific genes, which impact the protein repertoire of a
cell [33]. This dissimilarity in PCa cell line sensitivity to
androgen might account for the variation in G protein
expression, and could ultimately mandate CXCR5-medi-
ated G protein coupling in these cell types. Our results
also suggest that androgen receptor (AR) activation and/
or inhibition may contribute to G protein expression in
PCa tumors. However, defining the contributions of AR
in CXCR5 signaling will be the subject of a different
study.

It has been demonstrated that G protein a subunits
undergo post-translational lipidation, which increase
their affinities for G protein  and y subunits. These co-
valent modifications largely determine which G protein o
isoforms associate with specific G protein Py-complexes
[34]. Inhibition of the Gg, subunits in general prevents
PCa formation and growth in vivo [35]. It is worth
noting that a polymorphism in the gene encoding Ggs
subunit is associated with oncogenesis and risk of
bone metastasis in patients with breast cancer, while
the homozygous Ggs genotype conferred protection
against disease progression [36]. Hence, the identifica-
tion of Gpgso coupling to CXCR5 is of considerable
interest and the functional relevance of this finding is
a matter for future studies. It has also been noted that
free Gp, complexes can effect other second messen-
gers, e.g., phospholipase A2 and phospholipase C, or
gating ion channels, e.g, G protein coupled inward
rectifying potassium channels and L-type calcium
channels. While this has not been observed following
CXCR5 signaling, future studies will be needed to de-
termine the potential signaling events induced by the
Ggs-yo complex following CXCR5 stimulation.

We also found that Gg,;3 protein associates with
CXCR5 following CXCL13 stimulation. While multiple
scenarios could exist to explain this result, G3 associ-
ation with active CXCR5 could be the product of ligand-
mediated G protein switching. It has been reported that
G protein isoforms switch their coupling to receptors in
response to ligand binding in a cAMP-dependent pro-
tein kinase (PKA) fashion to presumably initiate a new
set of signaling cascades [37]. This phenomenon has
been described in CHO cells, where the B,-adrenergic
receptor switches its coupling specificity from Ggs to Gy
in response to agonist binding [38].

Previously it has been shown that CXCR4 is widely
expressed by PCa cell lines and migration and invasive
potential of these cells were significantly impaired by
anti-CXCR4 antibodies [39]. In our study, we found a
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constitutive coupling of CXCR4 to CXCR5 and a likely
oligomerization with other GPCRs upon CXCR5 activa-
tion (Figure 5). This interaction can sequester Ggi3 and/
or associated receptors to apparently diminish their
functions, e.g. adhesion. While co-immunoprecipitation
is considered the gold standard for determining protein-
protein interactions of endogenous untagged proteins,
futures studies will be needed to ascertain the affinity
and confirmation of these interactions. Indeed, it will be
important for potential molecular drug development ef-
forts to determine the binding constants and the precise
regions where CXCR5 (or CXCR4) and Gggi1, Gains
Gaiz Ggs and Gy, proteins interact.

The ability of GPCRs to differentially couple to
multiple classes of G proteins (G, Gagi1r Gai2/13)
has also been described for sphingosine-1-phosphate
receptors, and the liver pancreastatin receptor [40,41].
While the possibility of CXCR5 switching from Gg; to
Gq13 signaling pathways requires further investigation,
the possibility of its occurrence presents a means for
tumor cells to acquire new signaling machinery that
could promote disease progression. Hence, it is more
likely that CXCR5 binds Gg;3 protein as a mechanism
to sequester and prevent it from signaling, which
would favor Rac >>RhoA activation and cell migra-
tion. To explain, Ggio/13 family of G proteins have
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been shown to stimulate RhoA activation and subse-
quent actin cytoskeletal rearrangements characterized
by the formation of stress fibers for focal adhesion
[42].

RhoA activation causes the formation of stress fi-
bers and focal adhesions. Rac activation leads to la-
mellipodia formation and membrane ruffling, while
cdc4?2 activation results in filopodia formation. These
cellular processes are particularly important for cell
migration and adhesion [43]. Compelling evidence
suggest that Rac are primarily activated by G and
Gyq subunits [44]. RhoA has shown to be activated
downstream of Gg2/13 subunits and to a lesser extent by
Gag, while Gg, complexes are thought to contribute to ac-
tivation of both RhoA and Rac pathways through direct
stimulation of PI3K [45].

