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Abstract

[3-catenin.

Background: Truncated dopamine and cycliccAMP-regulated phosphoprotein (t-DARPP) is frequently
overexpressed in gastrointestinal malignancies. In this study, we examined the role of t-DARPP in regulating

Results: The pTopFlash construct that contains multiple TCF/LEF-binding sites was used as a measure of (3-catenin/
TCF transcription activity. Gastric (AGS, MKN28) and esophageal (FLO-1) adenocarcinoma cancer cell lines that lack
t-DARPP expression were utilized to establish stable and transient in vitro expression models of t--DARPP. The
expression of t-DARPP led to a significant induction of the pTOP reporter activity, indicative of activation of (3-
catenin/TCF nuclear signaling. Immunofluorescence assays supported this finding and showed accumulation and
nuclear translocation of B-catenin in cells expressing t-DARPP. These cells had a significant increase in their
proliferative capacity and demonstrated up-regulation of two transcription targets of 3-catenin/TCF: Cyclin D1 and
c-MYC. Because phosphorylated GSK-3(3 is inactive and loses its ability to phosphorylate (3-catenin and target it
towards degradation by the proteasome, we next examined the levels of phospho-GSK-3(3. These results
demonstrated an increase in phospho-GSK-33 and phospho-AKT. The knockdown of endogenous t-DARPP in
MKN45 cancer cells demonstrated a reversal of the signaling events. To examine whether t-DARPP mediated GSK-
3[3 phosphorylation in an AKT-dependent manner, we used a pharmacologic inhibitor of PI3K/AKT, LY294002, in
cancer cells expressing t-DARPP. This treatment abolished the phosphorylation of AKT and GSK-33 leading to a
reduction in B-catenin, Cyclin D1, and c-MYC protein levels.

Conclusions: Our findings demonstrate, for the first time, that t-DARPP regulates 3-catenin/TCF activity, thereby
implicating a novel oncogenic signaling in upper gastrointestinal cancers.

Background

Upper gastrointestinal adenocarcinomas (UGCs) are
among the most prevalent causes of cancer-related
deaths in the world. This category of cancers includes
adenocarcinomas of the stomach, gastroesophageal
junction (GEJ), and lower esophagus. While gastric car-
cinomas remain the world’s second leading cause of
cancer-related deaths [1,2], the incidence and prevalence
of adenocarcinomas of the esophagus and GE]J has dra-
matically increased amongst the Western population
[3-6]. The biology of gastrointestinal cancer involves
complex signaling mechanisms and critical molecular
interactions, most of which remain uncharacterized
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[7-9]. Although chemotherapy is currently one of the
primary options for treatment of gastric cancer, it often
provides poor clinical prognosis due to the underlying
resistance mechanisms [10,11]. Limited understanding
of such inherent protective mechanisms enforces a need
to identify novel signaling pathways that can possibly
reveal novel drug targets towards the development of
advanced therapeutic alternatives. Dopamine and cyclic-
AMP-regulated phosphoprotein (DARPP-32), also
known as PPRIR1B, is a major regulator of dopaminer-
gic neurotransmission in the brain and is the key factor
for the functioning of dopaminoceptive neurons [12].
Molecular investigation of critical target genes at 17q12
amplicon in gastric adenocarcinoma has led to the iden-
tification of DARPP-32 and t-DARPP, a truncated iso-
form of DARPP-32, as two novel cancer-related genes
[13]. t-DARPP is frequently overexpressed in several
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human adenocarcinomas such as those of the stomach,
colon, esophagus, breast, and prostate [14-18]. However,
the molecular signaling mechanisms governing t-
DARPP’s biological functions remain fairly unexplored.

