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Abstract

Background: Current large-scale cancer sequencing projects have identified large numbers of somatic mutations
covering an increasing number of different cancer tissues and patients. However, the characterization of these
mutations at the structural and functional level remains a challenge.

Results: We present results from an analysis of the structural impact of frequent missense cancer mutations using
an automated method. We find that inactivation of tumor suppressors in cancer correlates frequently with
destabilizing mutations preferably in the core of the protein, while enhanced activity of oncogenes is often linked
to specific mutations at functional sites. Furthermore, our results show that this alteration of oncogenic activity is
often associated with mutations at ATP or GTP binding sites.

Conclusions: With our findings we can confirm and statistically validate the hypotheses for the gain-of-function

unknown function.

and loss-of-function mechanisms of oncogenes and tumor suppressors, respectively. We show that the distinct
mutational patterns can potentially be used to pre-classify newly identified cancer-associated genes with yet

Background

Cancer genomics studies aim to provide new insights
into the molecular mechanisms that lead to tumorigen-
esis. To this end, second generation sequencing facili-
tated the extensive analysis of the genome and kinome
landscapes of diverse cancer types [1-7]. These
approaches provide detailed information on the fre-
quency and position of single point mutations as well as
structural aberrations of cancer genomes such as small
insertions and deletions, focal copy number alterations,
and genomic rearrangements. The findings show that the
complexity of each cancer genome is far greater than
expected and that extensive variations exist between dif-
ferent cancer types as well as between different tumor
samples of the same cancer type. While additional
sequencing data is continuously generated, the identified
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mutations can currently not be functionally characterized
in an automated way that keeps pace with the output and
development of new sequencing technologies.

Here we present an analysis of the structural conse-
quences caused by missense mutations that occur in the
most frequently mutated genes in eight common cancer
types. Our analysis focuses on four structural features:
solvent accessibility, protein stability, proximity to func-
tional sites and spatial clustering. We assess the effects
of ~2000 cancer-associated mutations in oncogenes and
tumor suppressors and compare them to the effects of
natural variants and randomized mutations.

Several previous studies have analyzed properties of
cancer mutations based on features that can be derived
from sequence data. Such properties include sequence
conservation of mutated positions [8], ancestral alleles
and substitution propensities [9], and analysis of domain
types targeted by mutations [10]. In our analysis, we
focus on mechanisms of cancer mutations that have a
consequence at the structural level. This makes our
method complementary to sequence-based approaches.
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Another significant body of work has been published on
consequences of mutations in a structural context
[11-15]. These studies differ in that either they focus on
estimating the effects of individual mutations or they
use different sets of disease mutations. We will show
that by breaking the set of cancer mutations into more
specific subclasses, functionally relevant information is
revealed that may be missed otherwise. In particular, we
find distinct mutational patterns in oncogenes and
tumor suppressors reflecting mechanisms of functional
activation and inactivation, respectively. We statistically
validate the observations and show to what extend these
differences can be used for predictive purposes.

Methods

Cancer mutation dataset (Mut)

Somatic mutations for eight cancer types (breast, pros-
tate, stomach, colon, pancreas, thyroid, kidney, lung)
were taken from the COSMIC database (Catalogue of
Somatic Mutations in Cancer) [16]. For these cancer
types, all genes were extracted from COSMIC (v49) for
which crystal structures (each of length >30aa and
together covering at least 25% of the gene) were avail-
able and which were part of the “Cancer Gene Census”
category of COSMIC. For genes in this category a com-
prehensive literature screening has been conducted. A
cut-off of 6 distinct missense mutations for each gene in
the structurally resolved regions was chosen based on
the observation that genes with very few mutations
show high statistical fluctuations. As we exclusively con-
sider missense mutations, we refer to them as “muta-
tions” hereafter. The genes and the corresponding
mutations were subsequently separated into the two
datasets Onc and Sup representing the subset of muta-
tions in oncogenes and tumor suppressors, respectively
(see Table 1). A graphical overview of the mutations
along the sequence as well as the coverage of the crystal
structures is provided in Additional File 1, Figure S1.
The set of genes results from the described automatic
selection procedure without any manual intervention.

