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Hypoxia and estrogen are functionally equivalent
in breast cancer-endothelial cell interdependence
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Abstract

and the signaling pathways involved need elucidation.

cells (HUVEQ) in vitro.

Breast cancer

Background: Rapid breast tumor development relies on formation of new vasculature to supply the growing
malignancy with oxygenated blood. Previously we found that estrogen aided in this neovasculogenesis via
recruitment of bone marrow derived endothelial progenitor cells (BM-EPCs), leading to increased vessel formation
and vascular endothelial growth factor (VEGF) production in vivo. However, the cellular mechanism of this induction

Results: Using the murine mammary cell line TG1-1 we observed estrogen (E,) lead to an up regulation of hypoxia
inducible factor-1 (HIF-1), an effect abrogated by the anti-estrogen Fulvestrant and the HIF-1 inhibitor YC-1
(3-(5-hydroxymethyl-2"-furyl)-1-benzylindazole) suggesting the interchangeability of hypoxia and estrogen mediated
effects. Estrogen modulation of HIF-1 and subsequent effects on endothelial cells is dependent on the Akt/PI3K
pathway and protein synthesis as validated by the use of the inhibitors wortmannin and cycloheximide which
abrogated estrogen’s effects respectively. Estrogen treated TG1-1 cells secreted higher levels of VEGF which were
comparable to secreted levels from cells grown under hypoxic conditions. Soluble factors in conditioned media
from E, treated breast cancer cells also lead to migration and tube formation of human umbilical vein endothelial

Conclusions: Our data provide evidence that estrogen signaling mediates the tumor vasculogenic process required
for breast cancer progression and involves a key regulator of the hypoxia signaling pathway. Further, hypoxia and
estrogen are interchangeable as both similarly modulate epithelial-endothelial cell interaction.
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Background

Breast cancer is recognized as the most common type of
cancer in women and its development is associated with
many risk factors such as diet, alcohol consumption,
child bearing, breast feeding, oral contraception, as well
as underlying genetic predisposition. Epidemiological
studies show a rapid increase in breast cancer incidence
during reproductive years that tapers around age 50, cor-
responding to the onset of menopause, and studies of
postmenopausal breast cancer patients have found a
higher level of estrogen in breast tissue compared to
healthy patient tissue [1-6]. Taken together with the fact
that 60-70% of human breast cancers are estrogen
receptor-alpha positive [7], the evidence suggests an
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etiological significance of estrogen in breast cancer initi-
ation and progression.

Estrogen is a sex steroid hormone produced mostly by
the ovaries in women; however other tissues, including
adipose, are also able to synthesize estrogen. There are a
total of nine estrogens in humans of which 173-Estradiol
(E,) is the most abundant in circulation and the most
biologically active [8]. Estrogen mediates its effects by
binding to its cognate estrogen receptor(s), either estro-
gen receptor alpha (ERa) or estrogen receptor beta
(ERP), leading to ER dimerization and association with
various co-factors. Once formed, the complex translo-
cates to the nucleus where it acts as a transcription
factor by binding to the estrogen response elements
(EREs) at the promoters of estrogen responsive genes
[9,10]. Besides this classical pathway, estrogen can also
regulate gene transcription in ERE independent as well
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as nongenomic pathways by binding to membrane asso-
ciated estrogen receptor leading to signaling via the
PI3K/AKT pathway [11,12]. In addition to its normal
physiological roles, estrogen is also implicated in breast
cancer initiation and progression. Estrogen-ER interactions
have been observed to increase cell survival by signaling
through the AKT pathway which leads to suppression of
TNEF-« induced apoptosis [13]. Estrogen-ER signaling also
induces cell proliferation by activation of the PI3K path-
way, observed in breast cancer cell lines including ER*
MCE-7 cells, but not the ER® MDA-MB-231 cell line [14].
Interestingly, estrogen is also capable of contributing to
breast cancer progression by a novel role, via modulation
of proteins involved in hypoxia signaling, namely hypoxia
inducible factor 1 (HIF-1).