Wnt signaling is one of the most critical pathways for
regulation of cell proliferation, differentiation and migra-
tion during embryonic patterning and morphogenesis
[19-21]. One of the key events of canonical or Wnt/
[B-catenin-dependent pathways is accumulation and
nuclear translocation of -catenin, which is an integral
component of adherens junctions [22-24]. Dysregulation
and aberrant activation of Wnt pathways or mutations
in B-catenin or adenomatous polyposis coli (APC) often
results in increased [-catenin accumulation. The onco-
genic potential of nuclear f-catenin in the initiation and
progression of various human malignancies including
carcinomas of colon and esophagus have been discussed
[25-29]. Glycogen synthase kinase-3p (GSK-3p) plays an
important role in determining B-catenin turnover inside
the cells. In the absence of Wnt/Wingless ligand activa-
tion, P-catenin exists in the cytoplasm as a multi-protein
complex with scaffold protein Axin, APC, PP2A (protein
phosphatase 2A), GSK-3p, and CK1 (casein kinase I)
[30-35]. When this destruction complex is intact, GSK-
3B phosphorylates the amino terminal serine and threo-
nine residues of P-catenin and targets it towards
degradation by proteasomal machinery [36-38]. The
phosphatidylinositol 3-kinase (PI3K)/AKT signaling
pathway is a major regulator of GSK-3f [39,40]. AKT-
mediated phosphorylation and inactivation of GSK-3f
leads to hypophosphorylation and stabilization of cyto-
solic -catenin with subsequent accumulation and trans-
location into the nucleus. In the nucleus, p-catenin
functions as a transcriptional co-activator of the T-cell
factor/lymphoid enhancer factor (TCF/LEF) family of
DNA-binding transcription factors [41-43]. This com-
plex binds to and activates several Wnt target genes
including ¢-MYC, Cyclin D1, MDR1, and VEGF many
of which are involved in tumorigenesis [44-47]. In this
study, we have reported that t-DARPP can regulate
[-catenin/TCF signaling in upper gastrointestinal cancer
cells.

Results

Activation of B-catenin/TCF reporter and nuclear
localization of B-catenin by t-DARPP

We utilized the B-catenin reporter assays using both the
pTopFlash construct, which contains six functional
TCF/LEF-binding sites in the promoter of a firefly luci-
ferase reporter gene, and the derived pFopFlash con-
struct with mutated TCF/LEF-binding sites. The
transient transfection of t-DARPP in AGS, MKNZ28 and
FLO-1 cells that lack endogenous t-DARPP led to 3.5,
1.5, and 2.5 fold induction (p < 0.001) in the pTopFlash
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reporter activity relative to control pcDNA3 in AGS,
MKN28, and FLO-1, respectively (Figure 1). The specifi-
city of B-catenin/TCF was confirmed by the co-transfec-
tion of different expression vectors with mutant
pFopFlash reporter. In line with these findings, the
immunofluorescence studies indicated a significant
increase (P < 0.001) in the percentage of cells showing
accumulation and nuclear localization of -catenin in
cells transfected with t-DARPP as compared to empty
vector control; AGS (86% vs 13%) and MKN28 (80% vs
26%) gastric cancer cells and FLO-1 (86% vs 20%)
(Figure 2). These results augment the findings of the
reporter assays and strongly suggest the possible role of
t-DARPP in mediating accumulation and nuclear trans-
location of -catenin and activation of -catenin/TCF
transcription complex.

t-DARPP increases the proliferative capacity of gastric
cancer cells

One of the important functions of 3-catenin signaling in
cancer is the promotion of cellular proliferation. Using
an EDU proliferation assay and counting 500 cells from
each experiment, we showed that 45-48% of AGS cells
stably transfected with t-DARPP (clones #1 and #2)
demonstrate nuclear EDU staining (green fluorescence)
whereas only 26% of control cells showed a similar
staining (p < 0.01). These results were corroborated in
two independent AGS clones stably expressing t-DARPP
showing a significant increase in the number of cells
with nuclear EDU staining, indicative of increased cell
proliferation (Figure 3).