Single nucleotide polymorphism dataset (Snp)

As a control set, we extracted single nucleotide poly-
morphism (SNP) data for the 24 genes from version 131
of the common variation database dbSNP [17]. Minor
allele frequency data was only available for a small subset
of dbSNP entries. Therefore, we excluded those SNPs that
are annotated by dbSNP as disease-associated instead.

Random control (Rnd)

As an additional control and as the null-model for the sta-
tistical analysis we generated random populations of muta-
tions. These are sampled uniformly from the amino acid
sequence. For each dataset (Sup, Mut, Onc, Sup), a
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random population is obtained by drawing 100 000 sets of
mutations. Each such set has the same size as the corre-
sponding set of observed mutations. Moreover, the num-
ber of mutations per structural domain is kept constant.
This ensures that the geometry and sequence composition
of the domains does not bias the results.

Protein structures

Known crystal structures were taken from the Protein
Data Bank [18]. The ones with the largest sequence cov-
erage and with the best crystallographic resolution were
chosen.

Structure modeling

Structure models were built using an in-house pipeline
based on established homology modeling principles.
Templates were identified by a psi-blast search with 5
iterations [19]. Models were built using distance geome-
try and subsequent simulated annealing refinement.

Statistical analysis - odds ratios

The structural features described below are evaluated
for each gene in terms of the odds ratio of observed
over expected behavior. Expected values are calculated
by generating a large population of randomized sets of
mutations (as described above) and evaluating the prop-
erty (e.g. fraction of solvent accessible residues in the
structure) averaged over the population.

Structural feature - solvent accessibility

Solvent accessibilities were computed using the NAC-
CESS software [20]. NACCESS calculates the relative
solvent accessibility (RSA) using a water probe. Residues
were considered to be solvent accessible or “surface resi-
dues” if the RSA was greater than 15%. The odds ratio is
calculated as observed over expected fraction of surface
mutations in a gene.

Structural feature - protein stability

To estimate the effect of a mutation on protein stability we
used version 3.0 beta of the FoldX software [21]. Calcula-
tions were performed using the BuildModel command
with default parameters. Mutations are considered destabi-
lizing if the difference in free energy between wild type
and mutants (AAG) exceeds 5 kcal/mol. This value is a
typical lower bound for the stability of globular proteins
[22]. Otherwise, the mutation is considered neutral. The
odds ratio is calculated as observed over expected fraction
of destabilizing mutations in a gene.

Structural feature - proximity to functional sites

A mutation is considered proximal to a functional site if
it occurs at or in contact with a functional residue
where contact is defined as the C-beta atoms of the
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Table 1 Overview of genes
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Gene name Length (AA) Mut SNP PDB codes (sequence range)
Oncogenes
AKT1 478 6 5 TUNQA (1-123), 3CQWA (144-480)
BRAF 766 46 3 3D40QA (433-726), 3NY5A (153-237)
EGFR 1210 224 9 TYYOA (25-642), 1XKKA (695-1022)
GNAS 394 12 9 TAZSC (1-394)
HRAS 189 19 0 4Q21A (1-189)
KIT 976 9 9 2EC8A (1-519), 3GOEA (544-935)
KRAS 188 85 1 3GFTA (1-164)
MET 1408 24 30 2UZXB (25-740), 3DKCA (1049-1360)
NRAS 189 9 1 3CONA (1-172)
PIK3CA 1068 148 17 2RDOA (1-1068)
PTPNTIT 593 7 2SHPA (3-529)
RET 1114 24 3 2IVSA (705-1013), 2X2UA (29-270)
Tumor Suppressor Genes
CDH1 882 17 3 2072A (155-367)
CDKN2A 156 76 10 1BI7B (1-156)
FBXW7 707 34 4 20VRB (263-707)
MLH1 756 8 3 3NA3A (1-347)
MSH2 934 12 17 208BA (1-934)
PTEN 403 93 2 1D5RA (8-353)
RB1 928 7 9 2R7GA (380-787), 2QDJA (52-355), 2AZEC (829-874)
SMAD4 552 51 3 1DD1A (285-552)
STK11 433 30 1 2WTKC (43-347)
TP53 393 826 17 2VUKA (94-312), TAIEA (326-356)
VHL 213 216 16 TLM8V (54-213)
WT1 449 9 3 2PRTA (318-438)

