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Role of Bcl-3 in solid tumors
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Abstract

Bcl-3 is an established oncogene in hematologic malignancies, such as B-cell chronic lymphocytic leukemias.
Nevertheless, recent research has shown that it also participates in progression of diverse solid tumors. The present
review summarizes the current knowledge of Bcl3 role in solid tumors progression, including some new insights in

its possible molecular mechanisms of action.

Background

BCL3 was identified as a translocation into the immuno-
globulin alpha-locus in several cases of B-cell chronic
lymphocytic leukemias [1-4]. This oncogene is an atypi-
cal member of the Inhibitor of Kappa-B (IkappaB)
family of proteins. Ikappa B proteins repress the activa-
tion of the NFkappa-B signaling cascade by direct bind-
ing to the dimeric transcription factors NFKB1, NFKB2,
RELA, RELB or c-Rel. Interestingly, even with a high
structural homology to the other family members [5,6],
Bcl-3 is instead a nuclear protein with both transactiva-
tion and transrepressor functions [7-10]. These actions
are mainly mediated by the formation of heterocom-
plexes with NFKB1 (p50) or NFKB2 (p52) homodimers,
in which Bcl-3 provides two transactivating domains to
the complex.

Little is known about the physiological signaling cas-
cades that activate Bcl-3. It has been reported that this
oncogene is upregulated by several cytokines, including
TNF alpha [11,12], IL-4 [13], IL-1 [14,15], IL-6 [16], IL-
10 [17], adiponectin [18] and IL-12 [19]. These cyto-
kines have in common their induction the activation of
diverse signaling modules, such as AP1 [13] and STAT3
[16,20,21]. ‘As with other members of the NF-kappa B
family, Bcl-3 is regulated by NFKB1 and by itself, creat-
ing an autoregulatory loop to terminate its activation
[16,22]. In addition, as described below, Bcl-3 is downre-
gulated by p53 [23] (Figure 1).

Bcl-3 is also regulated by post-transcriptional mechan-
isms, such as translation [24,25] and protein stability
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[26-30]. Recently, in ovarian cancer cells, a new regula-
tion step was found, which involves miR-125b a micro-
RNA that decreased Bcl-3 translation [31], inhibiting
tumor formation in nude mice. Less is known about the
reported nuclear translocation regulation, in which the
cylindromatosis gene product, CYLD, plays an impor-
tant role in interleukin-mediated activation [15,32].

As stated previously, Bcl-3 forms a complex with p50
or p52 homodimers to regulate transcription. The first
reports showed that Bcl-3 could be acting to enhance
NF-kappa B-mediated transactivation by removing inhi-
bitory p50 homodimers from NF-kappa consensus sites
in diverse promoters [8,33]. Subsequent studies using
better reagents, demonstrated that Bcl-3 could not dis-
sociate p50 homodimers from promoters [9]. Instead,
Bcl-3 can act as a coactivator for p50 and p52 dimers
[7]. More recently, it has also been shown that, for
other specific promoters, such as the TNF-alpha promo-
ter, Bcl-3 is indeed able to inhibit NF-kappa B-mediated
transactivation, by binding to p50 homodimers, without
dissociating them from a promoter, but also without
inducing transactivation [17,34,35].

In addition to the gene products of the NF-kappa B
signaling cascade, Bcl-3 also associates with several pro-
teins such as Jabl, Pirin, Tip60 (KAT5) and Bardl,
which are transcriptional co-regulators [36]. Bcl-2 also
associates with B3BP, which is protein involved in DNA
damage responses [37]; Lck, an important tyrosine
kinase in hematological malignancies [38] and ERRalpha
and PGC-1lalpha, involved in metabolism [39]. Recent
reports have shown that CtBP1, a transcriptional co-
repressor [40]; IRS3, a substrate of insulin receptor and
insulin-like growth factor (IGF)-I receptor tyrosine
kinases [41] and Bcl-10 a CARD-containing protein that
induces apoptosis [42] are also binding partners of Bcl-3
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Figure 1 Bcl-3 signaling cascade. Diverse cytokines activate an IKK
or IKK-related kinase to induce processing of the p105 precursor to
p50, which in turn dimerizes and binds Bcl-3. Bcl-3 is regulated by
phosphorylation and ubiquitination, both of which have a positive
effect on its function. CYLD deubiquitinates Bcl-3 and prevents its
nuclear translocation and GSK3. Bcl-3 is also phosphorylated by
GSK3, which delays its degradation by the proteosomal pathway.
Nuclear Bcl-3 can both induce and repress expression of a diverse
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(Figure 2). These interactions and their physiological
consequences have been little studied.