HIF-1 is also a heterodimeric transcription factor,
consisting of the oxygen dependent alpha subunit and
the constitutively expressed beta subunit. During nor-
moxia, HIF-1a is rapidly degraded via the proteasomal
pathway, however during hypoxia, HIF-1a is stabilized
and binds HIF-1B (aryl hydrocarbon receptor nuclear
translocator, ARNT), forming a transcriptional complex
which translocates to the nucleus where, with other
protein co-factors, it binds hypoxia responsive elements
(HRE) [15]. Binding of HIF-1 to target genes leads to
transcription of proangiogenic proteins including
erythropoietin and VEGF, which are essential for forma-
tion of new blood vessels, or neovasculogenesis [16].
Further, the chemotactic protein stromal derived factor
1 (SDF-1) is also hypoxia responsive, leading to develop-
ment of a chemotactic gradient for bone marrow
derived cells that express the cognate receptor CXCR4
[17-19]. In a rat uterine model, estrogen was observed
to increase HIF-1a levels in vivo and this induction lead
to an increase in VEGF expression that was abrogated
by PI3K inhibitors but not MAPK inhibitors [20,21].
Chromatin immunoprecipitation assays found that this
estrogen treatment lead to binding of both ER and HIF-1
to VEGF promoters [22]. E, also lead to up regulation of
HIF-1 in ovarian cancer cells in a PI3K dependent manner
[23,24]. ER positive breast cancers have also been linked
to an increased expression of HIF-1 and correlated with a
more metastatic phenotype [25,26]. The ability of estrogen
to stimulate proteins involved in hypoxia signaling as well
as to induce proangiogenic proteins may elucidate a novel
role of estrogen in breast cancer neovasculogenesis. This
novel physiological effect of estrogen in carcinogenesis
progression is an understudied area and can shed light on
the systemic activity of hormone induced cancers.

Neovasculogenesis, or the formation of new blood
vessels, is modulated by estrogen and is necessary for
tumor growth and sustainment. Studies using ER knockout
mice observed reduced vascular repair and angiogenesis
thus demonstrating the role of estrogen in vessel formation
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[27]. In ex vivo breast tissue cultures, as well as in vivo
mouse models, E, led to an increase in secretion of the
proangiogenic cytokine IL-8, which is strongly correlated
with the metastatic potential of breast cancer cells [28].
Further, E, increased angiogenin secretion, which led to an
increase in endothelial cell proliferation and was abrogated
by the antiestrogen Tamoxifen [29]. In breast tumor mouse
studies, E, was observed to increase blood vessel formation
and significantly increased endothelial progenitor cell
migration to tumor sites [30]. Further, E, also enhanced
mRNA transcripts of proangiogenic angiopoietins 1 and 2,
as well as metastatic modulating matrix metalloproteinase
2 and 9. In vitro models from our laboratory demonstrated
E, induced TG1-1 cell proliferation and migration, which
was abrogated by anti-estrogens. In vitro tubulogenesis
models have also demonstrated the role in E, induced
neovasculogenesis in breast cancer [30]. Considering that
both hypoxia and estrogen are significant determinants of
breast cancer progression and can modulate vasculogenesis
processes and hence the tumor microenvironment, it is
important to understand their cellular modulation so that
novel intervention strategies can be examined.

This study was designed to investigate the role of
estrogen on HIF-1 dependent breast cancer induced
neovasculogenesis. Two types of cell lines were used: the
TG1-1 murine breast cancer cell line that expresses both
ERa and ERP and the human endothelial cell line human
umbilical vein endothelial cell (HUVEC). Our results
define the molecular interdependence of estrogen mediated
intracellular activity with hypoxia and reconnect the
modulatory interdependence of cellular phenotypic
changes. These studies open up new avenues of estrogen
based therapeutic and preventive interventions for breast
cancer that is based on the tumor microenvironment.