Conclusions

We show differential G protein expression by PCa cell
lines and establish specific heterotrimeric coupling to
CXCRS5 in an androgen-sensitive (LNCaP) and hormone
refractory (C4-2B and PC3) manner. We also provide
evidence for Gg;3 protein association with CXCR5 fol-
lowing CXCL13 stimulation, which could inhibit or po-
tentiate various cellular processes. Moreover, we identify
for the first time the constitutive coupling of CXCR4 to
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Figure 5 Hypothetical model of CXCR5 interactions in PCa cells. CXCR5 associates with CXCR4 and couples with Guq/11,Gas/Gye heterotrimers
in androgen-dependent LNCaP cell line or Gy5,/Ggs/Gye heterotrimers in hormone refractory C4-28 and PC3 cell lines in the absence of its specific
ligand, CXCL13. Upon CXCL13 stimulation, G proteins dissociate from CXCRS5 to activate effector molecules. In addition, CXCL13-activated CXCR5
associates or sequesters Gq;3protein favoring signals that would promote PCa cell motility.
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CXCR5. Clearly, there is much to learn about how spe-
cific heterotrimeric G protein compositions are regu-
lated, and how these associations dictate unique
signaling pathways. It will also be important to deter-
mine the clinical relevance of the Ggq11/Gps/Gyo
heterotrimer in early and Ggiy/Gps/Gyo in advanced or
hormone refractory PCa.

Several observations have described chemokine recep-
tor oligomer formation resulting in unusual G protein
signaling [46]. The hetero-dimerization between CCR2
and CCR5 has been extensively explored and suggests a
mechanism of differential receptor coupling to pertussis
toxin-sensitive to -insensitive G proteins [47,48]. Evi-
dence also supports the ability of CCR5 to interact with
non-chemokine receptors including opioid receptors
[49]. While CXCR4 is present in almost all invasive can-
cers, CXCR5 has been implicated in advanced stages of
chronic myelogenous leukemia, head and neck cancers,
colon, and prostate cancer [1,12,29,50]. There is growing
evidence to suggest transactivation of chemokine recep-
tors will result in signal amplification at the receptor
level, providing a means for tumor cells to metastasize
and grow [21,46].

The signaling cascade following CXCL13-CXCR5 in-
teractions is indeed complex. These signals support Rac
activation and invasion in a Ggqs> protein dependent
fashion. Further, CXCR5 associates with CXCR4 and fol-
lowing activation can sequester Gg;3 and/or associated
receptors to seemingly diminish their functions.

No doubt, CXCR5 and/or CXCL13 blockade and spe-
cific G protein inhibition might prove to be effective
therapeutic strategies to disrupt CXCR5 (and possibly
CXCR4) signaling to abrogate PCa cell metastasis.

Methods

Cell lines and culture

Human prostate cancer cell lines (LNCaP, C4-2B, and
PC3) and the epithelial cell line RWPE-1 derived from
normal prostate were used in this study. All the cell lines
were obtained from ATCC. To authenticate the cell
lines, we carried out short tandem repeats genotyping.
RWPE-1 cell line (ATCC # CRL-11609) is an established
normal prostate epithelial cell line that was cultured in
keratinocyte serum free media (K-SFM) supplemented
with bovine pituitary extract (0.05 mg/ml) and epidermal
growth factor (5 ng/ml) at 37°C in a humidified atmos-
phere with 5% CO, LNCaP cell line (ATCC # CRL-1740)
is derived from the left supraclavicular lymph node of a
metastatic prostate adenocarcinoma patient and is re-
sponsive to 5-alpha-dihydrotestosterone. C4-2B cell line
is derived from the LNCaP cell line; however, it is hor-
mone refractory. The PC3 cell line (ATCC # CRL-1435)
was derived from a bone metastasis of a grade IV pros-
tatic adenocarcinoma patient. All three PCa cell lines
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were cultured in complete RPMI 1640 media sup-
plemented with 10% fetal bovine serum (FBS) and
maintained in a cell culture incubator at 37°C in a hu-
midified atmosphere with 5% CO,. Cell lines were serum
starved overnight prior to treatment with 100 ng/ml of
CXCL13 (Pepro Tech, NJ, USA) or 1U/ml of thrombin
(Sigma, MO, USA).

Immunoprecipitation

RWPE-1, LNCaP, C4-2B and PC3 cells were lysed in a
cell lysis buffer containing 1% NP40, 1% Triton X-100,
0.25% deoxycholate, 100 mM NaCl, 50 mM Tris—HCl,
pH7.4, and protease and phosphatase inhibitors (Roche,
IN, USA). The protein concentrations of whole cell ly-
sates were determined by bicinchoninic acid (BCA) pro-
tein determination assay (Pierce, IL, USA). To determine
selective G protein isoforms coupled to CXCR5, equal
amounts (100 pg) of LNCaP, C4-2B, and PC3 cell lysates
were incubated with 1 pg of mouse anti-CXCR5 (R&D
systems, MN, USA), mouse anti-Gqg, rabbit anti-Ggq/11,
or goat anti-G,;3 antibodies (Santa Cruz, CA, USA) for
2 h at 4°C. Immune complexes were collected by adding
20 pl of Agarose A/G PLUS beads (Santa Cruz, CA,
USA) overnight at 4°C. Following incubation protein
complexes were washed twice with lysis buffer by centri-
fugation at 10,000 x g for 10 min at 4°C and released
from the beads by boiling in sample buffer for 5 min.
The resultant immunoprecipitates were further analyzed
by immunoblot analysis.

