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Abstract

responsible for triggering necrosis.

metabolic stress-induced necrosis.

Background: In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor
progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGBT),
and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical
implications in tumor development; however, its molecular mechanism remains poorly understood.

Results: In the present study, we show that Distal-less 2 (DIx-2), a homeobox gene of the DIx family that is
involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS)
in response to glucose deprivation (GD), one of the metabolic stresses occurring in solid tumors. Increased DIx-2
expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a
multicellular tumor spheroid, an in vitro model of solid tumors. DIx-2 short hairpin RNA (shRNA) inhibited metabolic
stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH)
release, indicating the important role(s) of DIx-2 in metabolic stress-induced necrosis. DIx-2 shRNA appeared to
exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are

Conclusions: These results suggest that DIx-2 may be involved in tumor progression via the regulation of

Background

Rapidly growing malignant tumors experience hypoxia
and nutrient (e.g., glucose) deprivation, which occurs
because of insufficient blood supply. Most tumor cells
display higher rates of aerobic glycolysis; thus, glucose
deprivation (GD) may be exacerbated in the inner regions
of solid tumors. Under circumstances of hypoxia and
nutrient deprivation, tumor cells either survive by over-
coming the cytotoxic effects of such metabolic stresses
via the activation of certain signal transduction pathways
and gene regulatory mechanisms, or undergo cell death,
especially in the innermost regions [1-4]. In tumors,
metabolic stress-induced cell death mostly occurs by
necrosis because most apoptotic and/or autophagic
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programs are limited during the development of human
tumors [5]. In fact, necrosis is commonly found in the
core region of solid tumors. In apoptosis, cells are pro-
gressively fragmented into apoptotic bodies that are
removed by professional phagocytic cells and in autopha-
gic cell death, autophagosomes break down the damaged
subcellular organelles. However, necrosis is characterized
by the rupture of the cell membrane and release of cellu-
lar contents, including high mobility group box 1
(HMGBI1) into the extracellular microenvironment,
thereby causing a massive inflammatory response [6-10].
Necrotic cells recruit immune inflammatory cells, which
exert a tumor-promoting activity by inducing angiogen-
esis, cancer cell proliferation, and invasiveness [9,10].
The HMGBI protein is a highly conserved nuclear pro-
tein, which acts as a transcriptional regulator by control-
ling the activities of many transcription factors, including
p53 and the Rel/NF-xB family [11-13]. Within the cyto-
sol, HMGBI also induces autophagy by interacting with
and regulating Beclin 1 as a cofactor [14]. In addition,
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HMGBI is released from necrotic cells and secreted by
activated macrophages and functions as an extracellular
signaling molecule [11-13]. HMGBI1 binds to several
receptors, including the receptor for advanced glycation
end products (RAGEs) and Toll-like receptors (TLR)-2
and TLR-4, and promotes inflammation, cell prolifera-
tion, and tumor growth and metastasis. Thus, HMGB1
acts as a pro-inflammatory and tumor-promoting cyto-
kine when released into the extracellular space during
necrosis [11-13]. Recently, HMGBI1 is known to be also
released during autophagy and late apoptosis; for
instance, anticancer agents that enhance autophagy and
apoptosis cause HMGBI release in cancer cells. In addi-
tion, the HMGBI protein triggers autophagy or apoptosis
in cancer cells, depending on its redox status. Reduced
HMGBI1 induces Beclinl-dependent autophagy and pro-
motes tumor resistance to several chemotherapeutic
agents, whereas oxidized HMGB1 induces apoptosis via
the mitochondrial caspase-9/-3 pathway [15]. In cancer,
overexpression of HMGBI is associated with the hall-
marks of cancer, including sustained proliferative poten-
tial and replicative immortality, angiogenesis, apoptosis
resistance, self-sufficient growth, insensitivity to suppres-
sors of growth, inflammation, and invasion and metastasis
[16]. Thus, necrosis has the tumor-promoting potential as
“a reparative cell death.” Development of a necrotic core
in cancer patients is correlated with increased tumor size,
high-grade disease, and poor prognosis, such as emergence
of chemoresistance and metastases [1-3]. Thus, metabolic
stress-induced necrosis has important clinical implications.
However, in contrast to programmed cell death, apoptosis,
and autophagic cell death, the molecular mechanism
underlying metabolic stress-induced necrosis in tumors is
less investigated because it is generally considered as an
accidental and genetically unprogrammed form of cell
death.