t-DARPP expression up-regulates -catenin and induces
its targets

Accordant with our immunofluorescence results, Wes-
tern blot analysis in cells stably expressing t-DARPP
showed an increase in the protein levels of p-catenin in
AGS and MKN28 gastric cancer cells and FLO-1 esopha-
geal cancer cells (Figure 4). Consistent with reports
that identified c-MYC and Cyclin D1 as two important
targets of the P-catenin/TCF transcription complex
[19,33,44,48], our results demonstrated that t-DARPP-
mediated activation of B-catenin/TCF leads to up-regula-
tion of ¢-MYC and Cyclin D1 in gastric and esophageal
cancer cells (Figure 4). These results explain the observed
increase in the proliferative capacity in t-DARPP expres-
sing cells (Figure 3). In line with the role of active GSK-
3B in regulating P-catenin degradation [19,49], our
results indicated an increase in the phosphorylation levels
of GSK-3p (Ser 9), indicative of the loss of GSK-3p activ-
ity (Figure 4). The PI3K/AKT signaling is one of the
most fundamental pathways for cell proliferation and is
frequently linked to human cancer [50-52]. Western blot
analysis indicated that phosphorylation of AKT at Ser473
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Figure 1 t-DARPP regulates B-catenin/TCF activation. 3-catenin and TCF/LEF transcriptional activity was assessed using the luciferase reporter
constructs, pTopFlash (with six TCF binding sites) and pFopFlash (with mutant binding site). AGS (A) MKN28 (B) and FLO-1 (C) cells that lack the
expression of endogenous t-DARPP, were transiently transfected with different plasmid constructs as shown. The Western blot insets
demonstrate the level of t-DARPP in representative transient transfection experiments. Overexpression of t-DARPP resulted in significant
induction of B-catenin activity (p < 0.001) as indicated by an increase in luciferase activity of pTopFlash reporter. Co-transfection of t-DARPP
pFopFlash reporter (mutant reporter) did not show any effect on luciferase activity. Results are representative of at least three experiments and
shown as the mean with + SD. Significance of difference was calculated using one-way ANOVA.

was remarkably higher in AGS, MKN28 and FLO-1 cells
stably expressing t-DARPP as compared to the control
cells (Figure 4), thus providing an explanation for the
increase in GSK-3p (Ser9) phosphorylation. Phosphory-
lated GSK-3p loses its ability to phosphorylate and target
[-catenin towards degradation by proteasomes, resulting
in accumulation and translocation of B-catenin to the
nucleus [19,49]. Furthermore, we confirmed our observa-
tions by using tet-inducible AGS cells expressing
t-DARPP. Induction of t-DARPP expression by treatment
with doxycycline for 48 h led to a significant induction of
[-catenin protein levels (Figure 5A). To ascertain the role
of t-DARPP in the regulation of B-catenin levels via
GSK-3pB phosphorylation, we used t-DARPP specific
siRNA to knockdown endogenous t-DARPP (MKN45
cells). The knockdown of t-DARPP led to a remarkable
decrease in the levels of phosphorylated GSK-3p, 3-cate-
nin, c-MYC, and Cyclin D1 (Figure 5). In order to con-
firm t-DARPP-mediated regulation of TCF/B-catenin
activity via PI3K/AKT pathway, we used pharmacologic
inhibition of PI3K/AKT on AGS cells stably expressing t-
DARPP. Our data demonstrate a significant abrogation
of pAKT (Ser473) and pGSK-3p (Ser9) after treatment
with LY492002 for 30 min and 2 h (Figure 5C). This
treatment also dramatically reduced levels of f-catenin
and its targets c-MYC and Cyclin D1 (Figure 5C). Taken
together, our findings suggest the possible role of t-
DARPP in regulating the cross-talk between PI3K/AKT
and Wnt/p-catenin pathways in gastric carcinogenesis.

Discussion

t-DARPP has been recently identified as a splice variant
of DARPP-32 [53]. Both DARPP-32 and t-DARPP genes
are located at the 17q12 locus, a region frequently
amplified in gastrointestinal adenocarcinomas [13,54,55].