Results

Hypoxia induces HIF-1a nuclear translocation in TG1-1
cells

First to determine whether TG1-1 cells are indeed
responsive to hypoxia, we cultured cells under hypoxic
conditions, specifically 1% O,, in a sealed hypoxic cham-
ber for the indicated number of hours. We observed an
increase in HIF-la in nuclear lysates and used TATA
binding protein (TBP) as a nuclear loading control
(Figure 1A). Cells were also treated with cobalt chloride
(CoCly), a HIF prolyl hydroxylase antagonist, used as a
positive control for HIF-1a induction (Figure 1B). HIF-1a
accumulation peaked rapidly between 3-6 hours for both
treatments and then returned to basal levels. To further
demonstrate HIF-1a localization to the nucleus, TG1-1
cells were either untreated (left) or treated with CoCl,
(right) for 24 hours and stained for VEGF (green) and HIF-
la (red). The panel on the right demonstrates an increase
in HIF-1a staining intensity as well as co-localization with
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Figure 1 Hypoxia induced HIF-1a nuclear translocation in TG1-1 cells is cyclical. Western blots of TG1-1 nuclear (N) and cytoplasmic (C)
lysates show induction and nuclear translocation of HIF-1a when cultured with 100uM CoCl; (A) or in nuclear lysates of cells cultured in 1% O,
(B) with TBP as a nuclear loading control and L as a ladder lane. TG1-1 cells were also left untreated (left panel) or treated with CoCl, (right
panel) for 24 hours and immunofluorescently stained for VEGF (green), HIF-1a (red) and DAPI for nuclear staining (blue) and representative

-

pictures of HIF-1a staining in TG1-1 cells also demonstrate nuclear translocation in treated cells (C).

J

the nuclear DAPI stain compared to the left panel with low
level diffuse HIF-la cellular staining. Together these
suggest that HIF-1a is an acceptable readout of hypoxia in
TG1-1 cells.

Estrogen induces HIF-1a in breast cancer cells in vitro

Recent work has focused on the oxygen independent
activation of HIF-l1a in hormone responsive tissues by
estrogen. To verify whether estrogen was able to induce
HIF-1a in breast cancer cells in vitro, we treated the
estrogen receptor positive TG1-1 cells with E, and
observed an induction of HIF-la in nuclear lysates at
approximately 24 hours (Figure 2A). Further, treatment
of cells for 24 hours with E, and the pure anti-estrogen

Fulvestrant abrogated E, induced accumulation of HIF-1a
comparable to cells treated with the HIF-1a inhibitor YC1
(Figure 2B) validating the E, stimulation of HIF-1a.

Estrogen induces VEGF similar to hypoxia in TG1-1 cells in
a HIF-1a dependent manner

Stimulation of HIF-1a leads to dimerization with HIF-1§3
and nuclear translocation, where the heterodimer acts as
a transcription factor leading to production of pro-
angiogenic proteins. To test whether HIF-1a induction
was functional, cytoplasmic cell lysates were isolated
from TG1-1 cells treated with CoCl, and E, and western
blots performed and probed for vascular endothelial
growth factor (VEGEF). Consistent with previous literature,
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Figure 2 Estrogen mediated HIF-1a translocation is sensitive to anti-estrogens and YC-1. TG1-1 cells treated with estradiol (10° mol/L)
alone show an increase in HIF-1a nuclear accumulation over time (A). Estradiol stimulation was validated using the ERa inhibitor Fulvestrant (ICl).
TG1-1 cells were left untreated or treated for 24 hours with estradiol or estradiol plus ICl or estradiol plus the HIF-1a inhibitor YC1 (10° mol/L).
HIF-1a nuclear accumulation was comparable to control levels when cells were treated with ICl or YC1 (B).
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hypoxia signaling leads to the expression of the pro-
angiogenic protein VEGF in breast cancer cells in vitro
(Figure 3A). We also observed an increase in VEGF in
cells treated with E, for 24 hours, an effect abrogated by
Fulvestrant and more profoundly byYC1 (Figure 3B). To
measure functional secretion of VEGEF, we performed and
ELISA and observed a marked increase in VEGF secretion
when cells were treated with E, or grown under hypoxic
conditions (1% O,). Similar to western blot observation,
treatment of cells with YC-1 abrogated VEGF secretion,
thus demonstrating the importance on HIF-1 in estrogen
induced VEGF secretion (Figure 3C). Thus, the pro-
angiogenic effect of E, on breast cancer cells is not solely
dependent on the nuclear translocation of estrogen
receptor (ER) but rather on HIF-1a translocation as well.