The Distal-less (DIx) homeobox gene family, a homolog
of Drosophila distal-less (Dll), is crucial for embryonic
development, morphogenesis, and tissue homeostasis,
including neurogenesis and the formation of the distal
regions of extending appendages in invertebrates and
vertebrates [17,18]. Homeobox genes are characterized
by a highly conserved 60-amino acid homeodomain,
which binds DNA elements containing a TAAT core
motif. In humans, there are 6 DIx genes, which exist as 3
bigene clusters: DIx-1/DIx-2, DIx-5/Dlx-6, and DIx-3/
DIx-7 [19]. A growing number of homeobox genes have
been shown to be deregulated in a variety of human
tumors, and their deregulation is known to enhance cell
survival and proliferation and prevent differentiation
[20-23]. Deregulation of Dlx gene expression has also
been reported in many human solid tumors and hemato-
logic malignancies. For instance, DIx-4 overexpression is
observed in ovarian and breast cancers and strongly
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correlates with high tumor grade, advanced disease stage,
and poor prognosis [24,25]. In addition, DIx-5 is also
unregulated in several human solid tumors, including
lung, breast, and ovarian cancers, and T-cell lymphomas,
and contributes to tumor progression [26-29]. DIx-5 has
been shown to promote tumor cell proliferation by
directly binding the MYC promoter and upregulating
MYC [30]. DIx-7 is also known to regulate MYC expres-
sion in erythroleukemia cells [31].

In this study, we tried to identify the molecules that are
involved in necrosis. Previously, we demonstrated that
GD, one of the stresses that cause metabolic stress in
tumors, could induce necrosis and HMGBI release into
the extracellular space in A549, HepG2, and MDA-MB-
231 cells [32]. We also showed that phorbol-12-myristate-
13-acetate (PMA), a protein kinase C (PKC) activator,
prevented GD-induced necrosis in A549 cells, and
switched the cell death mode to apoptosis by inhibiting
reactive oxygen species (ROS) production by regulating
manganese superoxide dismutase (MnSOD) and copper-
zinc SOD [32]. In this study, cDNA microarray analysis
revealed that a homeobox gene DIx-2 is induced in A549
cells that undergo necrosis but not in those that die by
apoptosis. We also demonstrate that DIx-2 is implicated in
metabolic stress-induced necrosis, suggesting a possible
role(s) of DIx-2 in tumor progression.

Results

DIx-2 is induced dependently of ROS during metabolic
stress-induced necrosis

The aim of this study was to identify the molecules that
are involved in metabolic stress-induced necrosis. As
demonstrated previously [32], PMA, a PKC activator, pre-
vented GD-induced necrosis in A549 cells and switched
the cell death mode to apoptosis (Figure 1A and 1B). To
identify necrosis-linked molecules, we analyzed the gene
expression profiling of A549 cells that were treated with
GD or GD+PMA by ¢cDNA microarrays. Of the 3,096
genes analyzed, approximately 200 were upregulated >
2-fold and approximately 150 were downregulated > 2-
fold (GEO accession no. GSE24271). One of the GD-indu-
cible genes was DIx-2, a homeobox gene of the DIx family
(Figure 1C); the DIx-2 level was increased 9.04-fold during
necrosis, whereas its level was not changed during apopto-
sis. Western blot analysis confirmed GD induction of Dlx-
2 in GD-treated A549 cells but not in A549 cells that were
pretreated to PMA and then treated with GD, indicating
that DIx-2 expression increases only in the presence of
necrosis (Figure 1D).

DIx-2 has been shown to be expressed at higher levels in
human breast cancers compared to other Dlx genes,
including DIx-1, DIx-3, DIx-4, and DIx-6, although its pre-
cise roles in tumor biology are not clear [29]. Therefore,
we investigated whether DIx-2 is involved in metabolic
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Figure 1 Induction of DIx-2 during metabolic stress-induced necrosis. (A, B) A549 cells were pretreated with PMA and treated with GD for
18 h, and then stained with HO/PI (A), and apoptotic and necrotic cells were scored (B). (C, D) A549 cells were pretreated with PMA and treated
with GD for 12 h and microarray analysis was performed. The numbers mean fold increase in expression as compared with GD-untreated control
cells (O). The cells were analyzed using Western blotting (D). (E) Different types of cells were pretreated with NAC and treated with GD for 12 h,
and then analyzed by real-time PCR for DIx-2 expression. (F) Cells were treated with GD and then analyzed using Western blotting. (G) MDA-MB-
231 cells were treated with GD, and then analyzed by real-time PCR for DIx-2 expression. (H) Cells were pretreated with NAC and treated with
GD for 12 h, and then analyzed using Western blotting. (I, J) MCF-7 cells were treated with H,O, and menadione for 48 h, and then analyzed by
real-time PCR (I) and Western blotting for DIx-2 expression (J). The values obtained from HO/PI staining and real-time PCR are expressed as mean
+ SE (n = 3). *P < 0.05, **P < 0.01 versus control; "P < 0.05, "P < 0.01 versus GD-treated cells. Arrow shown in panels D, F, H, and J, a putative
modified form of DIx-2.