Abbreviations: AA, amino acid, Mut, number of mutations, SNP, number of SNPs, PDB, Protein Data Bank.

respective residues being no more than 8A apart
(C-alpha for glycine).

Functional site annotations were derived from public
databases (UniProt release 2010_10 [23], Catalytic Site
Atlas version 02.02.12 [24], PhosphoSitePlus as of 2010-
10-15 [25]). We extracted the following categories of
functional site annotations: Enzyme active sites, ATP/
GTP binding sites, phosphorylation sites, ubiquitination
and other post-translational modifications (acetylation,
methylation, and glycosylation). The odds ratio is calcu-
lated as observed over expected fraction of mutations
proximal to a functional site.

Structural feature - spatial clustering

To measure whether a set of mutations is spatially clus-
tered in the structure, we divide the protein into struc-
turally defined domains and calculate a spatial clustering
value C as follows:

1
N 2. Yay

ij

C=

where d,; is the Euclidean distance in the structure
between the side chain centroids of residues i and j and

N is the number of such residue pairs. We used the C-
alpha position for glycines and residues with unavailable
side chain coordinates.

The domains are structurally defined using the
DomainParser method [26]. Only distances within
domains are evaluated. The subdivision into domains is
crucial to avoid bias due to the size and domain archi-
tecture of the protein. The odds ratio is calculated as
observed over expected clustering value of the muta-
tions in a gene.

Statistical analysis - p-values

The statistical significance of the observations was
assessed by calculating the p-value under the null-model
assumption of a uniform distribution of the mutations. In
the cases with a binary outcome for each position (sur-
face/core, neutral/destabilizing) the null-model distribu-
tion is binomial and the p-value can be calculated
analytically. For spatial clustering and proximity to func-
tional sites it has to be obtained from the random control
population. Let f be such an empirical null-model distribu-
tion with mean m. Then, the p-value of an observation O
is approximated as the fraction of individuals v in the
population with f(v) > f(O) if O = m or f(v) < {f(O) if O <m.
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Statistical analysis - jackknife test

To assess the robustness of the data against outliers, we
applied a jackknife test. This test is a bootstrapping pro-
cedure where the results are being recalculated multiple
times, each time leaving out one gene from the original
dataset. Taking the maximum and the minimum over
this procedure for all genes yields an interval around the
value of the original dataset. These intervals are shown
as error bars in the Figure 1.
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Linear classifiers

Linear classifiers were automatically calculated using
Fisher’s linear discriminant method, which provides a
good compromise between finding the optimal solution
in the linearly separable case and being robust to out-
liers [27]. To test the robustness of the classification we
applied a leave-one-out cross validation procedure. In
each step, one gene is temporarily removed from the
training set. The classifier is recalculated on the subset
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Figure 1 Structural impact of mutations. The columns show the structural properties of random mutations (Rnd), natural variations (Snp) and
cancer mutations (Mut). Cancer mutations are further analyzed separately as mutations of oncogenes (Onc) and mutations of tumor suppressor
genes (Sup). The error bars indicate the variability of the data under the jackknife test. The reported values are the odds ratios averaged over the
genes in the dataset. The p-values are calculated over all mutations within a dataset. A, observed over expected fraction of mutations occurring
at the protein surface. Onc show significantly more and Sup significantly less solvent accessible mutations. B, observed over expected fraction of
destabilizing mutations. Onc mutations are less often destabilizing, while Sup mutations disrupt stability far more often than the controls. C,
observed over expected functional site mutations. Functional sites are more frequently mutated in Onc than in Sup. D, observed over expected
spatial clustering of mutations. Mutations particularly in Onc are significantly more clustered than expected by chance.
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and we test whether it is able to correctly predict the
class membership of the excluded gene.