BCL3 locus has been found to be translocated not
only in B-cell chronic leukemias, but also in other
hematological malignancies, such as small lymphocytic
lymphomas, Burkitt-like lymphoma and diffuse large cell
lymphoma [43]. In addition, overexpression without
translocation has been found in multiple subtypes of
non-Hodgkin and Hodgkin lymphomas [44,45]. These
results underscore the importance of this oncogene in
hematological neoplasias. In addition to this, Bcl-3 has
been found to be deregulated in breast cancer [46],
nasopharyngeal carcinoma [47], endometrial cancer [48]
and colorectal cancer [40]. Here, we present current
knowledge of the role of this oncogene in solid tumor
progression, including some new insights in its possible
molecular mechanisms of action.

Mechanism of deregulation

As with hematological malignancies, the most common
Bcl-3 alteration found in solid tumors is overexpression.
Nevertheless, in carcinomas, no translocations in the
BCL3 locus have been found, pointing toward an acti-
vating upstream signal transduction cascade and/or epi-
genetic mechanism(s). Since NF-kappa B modulates
BCL3 expression in an auto regulatory loop [22,35], and
NF-kappa B is constitutively activated in several tumors
[49-51], it is probably that the observed Bcl-3 deregula-
tion could be due to aberrant NF-kappa B activation.
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Figure 2 A) Proteins that interact with Bcl-3. B) Schematic representation of protein interactions from STRING (Search Tool for the Retrieval of
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Additionally, most of the studies rely solely in the
amount of nuclear Bcl-3 as a surrogate marker for its
activation, since there is no reliable specific DNA con-
sensus-binding site for the oncogene. Since it has been
shown that Bcl-3 is heavily phosphorylated and this
phosphorylation modulates its activity [26], it remains
an open question whereas lower Bcl-3 levels of a specific
phosphoisoform could be also acting in cancer progres-
sion. As stated previously, recent reports have shown
that cylindromatosis (CYLD) gene product regulates
Bcl-3 [28,52]. The CYLD protein deubiquitinates Bcl-3
and inhibits its nuclear translocation, so alterations in
these gene or upstream events to it present an addi-
tional layer of regulation.

It is important to note that the Catalog of Somatic
Mutations in Cancer (COSMIC) [53] has a very low
number of BCL3 mutations (2 missense mutations, one
in a lung cancer and a second in an ovarian cancer
patient) among its large database. These mutations most
probably represent passenger mutations, since they
apparently do not affect overall protein structure (addi-
tional file 1), and are not located in potential phosphor-
ylation sites (not shown).

Deregulation in Solid Tumors

Breast cancer was the first solid tumor in which evi-
dence for Bcl-3 deregulation was found. Cogswell, et al
demonstrated that Bcl-3 mRNA and protein is over
expressed in breast tumors and cell lines [46]. Their
results also suggested that NF-kappa B was active in the
tissue, as genes regulated by this signaling cascade were
also concomitantly regulated, in contrast to surrounding
normal stroma. Supporting this finding is the report
that transgenic mice overexpressing c-Rel under the
strong promoter of mouse mammary tumor virus
(MMTYV) developed tumors that overexpressed p50,
P52, RelA, RelB, and the Bcl-3 protein [54]. Additional
evidence comes from animal studies, in which it has
been shown that overexpression of Bcl-3 is able to
increase the establishment and growth of breast cancer
xenografts [55]. In addition, estrogen withdrawal in
breast cancer cell lines increased the expression and
activity of Bcl-3, providing an alternative proliferation
pathway and further advantage for tumor growth in
mice.

Bcl-3 is also overexpressed and activated in nasophar-
yngeal carcinomas [47], where it is bound to p50 homo-
dimers. Among others, this complex is bound to the
promoter of the receptor for the Epidermal Growth Fac-
tor, playing a crucial role in the overexpression of this
oncogene [47,56,57]. Similar to this report, it has been
shown that Bcl-3 is also overexpressed in endometrial
tumors [48], where its nuclear expression correlates
with p52 immunostaining. It is interesting to note that
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Bcl-3 was the NF-kappa B subunit most detected, with
62% of the patient samples presenting nuclear Bcl-3
protein.

Recently, the first report associating Bcl-3 expression
with a clinical outcome has been published. Puvvada, et
al demonstrated that nuclear immunostaining of Bcl-3
was strongly associated with survival, even more than
the other NF-kappa B subunits analyzed in colorectal
cancer. Using a weighted score that combines percen-
tage of positive nuclei with staining intensity, these
authors found a 91% increase in hazard for a death
event for each 50-point increase in nuclear Bcl-3 expres-
sion [58].