stress-induced necrosis. In two-dimensional cultures, GD
can induce either apoptosis or necrosis depending on the
cell types; it induces necrosis in A549, HepG2, and MDA-
MB-231 cells, while it induces apoptosis in HeLa and
HCT116 cells [32,33]. Thus, we examined the expression
of DIx-2 in the cancer cell lines that undergo either necro-
sis or apoptosis upon GD treatment. Real-time quantita-
tive PCR showed induction of DIx-2 by GD in A549 (3.62-
fold), HepG2 (4.41-fold), and MDA-MB-231 cells (4.07-
fold), but not in HeLa and HCT116 cells (Figure 1E). Wes-
tern blot analysis confirmed GD induction of DIx-2 in
A549, HepG2, and MDA-MB-231 cells but not in HeLa

and HCT116 cells (Figure 1F). The induction of DIx-2 was
apparent at 6 h of GD, before the time point when necro-
sis was observed (Figure 1G). We observed that anti-DIx-2
antibody recognized 2 bands (40 kDa and 34 kDa) (Addi-
tional file 1. Figure S1). Both bands were increased in
response to GD treatment. The lower band seems to be
DIx-2. DIx-2 is known to be modified by phosphorylation,
and therefore, the higher band is thought to be a post-
transcriptionally modified form of DIx-2. To confirm the
possible modification of DIx-2, we transfected the Dlx-2
expression vector. DIx-2 overexpression caused morpholo-
gical changes typical of cells with a mesenchymal
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phenotype in MCF-7 cells (Additional file 1. Figure S1),
indicating that DIx-2 may trigger the epithelial to
mesenchymal transition that plays a key role(s) in embryo-
nic development, wound healing, and cancer metastasis. 2
bands were recognized by anti-DIx-2 antibody (Additional
file 1. Figure S1). It remains to be elucidated whether the
upper band is really a modified DIx-2 and what mechan-
ism is responsible for the modification and what is the bio-
logical relevance of the modification in metabolic stress-
induced necrosis.

Because mitochondrial ROS especially O, have been
shown to mediate GD-induced cytotoxicity and necrotic
cell death [34-36], we examined whether the DIx-2
induction is linked to ROS. DIx-2 induction by GD was
inhibited by treatment with the antioxidant N-acetylcys-
teine (NAC) in A549, HepG2, and MDA-MB-231 cells
(Figure 1E and 1H). To confirm ROS-dependent Dlx-2
induction, we treated MCF-7 cells with H,O, and mena-
dione (a O, generator). Increased DIx-2 mRNA and
protein expression was observed by real-time PCR and
Western blotting, respectively (Figure 1I and 1]). O,"
was a more potent inducer of DIx-2 than H,O,. Similar
results were obtained with MDA-MB-231 cells (data not
shown). These results demonstrate the redox-sensitivity
of DIx-2 expression.

DIx-2 is induced in multicellular tumor spheroids

We examined Dlx-2 protein expression using three-
dimensional multicellular tumor spheroids (MTSs).
MTSs closely mimic many characteristics of poorly vas-
cularized solid tumors, including tumor growth pattern
and necrotic core formation, and hence are used for in
vitro models of solid tumors. As the MTSs mature, a
proliferation gradient is observed, with proliferating cells
at the periphery, cell-cycle arrested cells in the inner
regions, and necrotizing cells in the core regions [37,38].
The innermost cells die by necrosis due to insufficient
supply of oxygen and glucose [37,38]. As demonstrated
previously [33,39], MCEF-7 cells form tightly packed,
rounded spheroids of homogeneous size (Figure 2A).
We found increased expression of DIx-2 with extended
MTS culture (Figure 2B and 2C): 2.10-fold (P = 0.002)
Dlx-2 induction was observed in 9-day MTSs, which
may experience metabolic stress. To determine the
expression of DIx-2 in MTSs, the spheroids were selec-
tively dissociated to yield cells from 4 discrete regions
within the spheroid. DIx-2 was detected in the inner F2
and F3 fractions and the innermost F4 fraction but not
the outermost F1 fraction (Figure 2D and 2E). p27Kipl,
a CKI family protein that is involved in cell cycle arrest,
is regulated by HIF-1a., and its increased expression has
been detected in the F2 and F3 fractions [40]; hence, the
F2 and F3 fractions are thought to be hypoxic regions.
These results indicate that DIx-2 expression is closely
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related to microenvironmental stresses, such as hypoxia
and GD.