Additional material

Information on genes, mutations, SNPs and functional
annotations that were used in the analysis is available in
electronic form as Additional Tables S1-S4 (Additional
Files 2, 3, 4, 5).

Results

In this study we analyze the structural impact of a
large number of cancer mutations in oncogenes and
tumor suppressors. We evaluate the impact with
respect to four structural features. We focused on
eight selected tumor entities that are among the most
frequent and lethal types. The Mut dataset extracted
from the COSMIC database [16] comprises 1992 muta-
tions in 24 cancer genes. This set contains many clas-
sical cancer genes that are involved in major signaling
pathways (i.e. TGFb, EGFR, MAPK, PI3K/AKT signal-
ing). The genes with their corresponding mutations
were subdivided into the classes of tumor suppressor
(Sup) and oncogenes (Onc) as shown in Table 1, repre-
senting two common mechanisms through which
tumorigenesis is initiated: via gain-of-function of onco-
genes and loss-of-function of tumor suppressors [28].
As a control, we use a set of 204 non-disease-related
SNPs (the Snp dataset) extracted from NCBI's database
dbSNP [29].

In the following we present the results for the four
structural properties. In Figure 1 we report the average
odds ratios over the genes in the respective set (Sup,
Mut, Onc, Sup).

Solvent accessibility

As the first property, we investigated whether mutations
occur at the surface or in the core of the protein. Figure
1A shows that there is little difference between the
SNPs (Snp, 0.938) and cancer mutations (Mut, 0.987).
However, a separate analysis of oncogenes and tumor
suppressors reveals that mutations in oncogenes occur
significantly more often at the surface (1.122, p-value
2e-5), while mutations in tumor suppressors are overre-
presented in the core (0.852, p-value 4.4e-16).

Protein stability

We calculated the impact that the mutations of the differ-
ent datasets have on protein stability. The calculations
were performed with the FoldX software [21]. A recent
assessment has shown that this method is currently among
the best methods for calculating stability changes upon
mutation [30]. The results of this analysis (Figure 1B)
show a distinct difference between oncogenes and tumor
suppressors. Tumor suppressors display a significant
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overrepresentation of mutations that destabilize the pro-
tein (1.903, p-value 2.9e-11) with an almost four-fold
increase compared to oncogenes with significantly fewer
destabilizing mutations (0.513, p-value 5.8e-7).

Proximity to functional sites

Next we assessed whether the mutations in our dataset
occur proximal to known functional sites and thus are
likely to directly influence protein function. For this we
extracted 258 annotated functional sites from public
databases. The results are shown in Figure 1C. Cancer
mutations in oncogenes (Onc) have a tendency to speci-
fically target functional sites (1.663, p-value le-5), while
in tumor suppressors (Sup) mutations proximal to func-
tional sites are significantly underrepresented (0.893, p-
value 4.6e-2). Functional site mutations are also signifi-
cantly underrepresented in the Snp data set (0.770, p-
value 4.4e-8).

Further, we investigated whether particular types of
functional sites are more often mutated than expected.
Figure 2 shows the observed distribution of functional
site mutations in oncogenes and tumor suppressors
compared to the distribution expected for randomized
mutations. For oncogenes, ATP and GTP binding sites
are significantly overrepresented among the mutated
functional sites (31% compared to 16%, p-value 4.95e-11
(ATP) and 22% compared to 13%, p-value 4.86e-07
(GTP)). The results for tumor suppressors show no
apparent differences between observed and random
distribution.