Estrogen signals via the PI3K pathway leading to

induction of VEGF in a HIF-1a dependent manner

We present evidence that E, stimulation of HIF-1a and
VEGF is PI3K dependent. TG1-1 cells treated with E,
for 24 hours show an increase in PI3K levels, an effect
abrogated by Fulvestrant, further indicating functional
ER signaling (Figure 4A). Treatment of TG1-1 cells with

E, for 24 hours in conjunction with the PI3K inhibitor
Wortmannin prevented E, up regulation of HIF-la
(Figure 4B). We observed the inhibition of PI3K also
diminished E, stimulation of VEGF in cells treated for
24 hours (Figure 4C). Thus, E, signals via the PI3K
pathway to stimulate HIF-la, and inhibition of this
prosurvival pathway abrogates E, induction of angiogenic
proteins.

Secretion of estrogen responsive proteins via HIF-1a up
regulation by breast cancer cells leads to an increase in
endothelial cell migration and tubulogenesis in vitro
Lastly, we sought to determine the cellular mechanism
of estrogen induced neovasculogenesis in breast cancer
progression. The process of neovasculogenesis is indis-
pensible for tumor proliferation and metastasis and
occurs largely in hypoxic tissues in which rapid tumor
development quickly outgrows existing vasculature.
Previously data from our laboratory demonstrated that
E, enhanced breast tumor neovasculogenesis in vivo,
however the mechanism remains unclear. To address
this question, culture media from TG1-1 cells treated
with E, with and without the anti-estrogen Fulvestrant
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Figure 3 Hypoxia and estrogen induce VEGF in TG1-1 cells. Western blots of TG1-1 cytoplasmic lysates show that hypoxia (A) and estradiol
(B) lead to an increase in VEGF. However, treatment of cells with Fulvestrant lead to a reduction in VEGF and treatment with YC-1 restored VEGF
to control levels. Conditioned media from TG1-1 cells grown in 6 well plates was harvested and VEGF concentration was determined by ELISA.

experiments performed in duplicate. (*p<.05).

Corresponding cell pellets were harvested, washed, and analyzed for total protein content. Values shown are expressed as percent differences
compared to control TG1-1 conditioned media normalized for the amount of protein in the cell pellet. Similarly to observed findings in the
western blot analysis, cells treated with estrogen secreted significantly more VEGF when compared to control, an effect abrogated by YC-1 (C).
Similarly cells grown under hypoxic conditions (1% O,) also secreted significantly more VEGF than controls. Data represents two separate

or the HIF-la inhibitor YC1 was used in an in vitro
migration assay of human umbilical vein endothelial
cells (HUVECSs), culture media from untreated TG1-1
cells served as a control. We observed a significant
increase in HUVEC migration toward the media of E,
treated cells, which was abrogated by Fulvestrant as well
as YC1 (Figure 5A). Thus, E, stimulation of HIF-1a and

consequent up regulation of VEGF leads to endothelial
cell migration toward breast tumor cell secreted
proteins. HUVEC migration experiments in which TG1-1
cells cultured under hypoxic conditions (1% O?) with and
without E, and Fulvestrant also demonstrated only a
modest synergistic effect of hypoxia and estrogen on
endothelial cell migration which was not abrogated by the
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Figure 4 Estrogen stimulation of HIF-1a and VEGF is PI3K dependent. Western blots of TG1-1 whole cell lysates grown under starvation
conditions show an estrogen dependent increase in PI3K (A) which is abrogated by Fulvestrant (ICl). The PI3K inhibitor Wortmannin prevented

anti-estrogen (Figure 5B). To further characterize the role
of estrogen we focused on another phenotypic characteris-
tic of vasculogenesis in vitro, namely the formation of tube
shaped structures by endothelial cells utilizing the tubulo-
genesis assay. Briefly, HUVEC cells were plated over a bed
of matrigel to simulate extracellular matrix and were
exposed to either control basal media or conditioned
media harvested from TG1-1 cultured cells as previously
mentioned. We observed an increase in tube number and