DIx-2 expression in solid human tumors

To study DIx-2 expression in human tumors, we per-
formed real-time PCR using the RNAs extracted from
paired biopsy breast, colon, and ovarian cancer tissues and
the corresponding normal tissues. DIx-2 expression was
higher in breast and ovarian cancer tissues compared with
adjacent normal tissues (Additional file 2. Figure S2). In
colon cancer tissues, DIx-2 expression varied; some colon
cancer tissues had high levels of DIx-2 mRNA, whereas
others had DIx-2 mRNA levels similar to or lower than
those observed in normal tissue. We also assessed the
expression of DIx-2 protein in human tumors, including
breast, colon, and ovarian cancers, with immunohisto-
chemical staining (IHC) in paraffin-embedded and forma-
lin-fixed tissues and compared the results with those of
real-time PCR analysis (Figure 3). Immunoreactivity for
DIx-2 in the tumor cells was found exclusively in the
nucleus. In breast and colon cancers, DIx-2 expression
higher in tumor tissues than in matched non-tumorigenic
tissues and stromal cells around cancer cells, i.e., fibro-
blasts and lymphocytes (Figure 3A-F). Furthermore, in
ovarian cancer, DIx-2 expression was detected in high-
grade tumors that were poorly differentiated but not in
the low-grade tumors, which were well differentiated
(Figure 3G and 3H). Thus, DIx-2 expression was related to
poor differentiation grade of tumor, indicating a role(s) of
DIx-2 in tumor development. It is noteworthy that strong
positive DIx-2 staining was observed in tumor cells adja-
cent to areas of necrosis and in the cells in the necrotic
core (Figure 31 and 3]). These results further support that
DIx-2 expression is related to metabolic stresses such as
hypoxia and GD. However, because DIx-2 was also
expressed throughout tumor tissues, its expression is likely
to be regulated also by stimuli other than metabolic stress
and plays an important role(s) in tumor development.

DIx-2 shRNA prevents metabolic stress-induced necrosis
in two-dimensional cell culture

We investigated whether DIx-2 is functionally linked
to GD-induced necrosis using specific transcript knock-
down with short hairpin RNA (shRNA). We used 2 dif-
ferent shRNA oligonucleotides: one (target 1) was a
19-mer shRNA oligonucleotide directed to the N-term-
inal region (position from 637 to 655) of human DIx-2
mRNA sequence [Accession No. NM_004405 GenBank:
BC032558.1] and another (target 2) was a 25-mer
shRNA oligonucleotide directed to the 3° UTR region
(position from 1231 to 1255) of human DIx-2 mRNA
sequence [Accession No. NM_004405 GenBank:
BC032558.1]. These 2 oligonucleotides were not directed
to other human DIx mRNA. DIx-2 shRNA was verified
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The MCF-7 spheroids were also analyzed using Western blotting with antibodies against DIx-2 and a-tubulin (C). (D-E) After 7 days of MCF-7
MTS culture, the MTSs were dissociated into subpopulations of cells from different locations in the spheroids, as described in Materials and
Methods. The cells isolated from different locations within the MCF-7 spheroids were analyzed by RT-PCR using primers for DIx-2 and B-actin (D).
The cells were also analyzed using Western blotting with antibodies against DIx-2 and a.-tubulin (E). Arrow in panels C and E, a putative
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to be effective in knocking down DIx-2 mRNA levels in
A549, HepG2, and MDA-MB-231 cell lines, as deter-
mined by real-time PCR (Figure 4A, F, and 4K). DIx-2
shRNA also prevented the GD induction of Dlx-2, as
determined by Western blotting (Figure 4B, G, and 4L),
thereby indicating that DIx-2 shRNA specifically sup-
presses the expression and function of DIx-2.

We examined the effects of DIx-2 shRNA on GD-
induced necrosis. DIx-2 shRNA significantly inhibited
metabolic stress-induced cell rounding (Figure 4C, H, and
4M) and increase in cell populations that had intact pink
nuclei in Hoechst 33342 (HO)/propidium iodide (PI)
staining in A549, HepG2, and MDA-MB-231 cells (Figure
4D, E, I, J, N, and 40). In A549 cells, while DIx-2 shRNA
repressed the GD-induced increase in population of PI-
positive cells, it increased cells with condensed/fragmented
blue nuclei (HO/PI double staining) (Figure 4D and 4E),

indicating that DIx-2 shRNA switches GD-induced necro-
tic cell death to apoptosis. In contrast, when GD-induced
necrosis was inhibited by DIx-2 shRNA in HepG2 and
MDA-MB-231 cells, apoptosis did not occur as an alterna-
tive death mechanism (Figure 41, J, N, and 40). We also
observed that DIx-2 shRNA suppressed the GD-induced
release of HMGBI into the extracellular space (Figure 4P
and Additional file 3. Figure S3). DIx-2 shRNA transfec-
tion also prevented necrosis-linked lactate dehydrogenase
(LDH) release (Figure 4Q). These results indicate that
DIx-2 is implicated in metabolic stress-induced necrosis.