Although DARPP-32 has been known as a major regula-
tor of dopamine signaling in the central nervous system
[56,57], the functions of DARPP-32 and t-DARPP in
cancer remain largely unexplored. Our previous results
indicated that t-DARPP-induced cell proliferation is pos-
sibly mediated by ¢c-MYC and Cyclin D1 [58]. These
findings suggested the possible role of t-DARPP in regu-
lating Wnt/B-catenin signaling in cancer cells. In this
study, we have identified and confirmed a novel function
of t-DARPP in regulating Wnt/p-catenin signaling in
upper gastrointestinal cancer cells.

Wnt signal transduction pathway is by far one of the
most important pathways for regulation of cell prolifera-
tion, differentiation, migration, and survival/apoptosis.
Alterations in -catenin signaling are a common finding
in several cancers [59,60]. Using the -catenin/TCF luci-
ferase reporter (pTopFlash) to measure the activation of
-catenin/TCF complex, t-DARPP increased the activity
of this reporter in gastric and esophageal cancer cell
models. The activity of Wnt/B-catenin signaling pathway
depends on the accumulation and translocation of
[-catenin to the nucleus, one of the important factors for
the initiation of tumorigenesis in a variety of human can-
cers [25-27]. Accumulation and nuclear localization of
[-catenin have been reported in approximately one-third
of gastric tumors [25,61,62]. Inmunofluorescence analy-
sis on t-DARPP expressing cells showed remarkable
accumulation of nuclear B-catenin. In the nucleus, the
B-catenin/TCF transcription complex regulates the
expression of several genes that are involved in human
carcinogenesis such as Cyclin D1 and c-MYC [25,60-65].
The in vitro cell models expressing t-DARPP demon-
strated up-regulation of Cyclin D1 and ¢c-MYC protein
levels. This finding was associated with increased prolif-
eration in t-DARPP expressing cells as compared to
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Figure 2 t-DARPP increases nuclear accumulation of B-catenin. Immunofluorescence analysis was performed on AGS (A) MKN28 (B) and
FLO-1 (Q) cells overexpressing t-DARPP. Data indicates increased nuclear localization of B-catenin in cells expressing exogenous t-DARPP, as
compared to control cells that show membranous B-catenin (p < 0.001). B-catenin positive cells were analyzed by using an anti-3-catenin
antibody which is recognized by secondary rabbit antibody conjugated with FITC, depicted by green fluorescence. Nuclear staining was
detected by counterstaining cells with 4', 6-Diamidino-2-phenylindole (DAPI), represented as blue fluorescence. Ratio of cells positive for nuclear
B-catenin staining to total number of cells was counted as percentage positive for nuclear localization. In total, at least 300 cells from t-DARPP
and control vector were counted from three different microscopic fields for B-catenin immunofluorescence. Results are representative of three
independent experiments and expressed as mean values + SD. Significance of difference was calculated using Student’s t test.
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empty vector control. Taken together, our findings pro-
vide strong evidence that t-DARPP plays a role in nuclear
translocation of f-catenin and oncogenic induction of
B-catenin/TCF transcriptional activity, the outcome of
which is reflected in the increased proliferation capacity.
In an attempt to determine the underlying signaling
mechanism by which t-DARPP regulates [-catenin, we
demonstrated that t-DARPP overexpression in gastric and
esophageal cancer cells was associated with increased phos-
phorylation of GSK-3p. GSK-3p plays a critical role in
Wnt/[-catenin signaling by regulating the levels of cytoplas-
mic -catenin. GSK-3 is rendered inactive by phosphoryla-
tion resulting in accumulation and nuclear translocation of
non-phosphorylated p-catenin [20,21]. Consistent with

these studies, we detected a remarkable up-regulation in
[-catenin protein levels in t-DARPP expressing cells. In line
with these findings, the knockdown of exogenous and
endogenous t-DARPP led to a dramatic reduction of
p-GSK-3 (Ser9) and [B-catenin protein levels. These results
support our hypothesis that t-DARPP regulates TCF/
[-catenin activity through GSK-3f phosphorylation.