It is interesting to note that, even with the evidence
presented here, there is only one article [58] exploring
the possible use of Bcl-3 as a diagnostic/prognostic fac-
tor. Clearly, more research in this area is needed. In this
regard, it is interesting that, in addition to the known
deregulation in leukemias and lymphomas, genome-wide
expression studies have shown that Bcl-3 is overex-
pressed in breast cancer, glioblastoma tumors, ovarian
cancer and, intriguingly, teratomas and embryonal carci-
nomas (additional file 2). Although not validated, these
results support the potential importance of this onco-
gene in a variety of tumors.

Mechanisms of oncogenesis

Two main effects of Bcl-3 on oncogenesis of solid
tumors have been described: modulation of cell death
and proliferation:

Cell death

One initial discovery suggested that one of the main
oncogenic effects of Bcl-3 in hematopoietic malignancies
is to increase survival in a subset of cells. Transgenic
mice overexpressing the oncogene developed splenome-
galy and presented increased mature B cells in lymph
nodes and bone marrow [59]. Similar results were
obtained from in vitro studies with T cells, [60-63]. The
expansion of these cell compartments could be due to a
decrease in cell death, by means of apoptosis inhibition
and an increase in proliferation, discussed below [63].
Diminished cell death and its consequent increased cell
number could provide an advantage to survival and
mutation accumulation, as demonstrated in other mod-
els [64].

Less studied is the role of Bcl-3 in apoptosis inhibition
of solid tumors. Initial reports showed that Bcl-3-p52
dimers are able to transactivate the antiapoptotic gene
BCL2 in MCF7AZ breast cancer cells [65]. More impor-
tant, it has been shown that, in breast cancer cells, DNA
damage up regulates Bcl-3, which induces the expres-
sion of HDM2, the main negative regulator of p53 [66].
p53 is a tumor suppressor gene that, in response to
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DNA damage, arrests cell cycle and induces apoptosis.
HDM2 in turn, inhibits both expression and activity of
p53 [67]. It has also been shown in a variety of cancer
cells that basal apoptosis is suppressed by Bcl-3 in a reg-
ulatory loop induced by JNKI1 and suppressed by the
related JNK2 [68]. It is interesting to note that this loop
is not involved in suppressing basal cell apoptosis in
non-cancerous cells, pointing toward a possible “gene
addiction” role of Bcl-3. More recently, a new interac-
tion partner of Bcl-3, CtBP1, was found in breast cancer
cells [40]. Bcl-3 stabilizes CtBP1 by blocking its degrada-
tion by the proteasome and inhibiting apoptosis, leading
to the sustained repression of pro-apoptotic gene
expression and subsequent inhibition of apoptosis. Inter-
estingly, expression of Bcl-3 and CtBP1 is strongly cor-
related in breast cancer samples.

Recently, we have reported that Bcl-3 is involved in an
additional death pathway that is independent of apopto-
sis [69]. Cervical cell lines in which Bcl-3 is knocked-
down by a specific shRNA arrested temporally in G2/M,
presented a DNA damage response and enter unsuc-
cessful mitosis cycles which ultimately leads to centro-
some amplification, increased aneuploidy, leading to a
clonogenic death. These results could imply that Bcl-3
participates in an oncogene addiction phenomenon, in
which inactivation of this gene would specifically kill
cancer cells overexpressing Bcl-3, as reported for other
genes [70]. Further research is needed to elucidate the
exact molecular basis for this response, since p53 is
already downregulated in these cells by human papillo-
mavirus E6 protein [71] and thus, an additional mechan-
ism could be expected. In this regard, we have found
that Bcl-3 regulates STAT3 in cervical cancer cells [20].
STAT3 is an important oncogene in solid tumors that,
among other functions, regulates the DNA damage
response [72-74]. It has been reported that Bcl-3 is
induced by activation of STAT3 due to Epstein-Barr
LMP1 oncoprotein [21] and also by granulocyte colony-
stimulating factor [75]. On the other hand, we have
shown that Bcl-3 depletion decreases STAT3 expression
[69]. Since both genes are regulated by each other
[21,75], DNA damage may create an amplification loop
that could be necessary for a correct cellular response.
Forced expression or concomitant inhibition of both
genes should provide an answer to this question.