Immunoblotting and antibodies

Western blot analysis was conducted on immuno —
precipitants generated as described above or directly on
cell lysates containing 50 pg of protein. Samples were de-
natured by boiling in Laemmli buffer for 5 min, resolved
by electrophoresis on 4-15% gradient SDS-polyacrylamide
gel as needed, and transferred to nitrocellulose membranes
using a semi-dry transfer cell system (Bio-Rad, CA, USA).
Membranes were blocked for 1 h at room temperature
(RT) in 5% non-fat milk in 1X TTBS (30 mM Tris-Base,
150 mM NaCl, and 0.1% Tween 20), followed by washing
with 1X TTBS. Primary antibodies against G proteins o;;,
i, (i3, s, Og/11, K12, K13, Ui6s |31» 521 [331 [34» [35» Y1, Y25 Y35 Y4
Ys Y7 Yo Yio Y13 CXCR5 (Santa Cruz, CA, USA), and
CXCR4 (R&D systems, MN, USA) were added to the
membranes and incubated overnight at 4°C in 5% non-fat
milk. Membranes were then washed and corresponding
horseradish peroxidase (HRP)-conjugated secondary anti-
bodies (Santa Cruz, CA, USA) were added for 1 h
followed by additional washes. Immunoreactive proteins
were visualized by a chemiluminescent detection reagent
(Amersham, PA, USA) on autoradiographic films. The
blots were re-probed each time to stain different G protein
subunit isoforms. Following development for G proteins,
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all membranes were stripped and re-probed with antibody
against GAPDH (Ambion, NY, USA) to ensure equal
loading.

Invasion assay

PCa cell invasion was assessed using BD Matrigel™ in-
vasion chamber (BD Biosciences). Briefly, Matrigel in-
serts were hydrated for 2 h with 500 pl of DMEM at
37°C with 5% CO,. CXCL13 (100 ng/ml) or thrombin
(1 U/ml) was added to the bottom chamber containing
serum-free RPMI medium. LNCaP, C4-2B, and PC3
cells were transfected with 1 pg control siRNA, Ggg/i
siRNA, or Gz siRNA duplex (Santa Cruz, CA, USA)
prior to harvest, and added to the top chambers in
serum-free RPMI medium at 10,000 cells per well. The
cells were allowed to invade for 8 h at 37°C with 5%
CO,. Non-invading cells on the upper surface of the
membrane were removed with a cotton swab. The cells
that migrated to the lower surface of the membrane
were fixed with methanol at RT for 5 min, stained with
crystal violet for 2 min, and washed with distilled water.
The membranes were peeled and mounted on glass
slides. Cells were then counted by microscopy at 40X
magnification. Experiments were performed in triplicate
and repeated three times.

Rac and RhoA G-LISA activation assays

Rac and RhoA activity were determined from cell lysates
collected from LNCaP, C4-2B, and PC3 cells treated with
or without CXCL13, thrombin, control siRNA, Ggq/iz
siRNA and/or Gg3 siRNA. PCa cells were transfected
with 1 pg of control, Gyqjiz SIRNA, or Ggi3 siRNA du-
plexes (Santa Cruz, CA, USA) as before. Optimal knock-
down of RNA and resulting protein knockdown occurred
72 h after transfection, which was confirmed by RT-PCR
and Western blot analysis. Transfected PC3 cell cultures
were pre-treated with media alone, 100 ng/ml of CXCL13
or 1 U/ml of thrombin for 30 min. Subsequently, cul-
tures were treated with these CXCR5 or PAR-1 ligands
to determine Rac and RhoA activities. After 10 min. of
stimulation, protein lysates were isolated and assayed
using the colorimetric-based G-LISA™ Rac activity and
luminescence-based G-LISA™ RhoA activation assay kits
(Cytoskeleton, CO, USA), according to the manufac-
turer’s instructions. Briefly, proteins were isolated using
the provided cell lysis buffer and lysates were collected
by centrifugation at 10,000 rpm at 4°C for 2 min. Pro-
tein concentrations from each sample were quantified
and then adjusted to contain protein concentrations of
2 mg/ml for the assay. Absorbance and luminescence
were detected as suggested by the manufacturer.
Changes in Rac and RhoA activity among conditions are
reported as fold difference normalized to the sample
with no additions.
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