The phosphatidylinositol 3-kinase (PI3K)/AKT signal-
ing pathway is a major regulator of GSK-3 where AKT
phosphorylates and inactivates GSK-3p [39,48,66,67].
In this study, we demonstrated the regulation of phos-
pho-AKT levels by t-DARPP, and confirmed that by
using a PI3K/AKT pharmacologic inhibitor (LY294002)
that t-DARPP-mediated activation of -catenin is AKT-
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Figure 3 Enhanced cell proliferation of gastric cancer cells overexpressing t-DARPP. (A) AGS cells stably transfected with t-DARPP (clones
#1 and #2) demonstrate an increased rate of cell proliferation (48% and 45%) as compared to pcDNA empty vector control cells (26%, p < 0.01).
ClickiT® EdU Assay (Invitrogen) was utilized to measure cell proliferation in t-DARPP expressing cells. EdU (5-ethynyl-2-deoxyuridine) is
incorporated as a thymidine analog during active DNA synthesis. EdU labeling in cells is detected by the binding of azide group of Alexa Fluor
488 dye (depicted as green fluorescence) to alkyne group of EdU. Ratio of EdU positive cells to total number of cells (represented by blue nuclei
stain, DAPI) is a direct index of the number of proliferating cells. (B) t-DARPP overexpression in AGS stable clones is demonstrated by Western
blot from total proteins. (C) Quantification data represents results obtained from two independent t-DARPP stable clones (#1 and #2). 500 cells
were counted for each experiment and the percentage of EdU positive cells for each clone was averaged from at least four independent
microscopic fields. Results are representative of at least three independent experiments and shown as mean + SD. Significance of difference was
calculated using one-way ANOVA.
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subjected to immunoblot analysis using t-DARPP, B-catenin, c-MYC, Cyclin D1, GSK-3f, pGSK-3B (Ser9), AKT, pAKT (Ser473), and Actin antibodies.
Protein loading was normalized to equal levels of B-actin. Total protein levels of B-catenin and its targets, c-MYC and Cyclin D1, were
significantly higher in t-DARPP expressing cells compared to control cells. Both pGSK-3B (Ser9) and pAKT (Ser473) were higher in t-DARPP
expressing cells as compared to control.
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subjected to Western blot analysis. As shown, knockdown of endogenous t-DARPP led to a marked decrease in protein levels of B-catenin, c-
MYC, Cyclin D1, pAKT (Ser473), and pGSK-3f (Ser9). (C) AGS cells stably overexpressing t-DARPP were treated with dimethyl sulfoxide (DMSO) as
control and LY294002 (40 uM), a potent PI3 kinase inhibitor, for 30 min and 2 h. As shown by Western blot analysis, treatment with LY294002
led to complete abrogation of downstream AKT and GSK-3f phosphorylation in t-DARPP expressing AGS cells. Inhibition of PI3 kinase in AGS-t-
DARPP cells resulted in significant downregulation of B-catenin, c-MYC and Cyclin D1.
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dependent. Previous reports suggested that t-DARPP
provides anti-apoptotic and chemotherapeutic resistance
properties to cancer cells through the activation of AKT
and up-regulation of Bcl2 [17,18,68]. Taken together,
the regulation of AKT by t-DARPP appears to be critical
for several oncogenic functions in cancer cells.

Conclusions

Our findings underscore a novel oncogenic function for
t-DARPP in cancer cells through regulating the -
catenin/TCF cell signaling. Further studies are necessary
to explore the full impact of t-DARPP signaling
mechanisms in the development and progression of gas-
trointestinal malignancies.

Methods

Cell lines

AGS, MKN28, MKN45, and FLO-1 cell lines were pur-
chased from American Type Culture Collection (Mana-
ssas, VA, USA). Cells were cultured in F-12 (HAM)
medium supplemented with 5% penicillin-streptomycin
(GIBCO, Grand Island, NY, USA) and 10% fetal bovine
serum (Invitrogen Life Technologies, Carlsbad, CA, USA)
in a 37°C incubator with an atmosphere containing