Spatial clustering

Next we wanted to test whether cancer mutations have
a tendency to co-localize in spatial clusters. Figure 1D
shows that cancer mutations in oncogenes are highly
clustered (1.651), while tumor suppressor mutations
behave similar to SNPs (1.095 compared to 1.114). Both
are significantly more clustered than random (p-value
<le-5). The small error bar for Sup indicates that all
tumor suppressors have similar clustering behavior.

In this case, the p-values result from the fact that a
spatial clustering as high as the one for either of the
sets Snp, Mut, Onc or Sup was never observed in the
random reference population of size 100 000. Hence,
the p-value is at most le-05.

Redundancy in the dataset

The dataset contains three members of the RAS family,
which exhibit high sequence similarity. This is a result
of the automatic gene selection. To check for a possible
bias introduced by this gene family we recalculated the
average values with only one RAS gene and found that
the conclusions are unchanged and are still supported
by the significance values.
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Figure 2 Distribution of functional site mutations. Distribution of mutations affecting functional sites in oncogenes (Onc) and tumor
suppressors (Sup) compared to distribution of random mutations. A and B, distribution obtained by random sampling of positions in Onc and

Sup, respectively. C, distribution of functional site mutations in Onc. ATP and GTP binding sites in Onc are significantly more often mutated than
expected by chance. D, distribution of functional site mutations in Sup. Observed distribution does not differ significantly from expected random
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Classification of cancer genes based on structural features
Given the distinct average behavior of the two cancer
gene classes, we investigated to what extend this beha-
vior is reflected at the individual gene level and to what
extend it can be used for predictive purposes. To exam-
ine the discriminatory power of the structural features,
the features were plotted in pairwise combinations
(Figure 3). Each data point corresponds to one indivi-
dual gene with oncogenes and tumor suppressors shown
as blue dots and red diamonds, respectively. The values

on the axes are the odds ratios for the feature values.
We calculated linear classifiers trained on the two sets
using Fisher’s discriminant method [27].

Visually, the two classes are well-separated for feature
combinations shown in Figure 3A, 3D and 3E. For com-
binations in Figure 3B, 3C and 3F the two subpopula-
tions overlap more. Nevertheless, in all six plots there
are areas exclusively populated by either class.

We have systematically evaluated the discriminatory
power of the different feature combinations (see Table 2)
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depicted as blue dots, tumor suppressors as red diamonds. The separating linear functions have been calculated using Fisher's linear
discriminant method. The classifiers in A, D and E show the best training performance.

by leave-one-out cross validation. We find that the combi-
nation of the two features functional sites and stability
(Figure 3D) classifies best with a performance of 95.83%.
The plots in Figure 3A and 3E (stability vs. surface accessi-
bility, clustering vs. stability) display a cross validation per-
formance of 83.33% and 79.17%, respectively. The other
feature combinations possess modest classification power.

Towards prediction
Given the good performance of the classifiers, we

applied the classification to five genes with uncertain

Table 2 Performance of linear classifiers

Training Performance Cross validation

Feature combination true false ratio true false ratio

Solv Stab 20 4 8333% 20 4 8333%
Solv Func 16 8 66.67% 16 8 66.67%
Solv Clust 16 8 66.67% 16 8 66.67%
Stab Func 23 1 9583% 23 1 95.83%
Stab Clust 20 4 8333% 19 5 79.17%
Func Clust 18 6 7500% 17 7 7083%

Abbreviations: Solv, Solvent Accessibility, Stab, Stability, Func, Functional Sites,
Clust, Clustering.

annotation (MMP2, PIK3C3, TGM3, EPHA3, DCLK3).
These genes were not included in our original dataset
either because they were not in the “Cancer Gene Cen-
sus” category of COSMIC (MMP2, PIK3C3, TGM3,
EPHA3) or because there was no crystal structure avail-
able (DCLK3). We generated a homology model for
DCLK3 (Additional File 6, Figure S2). For EPHA3 we
found clear evidence in the literature that it acts as a
tumor suppressor [31]. For the other four genes, the
classification is less clear. We systematically applied the
linear classifiers shown in Figure 3 to this set. Table 3
shows a summary of the results. The consensus of the
classifiers identifies DCLK3, MMP2, TGM3 as onco-
genes and PIK3C3 and EPHA3 as tumor suppressors.
This matches the prediction result of the best perform-
ing classifier (functional sites versus stability).