length when endothelial cells were treated with tumor cell
condition media from E, stimulated cells (Figure 6B).
Estrogen induced tubulogenesis was abrogated in the
presence of the anti-estrogen Fulvestrant (ICI), the HIF-1
inhibitor YCI, and cycloheximide. Analysis of lysates from
tumor cells revealed that cycloheximide treatment
prevents estrogen upregulation of HIF-1a, highlighting the
importance of de novo protein synthesis in estrogen
induced vasculogenesis in vitro (Figure 6A). Media from
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Figure 5 Hypoxia and estrogen increase human umbilical vein endothelial cell (HUVEC) migration in a HIF-1a dependent manner.
Culture medium from TG1-1 cells grown under hypoxic conditions was observed to increase HUVEC migration (A). Further, culture media from
cells treated with estradiol significantly enhanced migration (A,B) when compared to non-estradiol supplemented TG1-1 culture media, which

TG1-1 cells grown under hypoxic conditions and concur-
rently treated with estrogen and inhibitors was also inves-
tigated for the impact on endothelial cell tube formation.
When comparing conditioned media from tumor cells
simultaneously grown under hypoxic conditions (1% O,)
with those also treated with E,, we observed an increase in
tubule formation which was abrogated by the HIF-1 in-
hibitor (Figure 6C). This further highlights the importance
of both hypoxia and estrogen as determinants of tumor
induced neovasculogenesis.

Discussion
During tissue and tumor hypoxia, existing vasculature is
exhausted and resident cells secrete factors including

vascular endothelial growth factor (VEGF) and stromal
derived factor 1 (SDF-1) with the migration of bone
marrow derived endothelial progenitor cells as a signifi-
cant event [31]. Endothelial cell migration, however, is
reliant on expression of cell surface receptors such as
VEGFR1 and 2, and CXCR-4, which bind VEGF and
SDE-1 respectively. During rapid tumor development
tumor and stromal cells create an angiogenic milieu
conducive to rapid expansion of the vasculature. We had
earlier demonstrated that vasculogenesis is an estrogen
mediated phenomenon [30]. A decrease in oxygen
tension is a significant determinant of tumor progression
and tumors rapidly adapt to their changed metabolic
intracellular milieu however as evidenced by this study
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Figure 6 Estrogen induced in vitro vasculogenesis is sensitive to anti-hypoxic and antiestrogenic agents. TG1-1 cells were treated with
estrogen in combination with the antiestrogen Fulvestrant, the anti-hypoxic agent YC-1, or 50pg/mL of the generic protein synthesis inhibitor
cycloheximide. Western blot analysis of nuclear lysates demonstrated inhibition of estrogen induced HIF-1a translocation by cycloheximide (A).
Cells were again treated as stated for 24 hours with the combination of estrogen and inhibitors prior to collection of conditioned media.
Conditioned media taken from cells was used in an in vitro tubulogenesis assay in which secreted factors from TG1-1 cells treated with estrogen
lead to HUVEC tubulogenesis. This phenotypic change was abrogated by Fulvestrant, and more strikingly by YC-1 and cycloheximide (B).
Conditioned media from breast cancer cells grown under hypoxic conditions for 24 hours demonstrated similar effects (C).
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systemically they continue to mimic physiological pro-
cesses such as estrogen mediated activity. The molecular
mechanisms by which estrogen and hypoxia (low oxygen
tension) impact tumor development are only recently
being uncovered.