5% CO,. The pcDNA3.1 mammalian expression vector
(Invitrogen) was used to generate a t-DARPP expression
vector, as reported earlier [17]. AGS cell lines stably
expressing t-DARPP or pcDNA3 empty vector were gen-
erated by transfection with respective expression plas-
mids using Lipofectamine 2000 (Invitrogen) followed by
selection with 400 pg/mL of G418 antibiotic (Mediatech,
Cellgro, Manassas, VA, USA) for three weeks. Stably
transfected MKN28 and FLO-1 cell lines expressing
t-DARPP were generated as described above, following
selection with 600 pg/mL of G418 antibiotic. Single resis-
tant colonies expressing t-DARPP were screened by Wes-
tern blot analysis. Tetracycline inducible AGS cell line for
t-DARPP was generated as described previously [68].
rtTA expression plasmid (Tet-On) was stably transfected
into the AGS cell line using 20 ug of Scal digested rtTA
plasmid DNA. Single colonies stably expressing rtTA
were selected using 400 pug/mL of G418. Following isola-
tion, such colonies were transfected with pTRE-t-DARPP
plasmid and selected with 0.8 ug/mL puromycin. Tet-
responsive AGS cells stably expressing t-DARPP after
induction with 2 pg/mL doxycycline (Clontech, Moun-
tain View, CA, USA) were selected and examined with
Western blot analysis.
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Luciferase assays

TCF luciferase reporter gene constructs, pTopFlash and
its mutant pFopFlash were purchased from Upstate Bio-
technology (Waltham, MA, USA). Renilla luciferase
(Rluc) was inserted into pcDNA3.1 vector (Invitrogen)
and expressed under the control of the CMV promoter.
AGS, MKN28, and FLO-1 cells (5 x 10*) were plated in
24-well plates and transiently transfected with 500 ng of
different combinations of pTopFlash, pFopFlash,
pcDNA3-t-DARPP, pcDNA3 (empty vector), and 5 ng
of Rluc using Fugene-6 (Roche Applied Science, India-
napolis, IN, USA) following manufacturer’s protocol.
Cells were lysed 48 h post-transfection and the assays
for firefly luciferase activity and Renilla luciferase activity
were performed using a luminometer (Turner Designs
model TD20/20). The firefly luciferase activity was nor-
malized to Renilla luciferase activity and expressed as
relative luciferase activity.

Immunofluorescence assay

AGS and MKN28 cells stably expressing t-DARPP or
control vector and FLO-1 cells transiently expressing
t-DARPP or control vector, were seeded onto an 8-
chamber culture slide (BD Falcon, Bedford, MA, USA)
(3 x 10* cells per chamber). After 24 h, the culture
media was removed and cells were fixed in fresh 4%
paraformaldehyde solution for one hour. Cells were then
washed twice with cold PBS for one minute and per-
meabilized on ice for two minutes. After two washes
with PBS, cells were incubated with 10% non-immune
goat serum blocking solution (Zymed Laboratories,
Carlsbad, CA, USA) for 20 min in a humidified chamber
at room temperature. Next, cells were incubated with
the B-catenin primary antibody (Sigma-Aldrich, St.
Louis, MO, USA) prepared in PBS (1:200 dilution) for
2 h at room temperature, followed by three washes with
PBS. Cells were then incubated with secondary affini-
pure donkey anti-rabbit IgG (Jackson Immunoresearch,
West Grove, PA, USA) conjugated with fluorescein iso-
thiocyanate (FITC) green fluorescence label prepared in
PBS (1:1000 dilution) for 45 min at room temperature
in a dark humidified chamber. Following three washes
with PBS, cells were mounted using Vectashield/DAPI
(Vector Laboratories, Burlingame, CA, USA) and visua-
lized under a fluorescence microscope (Olympus Co.,
Tokyo, Japan). For analysis, all images were viewed and
randomly captured at 40x magnification. For quantifica-
tion, Image] software was used. The images were trans-
formed into 8-bit and a region of interest (ROI) was
randomly selected in the nucleus and cytoplasm. The
ratio of integrated density in nucleus versus cytoplasm
was determined by measuring the density of the ROI in
the nucleus and cytoplasm. The percentage of cells that
show B-catenin nuclear staining was determined based
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on the value of the density ratio; a value equal to or less
than 1 was considered negative, a value more than 1
was considered positive.