Proliferation

The first evidence for the effects in cell growth came
from the previously mentioned transgenic mice overex-
pressing Bcl-3 [59]. These finding were extended to
hematological malignancies, such as multiple myeloma
[12]. More evidence of effects in proliferation is known
from solid tumor models. Westerheide, et al demon-
strated in breast cancer cell lines that Bcl-3, acting as a
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coactivator of p52 dimers, induced the expression of
cyclin D1, and thus, increased the transition at G1/S cell
cycle phase [76]. In turn, it has been shown that p53
decreased the expression of Bcl-3 changing p52/Bcl-3 to
p52/HDAC complexes in the cyclin D1 promoter, thus
inhibiting cyclin expression [23]. In the skin, Bcl-3 parti-
cipates in a signaling module downstream of CYLD [28].
CYLD is mutated in the human syndrome cylindroma-
tosis, in which affected patients present benign tumors
in skin adnexa. In these cases, mutated CYLD is unable
to deubiquitinate Bcl-3, allowing increased proliferation
in cell of the skin adnexa [28]. Adding to this, it has
been shown that CYLD is downregulated by Snail in
malignant melanomas [77]. This downregulation allowed
the stabilization, nuclear localization and transcriptional
activation of Bcl-3, enhancing proliferation and invasion
of these cells. Finally, the role of Bcl-3 in skin/adnexal
tumorigenesis is also supported by a mouse model of
skin carcinogenesis in which Bcl-3 is strongly overex-
pressed in late papillomas and squamous cell carcinoma
[78].

Conclusion

Bcl-3 is an established oncogene in hematologic malig-
nancies, such as B-cell chronic lymphocytic leukemias.
Nevertheless, recent research has shown that it also par-
ticipates in progression of diverse solid tumors. As more
information is available, it is clear that Bcl-3 is involved
in central oncogenic pathways that regulate cell death
and apoptosis, so it could be important as a target to
validation as a diagnostic or prognostic marker in these
tumors.

Additional material

Additional file 1: Structure prediction of mutated Bcl-3 proteins
found in COSMIC database. Bcl-3 sequence was retrieved from NCBI
and mutation data from COSMIC. Proteins were modeled using SWISS-
MODEL structure-homology server [80]. A) Bcl-3 wild type structure B)
Bcl-3 pP420A mutant from a lung cancer sample C) Bcl-3 p.R145W
mutant from an ovary cancer sample.

Additional file 2: Overexpression of Bcl-3 in different tumor types.
Oncomine™™ (Compendia Bioscience, Ann Arbor, MI) Expression Arrays
Database was used for analysis and visualization. A) Overexpression in
Glioblastoma (180 samples) from Su, et. al.[81]. P-value in T test 1.447°
with a fold change of 3.307. Light blue (number 1) represents normal
brain controls. Dark blue (number 2) are cancer samples. B)
Overexpression in Breast Cancer from Finak, et. al. [82] (59 samples). P-
value in T test 7.10"° with a fold change of 2.266. Light blue (number 1)
represents normal breast controls. Dark blue (number 2) are cancer
samples. C) Overexpression in ovarian cancer (32 samples) from Welsh,
et. al. [83]. P-value in T test 6.04°® with a fold change of 23.955. Light
blue (number 1) represents normal ovary controls. Dark blue (number 2)
are cancer samples. D) Overexpression in teratomas from Korkola, et. al.
[84] (20 samples). P-value in T test 6.64 ' with a fold change of 11.591.
Light blue (number 1) represents normal testis controls. Dark blue
(number 2) are cancer samples. E) Overexpression in embryonal

carcinomas (21 samples) from Korkola, et. al. [84]. P-value in T test 2.22°°
J
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with a fold change of 2.295. Light blue (number 1) represents normal
testis controls. Dark blue (number 2) are cancer samples.

List of abbreviations

Bcl-3: B-Cell Lymphoma 3; NFkappa B: Nuclear factor kappa-light-chain-
enhancer of activated B cells; TNF-a: Tumor necrosis factor-a; Lck:
lymphocyte-specific protein tyrosine kinase; Jab1: Jun Activation Domain
Binding Protein 1; Pirin: iron-binding nuclear protein; KAT5: K(lysine)
acetyltransferase 5; Bard1: BRCA1 associated RING domain 1; B3BP: Bcl-3
Binding Protein; STAT3: signal transducer and activator of transcription; IL1-
12: Interleukin 1 to 12; ERRalpha: estrogen-related receptor alpha; PGC-1a:
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; CYLD:
cylindromatosis (turban tumor sindrome); CtBP1: C-terminal-binding protein
1; IRS3: insulin receptor substrate 3; GSK3: Glycogen synthase kinase 3.
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