Discussion

Previous studies of structural effects of mutations have
found that disease mutations primarily occur in the pro-
tein core [13,14]. We can confirm this trend only for the
set of tumor suppressors. In contrast, core residues in
oncogenes are significantly less often mutated than
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Table 3 Prediction of cancer gene classes

Prediction
Feature combination DCLK3 MMP2 PIK3C3 TGM3 EPHA3
Solv Stab 0O S S 0 S
Solv Func S O S O S
Solv Clust @) ) S 0] S
Stab Func O O S O S
Stab Clust O S S O S
Func Clust S ) S S S

Abbreviations: Solv, Solvent Accessibility, Stab, Stability, Func, Functional Sites,
Clust, Clustering, O, Oncogene, S, Tumor Suppressor.

expected by chance. This is in agreement with our results
for protein stability. Mutations located in the protein
core are often destabilizing and result in loss-of-function.
Thus, our data suggests that the loss-of-function of
tumor suppressors is often caused by destabilization of
the protein.

Similar to our findings, Gong and Blundell show that
cancer mutations are less often located in solvent inac-
cessible areas than expected, as opposed to Mendelian
disease-related variants [32]. In another recent study,
Talavera et al. report that cancer driver mutations are
more likely located on the surface of proteins than
expected by chance [9]. Their observation that the pat-
terns of cancer-associated mutations and common poly-
morphisms are “remarkably similar” can be explained by
our results that the opposing trends of tumor suppres-
sors and oncogenes neutralize each other when looking
at cancer mutations in general.

Functional site mutations can either disable enzymatic
activity and regulatory mechanisms or increase protein
activity, as it has been described for several examples.
One example is the well-characterized V600E mutation
in BRAF that mimics the phosphorylation of the kinase
domain activation segment [33]. For the Onc set we
observed a significant overrepresentation of mutations
proximal to functional sites. This suggests that specific
mutations of functional sites are often responsible for
oncogene activation. The underrepresentation of func-
tional site mutations in the Snp dataset can be explained
by the fact that SNPs are assumed to occur in the popu-
lation without causing severe phenotypes. A mutation of
a functional site impairing the native protein function
would be unfavorable.

Our results show that the most frequently mutated
types of functional sites in oncogenes are ATP and GTP
binding sites and that the frequency of mutation is sig-
nificantly higher than expected. This suggests that muta-
tions of ATP and GTP binding sites are specific and
common mechanisms of oncogene activation. In fact,
examples for such activating mutations near ATP bind-
ing sites have been described in the literature [33-35].
This is supported by previous findings showing that the
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functional region of ATP binding is subject to a greater
selection pressure indicative for the presence of candi-
date driver mutations [36], and that in kinases this site
shows a higher proportion of driver mutations com-
pared to the remaining catalytic domain [3]. Further,
mutations in the GTP binding site of RAS genes have
been described to impair GTPase activity. These muta-
tions retain the protein in a GTP-bound state leading to
constant activation of the gene [37,38].

We have observed highly significant spatial clustering
of mutations in particular in oncogenes. Similar trends
have been described in recent publications [39,40]. Even
though different, sequence-based definitions of cluster-
ing were used, the results, like ours, support the hypoth-
esis that mutations in specific regions in the structure
are required for gene activation. Our results further
indicate that tumor suppressor deactivation is a locally
less constrained process.