DIx-2 shRNA prevents metabolic stress-induced necrosis
in MTSs

We examined the effects of DIx-2 shRNA on necrosis,
using MTSs. As demonstrated previously [33,39], PI-
positive cells were detected in 8-9 day MTSs but not in
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Breast Cancer
4 o

Colon Cancer

Figure 3 Immunohistochemical detection of DIx-2 in human tumors, including breast, colon, and ovarian cancers. IHC was performed
on 4-um sections of formalin-fixed, paraffin-embedded human tumors, including breast, colon, and ovarian tumor tissues. Sections were
incubated with an anti-DIx-2 antibody and the antibody was visualized with diaminobenzidine chromogen, and sections were counterstained
with hematoxylin. DIx-2, brown staining; nuclei, blue staining (H & E). A-C, breast cancer; D-F, colon cancer; G-I, ovarian cancer, and J, the
enlargement image of panel I. Arrows in panel J indicate strong positive DIx-2 staining in tumor cells adjacent to areas of necrosis and in the
cells in the necrotic core. Scale bar, 200 pym.
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Figure 4 DIx-2 plays a role(s) in metabolic stress-induced necrosis. (A-E) A549 cells were stably transfected with DIx-2 shRNA. The cells were
analyzed by real-time PCR for DIx-2 expression (A), and treated with GD 12 h and analyzed using Western blotting (B). The cells were treated
with GD for 18 h (C) and stained with HO/PI (D), and apoptotic and necrotic cells were scored (E). (F-J) HepG2 cells were stably transfected with
DIx-2 shRNA. The cells were analyzed by real-time PCR for DIx-2 expression (F), and treated with GD for 12 h and analyzed using Western
blotting (G). The cells were treated with GD for 18 h (H), stained with HO/PI (I), and apoptotic and necrotic cells were scored (J)). (K-Q MDA-MB-
231 cells were stably transfected with 2 different DIx-2 shRNA (T1 and T2). The cells were analyzed by real-time PCR for DIx-2 expression (K), and
treated with GD for 12 h and analyzed using Western blotting (L). The cells were treated with GD for 18 h (M), stained with HO/PI (N), and
apoptotic and necrotic cells were scored (O). The cells were treated with GD for 12 h and analyzed for HMGB1 (P) and LDH release (Q). The
values obtained from real-time PCR, HO/PI staining, and LDH release assay are expressed as mean + SE (n = 3). *P < 0.05, **P < 0.01 versus

control; *P < 0.05, *P < 0.01 versus control shRNA. Arrow in panels B, G, and L, a putative modified form of Dix-2.

7-day MTSs (Figure 5A). DIx-2 shRNA prevented necro-
sis, as revealed by a prominent reduction in the popula-
tion of cells that had pink nuclei with HO/PI staining at
8-9 days in MCF-7 MTS culture (Figure 5A and 5B). We
also observed that stable DIx-2 silencing in MCF-7 MTSs
slightly suppressed the growth of the MCF-7-day MTSs
(Figure 5C).

DIx-2 shRNA prevents metabolic stress-induced
mitochondrial ROS production, loss of mitochondrial
membrane potential, and mitochondrial permeability
transition

Mitochondrial O, is produced especially at Complex I or
Complex III of the electron transport chain [41,42], and its
levels increase upon GD treatment to mediate GD-
induced cytotoxicity and cell death [34-36]. As shown in
Figure 6, GD significantly enhances the production of
mitochondrial ROS, Oy  and intracellular H,O,, as
revealed by staining with 3 different fluorogenic probes:
MitoTracker Red CM-H,XRos, dihydroethidium (HE),
and 2¢,7¢-dichlorofluorescein diacetate (DCFH-DA). Dlx-
2 interference blocked the GD-induced production of

mitochondrial ROS, O, and intracellular H,O, (Figure 6),
indicating that Dlx-2-mediated necrosis regulation is
linked to its ability to control metabolic stress-induced
ROS production.

ROS are known to be able to induce the mitochondrial
permeability transition (mPT) pore opening in the mito-
chondrial inner membrane, while the transient mPT pore
opening induces apoptosis, and its prolonged opening
results in necrosis [43]. The mitochondrial membrane
potential (A%¥m) is also lost upon the mPT pore opening.
If the mPT pore is open for longer periods, cells cannot
generate ATP by oxidative phosphorylation, leading to
necrotic cell death as a consequence of ATP depletion.
Thus, we examined mPT by cobalt-quenched calcein
(CoQC) measurement. We observed that calcein fluores-
cence was lost following the opening of the mPT pore
upon GD treatment, and DIx-2 shRNA prevented this
mPT pore opening (Figure 7A and 7B). We also measured
the APm of cells with JC-1, a mitochondria-specific and
lipophilic-cationic fluorescence dye. While red J-aggregate
fluorescence appeared to be progressively lost upon GD
treatment and cytoplasmic diffusion of green monomer
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Figure 5 DIx-2 shRNA prevents metabolic stress-induced necrosis in MTS. (A, B) MCF-7 cells stably transfected with control and DIx-2
ShRNA were seeded into 1.2% agarose-coated 96-well plates at a density of 400 cells per well and cultured for 7, 8, and 9 days. Then the cells
were dissociated and stained with HO/PI (A), and apoptotic and necrotic cells were scored. The values are expressed as mean + SE (n = 3). *P <
005, **P < 0.01 versus control; P < 0.05; *P < 0.01 versus control shRNA (B). (C) Formation, growth, and morphology of MTSs made using MCF-
7 control and DIx-2 shRNA stable cells. To calculate MTS size, diameters of 5 spheroids were measured every day. Results are expressed as
mean + SE (n = 3). ¥P < 0.01 versus control shRNA.