Western blot analysis

Protein lysates were prepared by scraping cultured cells
in ice cold 1x PBS followed by centrifugation at 3500
rpm at 4°C for 10 min. Resulting protein pellets were sus-
pended in cell lysis buffer (1% Triton X-100) containing
1% Halt protease/phosphatase inhibitor cocktail (Pierce,
Rockford, IL, USA). Protein concentration was measured
by a Bradford assay (Bio-Rad Laboratories, Hercules, CA,
USA). Proteins (10 pg/lane) were separated by SDS/poly-
acrylamide gel electrophoresis and then transferred
onto Hybond-P polyvinylidene diflouride membrane
(Millipore, Bedford, MA, USA). Next, membranes were
incubated with 5% non-fat dry milk blocking solution
(Bio-Rad Laboratories) and target proteins were analyzed
by incubating with primary antibodies specific to the pro-
teins tested (Cell Signaling, Inc., Beverly, MA, USA).

EDU cell proliferation assay

Cell proliferation was measured using the ClickiT® EdU
(5-ethynyl-2’-deoxyuridine) Assay (Invitrogen) which is a
specific assay that measures actively proliferating cells.
EdU is incorporated as thymidine analog in the DNA of
newly dividing cells and is detected by a copper catalyzed
reaction with Alexa Fluor 488 dye (green fluorescence).
AGS cells stably expressing t-DARPP or control vector
pcDNA3 (1.5 x 10*) were cultured in 8-well culture slides
for 48 h. EdU labeling was done by incubating cells with
10 uM EdU solution prepared in pre-warmed complete
medium at 37°C in an atmosphere containing 5% CO,
for one hour. Cells were then fixed in 3.7% paraformalde-
hyde solution prepared in 1 x PBS for 15 min at room
temperature followed by two washes with 3% BSA in
PBS. Next, cells were permeabilized by treating with per-
meabilization buffer (0.5% Triton X-100 in PBS) for
20 min. After rinsing the cells with wash solution, cells
were incubated with 1 x ClickiT® reaction cocktail con-
taining ClickiT® reaction buffer, CuSO, solution, 1 x
ClickiT® reaction buffer additive and Alexa Fluor 488 dye
for 30 min at room temperature in a dark humidified
chamber. Before visualizing under a fluorescence micro-
scope (Olympus Co.) at 40x magnification; cells were
washed twice with 3% BSA in PBS, and then mounted
using Vectashield/DAPI (Vector Laboratories). All experi-
ments were performed in triplicate and 500 cells were
counted from each experiment. The percentage of cells
with nuclear EJU staining was calculated and graphed.

Knockdown by small-interfering RNA
Small-interfering oligonucleotides (siRNA) specific to
targeting t-DARPP were designed using the unique
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sequence, 5UTR and exon 1, of t-DARPP. The t-DARPP
siRNA and scrambled siRNA were designed and pur-
chased from Integrated DNA Technology (Coralville, IA,
USA). MKN45 cells (2 x 10%) were cultured in a 6-well
plate and transfected with different siRNA’s (described
above), following the manufacturer’s protocol (Santa
Cruz Biotechnology, CA, USA).

Pharmacologic inhibition of PI3K/AKT signaling

In order to confirm t-DARPP-mediated regulation of
TCEF/B-catenin activity via the PI3K/AKT pathway, we
used LY294002 (2-(4-morpholinyl)-8-phenyl-4H-1-ben-
zopyran-4-one) to specifically inhibit phosphatidylinosi-
tol 3-Kinase activity [69]. AGS cells stably expressing
t-DARPP were treated with LY492002 (40 uM) for
30 min and 2 h, as shown in Figure 5.

Statistical analysis

A two tailed student’s t-test was used to compare the
statistical difference between two groups and a one-way
ANOVA Newman-Keuls Multiple Comparison Test was
used to compare the differences between three groups
or more. The results were expressed as the mean with
SD. The differences were considered statistically signifi-
cant when the p value was < 0.05.
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