To identify tumor-causing mechanisms from sequen-
cing data it is important to distinguish between driver
and passenger mutations. By definition, driver mutations
are actively involved in the process of tumor formation.
In contrast, passenger mutations occur by chance and
do not confer any growth advantages. Typically, cancer
genomics studies will include a step to filter out passen-
ger mutations and several approaches for such filtering
have been described [3,36,41,42]. We have only included
genes that are taken from the “Cancer Gene Census”
part of the COSMIC database and we make the assump-
tion that mutations described in the literature are less
likely to be passengers. Nevertheless, there is the possi-
bility that the Mut dataset contains passenger mutations.
We expect that they behave more similar to the control
sets (Rnd and Snp) and shift the results towards the
expected random value. Since the observed differences
between Onc and Sup are so significant, we conclude
that the signal from driver mutations dominates the
noise induced by passengers.

Figure 3 shows the behavior of individual genes and
the linear classifiers that we trained on the dataset. We
find that plots with the stability feature on one axis
(Figure 3A, 3D, 3E) show good separation. We looked at
some outlier genes with unexpected behavior in more
detail. For example, the value for functional site muta-
tions in PIK3CA is zero. This is because the databases
were missing annotations described in the literature for
the ATP binding- and catalytic sites [43]. So there is
some effect of database contents, but the other genes in
our dataset seem to be well-annotated.

The two recurring outliers, PTPN11 and AKT1 are the
genes with the least number of distinct mutations in our
dataset. Therefore, we suggest that results for genes with
few mutations should be handled with care and that for a
robust classification more mutations are advantageous.
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Plots involving clustering (Figure 3C, 3E, 3F) show that all
tumor suppressors have a similar clustering value around
one, whereas oncogenes show a wider distribution with
very high and some low values. The three members of the
RAS family show the highest clustering values due to the
dominance of mutations around the common hotspot at
position twelve. KIT shows the lowest clustering value
because it is only rarely mutated in the eight selected
tumor types and the mutations are even more scattered in
the structure than random.

The results of the cross validation showed good perfor-
mance of the features for predictive classification. Hence,
we used the classifiers to predict the functional class of
five genes not included in the original dataset. We com-
pared the predictions of our linear classifiers to recent
results by Bozic et al. [44]. They conducted a classifica-
tion of all genes contained in COSMIC into oncogenes
and tumor suppressors based on non-structural features.
For two of the genes (DCLK3 and MMP2) their classifi-
cation as oncogenes matches ours. For EPHA3 the two
annotations disagree. Our classification is in accordance
with prior knowledge about the tumor suppressor activity
of EPHAS3 [31]. Further investigations may be required to
elucidate this apparent disagreement. For two previously
uncharacterized genes (PIK3C3 and TGM3), for which
Bozic and coworkers do not report annotations, we sug-
gest that they act as tumor suppressor and oncogene,
respectively.

Conclusions

The central contribution of this study is that it describes
in a quantitative way, the opposing structural effects of
cancer-associated missense mutations in oncogenes and
tumor suppressors. With our findings we can confirm
and statistically validate the hypotheses for the gain-of-
function and loss-of-function mechanisms of oncogenes
and tumor suppressors, respectively.

Moreover, we present a method that can be used to
predict whether a newly identified gene likely acts as an
oncogene or a tumor suppressor. The method uses
structural features that, in lack of experimental struc-
tures, can be derived from predicted models. In our ana-
lysis we have focused on properties of cancer mutations
that act at the structural level. Hence, our results give
complementary information compared to methods that
use sequence information alone. We have shown that
our method performs well for predictive classification.
This pre-classification of genes into functional classes
will be a valuable tool in cancer research.

To further understand the complex mechanisms that
lead to tumor initiation, the proteins have to be ana-
lyzed on a biochemical and functional level and in the
context of their native interaction partners. Such investi-
gations at the systems level are currently being
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performed for many of our target genes as part of the
Mutanom project (http://www.mutanom.org). Ulti-
mately, systems biology approaches that integrate gen-
ome-wide mutational and epigenetic analyses with
structural and functional analyses as well as quantitative
modeling of pathways will pave the way to predictive
models of genetic diseases. Such prediction models will
aid the development of individualized medicine
approaches and diagnostics optimizing treatment effi-
ciency and minimizing drug side effects.
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