Numerous studies have implicated hormones in the
activation of hypoxia inducible factor 1 (HIF-1). HIF-1 is
a heterodimeric transcription factor composed of the
oxygen sensitive alpha subunit and the constitutively
present beta subunit. We have demonstrated a func-
tional HIF-1 protein in our mouse mammary tumor cell
line TG1-1. TG1-1 cells are responsive to both the
known HIF-1 stabilizer cobalt chloride as well as hyp-
oxic culture conditions, specifically 1% O,, in which we
observed stabilization of the HIF-la subunit and its
subsequent translocation into the nucleus. However a
decrease in oxygen concentration is not the only activator
of HIF-1 stabilization and translocation as demonstrated
by us in this study and elsewhere. He et al. found that in
obesity models, insulin was able to up regulate both HIF-1
mRNA and protein levels in a PI3K/mTOR dependent
manner [32]. The interdependence of estrogen mediated
cellular activity and hypoxia have been observed in various
other cellular models. Kazi and Koos showed that in a rat
uterine model, estrogen treatment lead to up regulation of
VEGE, and found that both ERa and HIF-la were
recruited to the VEGF promoter. Further, they identified
that the PI3K pathway was essential for this phenomenon
[22]. Hua et al. further demonstrated that E, treatment
leads to up regulation of HIF-1a in the ovarian cancer cell
lines ES-2 and SKOV3 in a time dependent manner, peak-
ing around 24 hours [23]. In agreement with this finding,
we also observed in increase in HIF-1a levels in our breast
cancer cells at 24 hours treatment. This was interesting as
the hypoxia mimetic, cobalt chloride, induced a much
more rapid HIF-1a response. This finding may highlight
an indirect role of estrogen in HIF-la up regulation in
which estrogen regulated proteins may lead to HIF-1la
increases in an autocrine fashion. This secretory autocrine
loop was demonstrated in androgen induced prostate can-
cer cell lines and thus may be functionally equivalent in
many different hormone responsive tissues [33]. These
studies establish a link between estrogen mediated signal
transduction and hypoxia in co-operating to regulate
angiogenic factors. Earlier we had established that breast
cancer induced tumorigenesis required the presence of
endothelial progenitor cells and that the process of vascu-
logenesis was both tumor induced factor modulated and
at the systemic level regulated by estrogens. Since hypoxia
is the most common metabolic adaptation of rapidly
proliferating breast cancer we attempted in this study to
define the molecular link of hypoxia and estrogen.

Our studies clearly indicate that hypoxia mimics estrogen
mediated function as determined by estrogen’s ability to
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regulate HIF-1a and VEGE, both of which are molecular
mediators of hypoxic condition. The release of angiogenic
factor VEGF had functional significance as evidenced by
the ability of E, treated TG1-1 conditioned media to
enhance both migration and tubulogenesis which was
responsive to antiestrogens and anti-hypoxia agents. We
also provide evidence that inhibition of the E,-dependent
PI3K up regulation inhibited HIF-la translocation. This
molecular interdependence was translatable at the cellular
phenotypic level as both migration and tubulogenesis of
endothelial cells were responsive to antiestrogens and
anti-hypoxia agents.

Paracrine/autocrine protein secretion is important for
both tumor cell and endothelial cell migration during
tumor progression and metastasis. Voss et al high-
lighted the importance of hypoxia mediated protein
secretion in migration of breast cancer cells lines MCF-7,
MDA-MB-231, MDA-MB-435S, and MDA-MB-468
using conditioned media and found that media of hypoxic
cells increased migration of normoxic cells. Also, media
harvested from hypoxic cells lead to an increase in
neutrophil granulocyte migration [34]. Similarly, Fujiwara
et al. found hypoxia increased migration and invasiveness
of glioma cell lines via up regulation of MMP-2 and a
corresponding down regulation of TIMP-2 [35]. Further,
HIF-1 induction also leads to expansion of glioma stem
cells, which is dependent on Akt/ERK signaling [36].
Perhaps the most documented role of hypoxia pertains to
its importance in directing endothelial cell migration.
Meininger, Shelling, and Granger noted that bovine aortic
and coronary endothelial cells proliferated when exposed
to 2% O, and that this proliferation was most likely due
to hypoxia mediated adenosine secretion [37]. As early as
1992, Shweiki et al. observed a hypoxia dependent
increase in VEGF in glioblastoma multiforme In situ in
which cells spatially closer to necrotic centers produced
more VEGF and that correspondingly more capillaries
clustered near these VEGF producing cells [38]. Other
studies have observed the same phenomenon in other
tumors including breast in which an increase in VEGF
mRNA levels and small blood vessels were located in
close proximity to ductal carcinoma in situ, infiltrating
ductal carcinoma, and metastatic ductal carcinoma
tumors when compared to normal or non-malignant
breast tissue [39]. In this and our previously published
study we provide experimental evidence that estrogen
and tumor derived angiogenic factors not only recruit
endothelial progenitor cells and induce neovasculogenesis
but that also established (as evidenced by the use of
HUVEC cells) endothelial cell migration and tubulogenesis
can be modulated by estrogen and hypoxic conditions. The
observation that inhibition of the signal transduction path-
way of estrogen can affect hypoxia and that anti-hypoxic
agents can be interchangeably used with antiestrogenic
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agents in modulating both angiogenic processes and tumor
phenotype opens up a novel intervention avenue that is
molecular target based modulation of tumor microenvir-
onment that is directed toward cell-cell interactions.