fluorescence was detected, DIx-2 shRNA inhibited this
GD-induced decline in AYm (Figure 7C and 7D). Thus,
DIx-2 shRNA is likely to inhibit metabolic stress-induced
necrosis by preventing mitochondrial ROS production and
subsequent loss of mitochondrial membrane potential and
mitochondrial permeability transition, which are the pri-
mary events that trigger necrosis.

Discussion

DIx-2 is implicated in necrosis

A growing number of homeobox genes are deregulated in
a variety of human tumors [20-23]. Deregulation of the
expression of DIx genes, including DIx-4 and DIx-5, was
found in human solid tumors and hematologic malignan-
cies and indicates an important role(s) of DIx in tumor
growth and progression [24-30]. Here, we show that DIx-
2 is induced in cancer cells that die by necrosis in
response to metabolic stress (Figure 1). Increased DIx-2
expression was also detected in the inner regions, which
experience metabolic stress, of human tumors (Figure 3)
and of MTSs (Figure 2). We further found that Dlx-2
shRNA inhibited metabolic stress-induced increase in
propidium iodide-positive cell populations and HMGB1
and LDH release, indicating a critical role(s) of Dlx-2 in
metabolic stress-induced necrosis (Figure 4). In A549
cells, DIx-2 shRNA repressed GD-induced increase in the

population of PI-positive cells but increased the number
of cells with condensed/fragmented blue nuclei (HO/PI
double staining) (Figure 4D and 4E), thus indicating that
DIx-2 shRNA switches GD-induced necrotic cell death to
apoptosis. In the case of HepG2 and MDA-MB-231 cells,
DIx-2 shRNA prevented necrosis but without increasing
the number of apoptotic cells (Figure 41, J, N, and 40).
Previously, we showed that pretreatment of the anti-oxi-
dant NAC switched GD-induced necrosis to apoptosis in
A549 cells, whereas it switched it to autophagy-like cell
death in HepG2 and MDA-MB-231 cells [44]. Thus, DIx-
2 shRNA-transfected cells can undergo either apoptosis
or other cell fates (including autophagic cell death) upon
GD, depending on the cell types due to their different
cellular context.

Although DIx-2 shRNA inhibited metabolic stress-
induced necrosis, DIx-2 overexpression did not trigger
necrosis, although it caused an alteration in cell morphol-
ogy to the mesenchymal cell-like phenotype (Additional
file 1. Figure S1C), indicating that DIx-2 is necessary but
not sufficient for metabolic stress-induced necrosis. In
agreement with this observation, DIx-2 was expressed
throughout tumor tissues (Figure 3), indicating that its
expression is also regulated by stimuli other than meta-
bolic stress. Necrosis is accompanied by several different
processes, including mitochondrial dysfunction, excess
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3) (B). *P < 0.05, **P < 0.01 versus control; *P < 0.05; #P < 0.01 versus control shRNA.

ROS production, and ATP depletion [6,7]. Thus, DIx-2
may trigger necrosis if tumor cells are under such a meta-
bolic stress environment. In other words, in the absence of
metabolic stress, DIx-2 may promote tumor growth and
progression by unknown mechanisms, but in the presence
of metabolic stress, it may facilitate metabolic stress-
induced necrosis by promoting mitochondrial ROS pro-
duction. Our results suggest that DIx-2 may be implicated
in tumor progression via the regulation of metabolic
stress-induced necrosis.

Regulation of cellular redox status by DIx-2

Our results showed that GD-induced expression of DIx-2
is ROS-dependent (Figure 1), and GD-induced production
of ROS is also DIx-2-dependent (Figure 6). ROS produced
under stress conditions are known to spread from one
mitochondrion to neighboring mitochondria in a process
known as ROS-induced ROS release (RIRR) for enhanced
ROS production, [45,46]. DIx-2 induced upon metabolic
stress may facilitate ROS production, which in turn
enhance DIx-2 expression to accelerate massive ROS pro-
duction by RIRR and induce GD-induced cytotoxicity and

necrosis, thereby constituting a positive feedback mechan-
ism between DIx-2 expression and cellular ROS levels.
Mitochondrial ROS massively produced through RIRR
may oxidize HMGBI released by necrosis and the oxidized
HMGBI1 may exert its activity to trigger apoptosis. How-
ever, because many proapoptotic molecules such as p53
and caspases are aggregated to an inactive form upon GD
treatment [44], GD is likely to induce necrosis instead of
apoptosis.