Conclusions

The complexity of the tumor microenvironment and the
redundancy of the signaling pathways involved cannot
be underestimated. Our data provides evidence that
estrogen can molecularly mimic hypoxia by activating
HIF-1a and that estrogen mediated HIF-la induction
requires a functional PI3K signaling pathway. This active
interdependence presumably co-operates to produce an
angiogenic environment conducive to endothelial cell
migration and vasculogenesis. The continued hypoxic
conditions in the tumor may lead to eventual ‘estrogen-
independent’ cell type that at the signal transduction
level produced estrogen inducible elements constitu-
tively. These studies clearly suggest the need to test a
combination of anti-estrogenic and anti-hypoxic agents
as an intervention strategy for breast cancer prevention
and therapy.

Materials and methods

Cell culture

The carcinoma cell line used for this study was TG1-1, a
mouse mammary epithelial cell line, and the primary
human endothelial cells HUVECs (human umbilical
vein endothelial cells). TG1-1 was cultures in DMEM
(Mediatech, Herndon, VA) supplemented with 10%
fetal bovine serum (FBS) (Atlanta Biologicals, Atlanta,
GA), penicillin 10,000 IU/mL, streptomycin 10,000
pg/mL (Mediatech) and 2mM L-glutamine (Mediatech).
HUVEC (human umbilical vein endothelial cell) cells were
obtained from American Type Culture Collection (ATCC)
(Manassas, VA) and grown in F12K (Mediatech) supple-
mented with 10% FBS, 0.lmg/mL Heparin, 0.03mg/mL
endothelial cell growth supplement (Sigma Aldrich). Cells
were grown at 37°C in a humidified atmosphere with 5%
CO, unless otherwise noted. For the cellular factors
studied in this manuscript, the estrogen dependent, hyp-
oxia induced change TG1-1 cells respond to, specifically
producing VEGE, were similar to human breast cancer
cells and hence the interdependent interaction of TG1-1
and HUVEC was rationalized.

For experiments, TG1-1 cells were grown to 75-80% con-
fluence and serum-starved overnight in phenol red-free
DMEM (Mediatech) supplemented with penicillin and
streptomycin. For hypoxia experiments cells were
grown in 1% O, in a modular incubator chamber
(Billups-Rothenberg Inc.). Addition of E, to breast
cancer cells was always on serum starved cells so as
to define the estrogenic mediated increase in protein
expression.
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Western blot analysis

Cells were harvested using 0.25% trypsin (Mediatech),
washed with PBS, and lysed (1X10°/100pL of lysis buffer)
using the radioimmunoprecipitation assay (RIPA) buffer
[50mM Tris—HCI (pH 7.4), 150 mM NaCl, 0.2% sodium
deoxycholate, 0.1% SDS, 0.5% NP40, ImM Pefabloc] and
incubated on ice for 30 minutes with vortexing every 5
minutes. Samples were centrifuged at 14,000 rpm for 30
minutes at 4°C then supernatants collected for whole cell
lysates. For nuclear/cytoplasmic isolation we used the
NE-PER Nuclear and Cytoplasmic Extraction Kit from
Thermo Scientific and followed manufacturer’s directions.
Cell lysates (10-20pg) were subjected to 10% SDS-PAGE
under reducing conditions (presence of B-mercaptoethanol)
as previously described. Proteins were transferred to
Immobilon-P membranes at 220 mA for 2 h and mem-
branes were blocked in 5% dried milk in TBST [200mM
Tris—HCl, pH 74, 150mM NaCl, and 0.01% Tween-20
added fresh/liter of 1X TBS (TBST)] for 2 h at room
temperature on a shaker. After blocking, membranes were
incubated overnight at 4°C with either HIF-la (Abcam,
Cambridge, MA), TBP (Abcam), VEGF (Santa Cruz
Biotechnology, Santa Cruz, CA), Actin (Santa Cruz), or
PI3K (Cell Signaling Technology) antibody in TBST. Mem-
branes were subsequently washed three times in TBST and
incubated with the respective horseradish peroxidase
(HRP) conjugated secondary antibody (Pierce, Rockford,
IL), for 2 h at room temperature in TBST containing 2%
dried milk. Membranes were then washed three times with
TBST and developed using ECL substrate (Pierce) and
detected on Denville autoradiography film.