How does DIx-2 control mitochondrial ROS production
in response to GD? Mitochondrial O, is produced even
under normal conditions [41,42], and its production is
enhanced by GD treatment and triggers necrotic cell
death. Mitochondrial dysfunction has been linked to the
induction of necrosis. Tumor cells have been shown to
have abnormal mitochondrial structure and DNA integrity
[47,48], and these mitochondrial deregulations have been
suggested to make tumor cells more sensitive to oxidative
stress and cell killing induced by GD and 2-deoxyglucose,
a glycolysis inhibitor [36]. In addition, tumor cells with
dysregulated mitochondria undergo necrosis instead of
apoptosis in response to alkylating DNA damage that
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Figure 7 DIx-2 shRNA prevents metabolic stress-induced loss of A¥Ym and mPT. (A, B) MDA-MB-231 cells were stably transfected with
control or DIx-2 shRNA and treated with GD for 9 h and loaded with 0.5 uM calcein AM and 5 mM CoCl; for the final 15 min of the incubation.
To detect cytoplasmic mitochondrial distribution, 50 nM MitoTracker CMX-ROS were added during calcein loading. Calcein fluorescence was
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observed using fluorescence microscopy. Representative images of cells from 3 independent experiments were shown (A). The results are
expressed as mean + SE from 15 to 30 cells per treatment group (n = 3) (B). *P < 0.05 versus control; P < 0.01 versus control shRNA. (C, D)
MDA-MB-231 cells stably transfected with control or DIx-2 shRNA were treated with GD for the indicated times and then treated with 5 mg/ml
JC-1 for 15 min. Representative images of cells from 3 independent experiments are shown (C). The results are expressed as mean + SE from 50
to 100 cells per group (n = 3) (D). *P < 0.05 versus control; ip < 005; P < 001 versus control sShRNA.

induces rapid ATP depletion through PARP activation
[49]. We speculate that DIx-2 may affect mitochondrial
function and sensitize tumor cells to metabolic stress and
death by necrosis. HMGBI1 is known to enhance the activ-
ities of a number of transcription factors, including p53
and the Rel/NF-xB family. Our preliminary data showed
that HMGB1 shRNA prevents metabolic stress-induced
necrosis (data not shown). These results indicate that
HMGBI1 may be implicated in DIx-2-mediated necrosis.
We are investigating if DIx-2 regulates metabolic stress-
induced necrosis by affecting mitochondrial function and
if HMGBI plays a role(s) in DIx-2-mediated necrosis.

Conclusion

Necrosis promotes tumor progression and aggressiveness.
Consequently, necrosis has important clinical implications
in tumor development, but its molecular mechanism has
been less investigated. In this study, we show that DIx-2, a
homeobox gene of the DIx family that is involved in
embryonic development, is implicated in metabolic stress-
induced necrosis via the regulation of metabolic stress-
induced increases in mitochondrial ROS, which are
responsible for triggering necrosis. These results suggest
that DIx-2 may be implicated in tumor progression via the
regulation of metabolic stress-induced necrosis.
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Materials and methods

Cell culture, chemical treatment, and MTS culture

A549, MDA-MB-231, HepG2, HCT116, and HeLa cells
were obtained from American Type Culture Collection,
maintained in RPMI-1640 or DMEM supplemented with
10% (v/v) heat-inactivated fetal bovine serum (HyClone,
Logan, UT) and 1% penicillin-streptomycin (HyClone,
Logan, UT) in a 37°C humidified incubator with 5% CO,,
and treated with GD [32]. To induce GD-induced necro-
sis-to-apoptotis switch in A549 cells, the cells were pre-
treated with 100 nM PMA for 30 min and treated with
GD. NAC (10 mM) was pretreated for 1 h and treated
with GD. H,O, (300 uM) and menadione (10 pM) were
treated to cells for 48 h. For the MTS culture, MCF-7
cells (provided by Dr. JI Yook, University of Yonseli,
Korea) were seeded at a density of 400 cells in 200 pl
medium into 1.2% agarose-precoated 96-well plates.
After 3 days of culture, 100 pl of medium was replaced
with fresh medium every 2 days. To determine the MTS
growth, the diameters of spheroids were measured every
day. For analysis of cell death patterns, MTSs were trypsi-
nized and then stained with HO/PI as described below.
To determine the expression of DIx-2 within MTSs,
MTSs were dissociated into subpopulations of cells from
4 different locations in the spheroid as described by
LaRue et al. [40]. The cells isolated from different loca-
tions within spheroids were analyzed by Western blot-
ting, reverse transcription-polymerase chain reaction
(RT-PCR), and real-time PCR as described below.