VEGF Enzyme-linked Immunosorbent Assay (ELISA)

The RayBio Mouse VEGF Quantikine ELISA Kit
(RayBiotech, Inc.,) was used to quantitate the levels of
VEGF in conditioned media obtained from TG1-1 cells
according to manufacturer’s instructions. ELISA was
performed on each sample in duplicate. Protein content
of cell pellets was determined in duplicate by using the
Bradford protein assay (Bio-Rad).

Transwell migration assay

BD Biocoat Control inserts (BD Biosciences, Bedford,
MA) with 8-pm pore membrane filters were used for
migration experiments as previously described. Briefly,
TG1-1 cells were serum starved overnight for 16 h; the
media was then replaced with serum free, phenol red-
free DMEM (Mediatech) supplemented with + 10® M
Estradiol (Sigma Aldrich), + 10°® M Fulvestrant (Sigma),
+ 10° M YC-1 and culture media was subsequently
harvested 24 h later. Conversely, TG1-1 cells were incu-
bated under hypoxic conditions and media collected
after 24 h. HUVEC cells were then harvested by trypsini-
zation and 2.5 x 10* cells were seeded in the upper
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chamber in 500 pl of serum-free, phenol red-free
DMEM. The lower chamber contained 750 ul of the
harvested TG1-1 media. After 18 h of incubation non-
adherent cells were removed from the upper chamber
using a cotton swab. Migrant cells on the lower surface
were then fixed with 100% methanol and stained using
1% toluidine blue, 1% borax stain and then washed twice
in distilled water. Inserts were allowed to dry and then
visualized under 10x magnification. Experiments were
performed in duplicate and data represents number of
migrating cells per 10x field and normalized to cell
counts of control treatment groups.

Endothelial tube formation assay

96 well plates were coated with 100 pl of growth factor
reduced, phenol red-free Matrigel (BD Biosciences).
HUVEC cells were harvested by trypsinization then
added at a concentration of 10,000 cells/well in serum-
free, phenol red-free DMEM or TG1-1 cell conditioned
culture media as previously described. Plates were then
incubated at 37°C for 4-6 h and visualized using 5x
magnification, images were obtained using Axiovert 4.0.

Immunoflourescence staining

TG1-1 cells were harvested as described and seeded at a
density of 1 x 10* into 8 well chamber slides (Becton
Dickson) in complete DMEM and were allowed to
adhere 24 h. Media was then removed and replaced with
serum-free, phenol red-free DMEM and cells were
serum starved overnight. Starvation media was removed
and replaced with DMEM supplemented with + 10® M
E2 + 10 Fulvestrant + 10 YC1 or grown under hyp-
oxic conditions. Media was then removed and cells
washed three times with phosphate buffered saline
(PBS). Cells were then fixed with 4% para-formaldehyde
at room temperature for 15 minutes then washed again
three times with PBS. Cells were then permeabilized
with 0.5% Triton-X for 5 min at room temperature and
again washed three times with PBS. Cells were then
blocked in 0.2% Triton-X, 10% goat serum (Sigma) and
3% bovine serum albumin (BSA) for 30 min at room
temperature. Cells were then incubated overnight at 4°C
with either HIF-1a or VEGF antibody in 1% BSA. Wells
were then washed three times with PBS and incubated
with the respective secondary antibody conjugated to either
Alexa-fluor 488 or 595. Images were gathered using the
Axiovision Rel 4.8 program under 40x magnification on the
Axiovert 200M microscope (Carl Zeiss Microlmaging Inc.,
Thornwood, NY).

Statistical analysis
The data presented here represent three replicates.
Statistical analysis was performed using the Student’s
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t-test. Differences were considered statistically significant
at P<0.05. *=P<.001.
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