Microarray

Microarrays were performed to screen for the differen-
tially expressed genes using Operon Human Whole 35 K
Oligo chips (GenoCheck, Korea); a complete listing of
the genes on this microarray is available at the web site:
http://www.genocheck.com. Data analysis was carried out
using GeneSpring GX 7.3 (Agilent Technologies), and the
values were normalized using the LOWESS algorithm.
The Affymetrix microarray data have been deposited in
the Gene Expression Omnibus (GEO) database (GEO
accession no. GSE24271).

Western blotting, HMIGB1 release assay, LDH release
assay, RT-PCR, and real-time PCR

Western blotting analyses were performed as described
previously using the following antibodies: DIx-2 (Chemi-
con, France), a-tubulin (Biogenex, CA), HMGB1 (BD
Pharmingen, CA), CuZnSOD, (Santa Cruz, CA), ERK1/2
(Cell Signaling, MA) [32]. A HMGBI release assay was
carried out as described previously [32]. LDH release was
measured using the LDH Cytotoxicity Detection Kit
(Roche Applied Science) according to the manufacturer’s
instructions. Transcript levels were assessed with RT-
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PCR and quantitative real-time PCR with primers for
DIx-2 and B-actin (Additional file 4. Table S1).

HO/PI staining, immunofluorescence, and confocal
microscopy

GD-induced cell death mode was determined by HO/PI
double staining as described previously [32]. HO crosses
the plasma membrane of all cells that are viable or
damaged, resulting in blue fluorescence, whereas PI only
penetrates cells with damaged membranes, leading to
nuclear red fluorescence. Thus, intact blue nuclei, con-
densed/fragmented blue nuclei, condensed/fragmented
pink nuclei, and intact pink nuclei were considered to
indicate viable, early apoptotic, late apoptotic (secondary
necrotic), and necrotic cells, respectively. Apoptotic and
necrotic cells were scored using 500 to 800 cells per
group (n = 3). Intracellular H,O,, O,", and mitochondrial
ROS were detected using the DCFH-DA (Molecular
Probes; 50 uM), HE (Molecular Probes; 10 uM), and
MitoTracker Red CM-H,XRos (Molecular Probes,
50 nM), respectively, by fluorescence microscopy. Next,
mPT pore opening and A¥m were analyzed using CoQC
and JC-1 staining, respectively, as described previously
[33]. Fluorescence intensity was analyzed with Axiovision
LE software (Release 4.8 version).

DIx-2 transfection and shRNA interference
pCAGGS-DIx-2 (provided by Dr. John L.R. Rubenstein,
University of California at San Francisco) was constructed
by inserting the DIx-2 open reading frame into pCAGGS
(BCCM/LMPD, Belgium). The vectors pCAGGS and
pCAGGS-DIx-2 were transfected into MCF-7 using jetPEI
(Polyplus transfection) according to manufacturer’s proto-
col. pSUPER-DIx-2 shRNA was generated from 2 different
annealed oligonucleotides (target 1, 5-GATCCCCTTCG-
GATAGTGAACGGGAATTCAAGAGATTCCCGTT-
CACTATCCGAATTTTTA-3" and 5-AGCTTAAAAATT
CGGATAGTGAACGGGAATCTCTTGAATTCCCGTT-
CACTATCCGAAGGG-3’ and target 2, 5-GATCCCCA-
GAGACCACTTATCC TCATTGCTTATTCAAGAGA-
TAAGCAA TGAGGATAAGTGGTCTCT.

TTTTTA- 3" and 5> AGCTTAAAAAAGAGACCA
CTTATCCTCATTGCTTATCTCTTGAATAAGCAAT-
GAGGATA AGTGGTCTCTGGG-3’) [Accession No.
GenBank: ] that were inserted into the HindIII and Bg/II
sites of pSUPER.gfp/neo (Oligoengine Platform, Seattle,
WA); the human DIx-2 target sequence is underlined.
Control shRNA was generated from annealed oligonu-
cleotides (5-GATCCCCAATTCTCCGAACGTGT-
CACGTTTCAAGAGAACGTGACACGTTCGGAGA
ATTTTTTTA-3 and 5-AGCTTAAAAAAATTCTCC-
GAACGTGTCACGTTCTCTTGAAACGTGACACG
TTCGGAGAATTGGG-3) inserted into the HindIII and
BgllI sites of pSUPER.gfp/neo (Oligoengine Platform,
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Seattle, WA). All target sequences were designed and
verified as specific for DIx-2 by BLAST searching against
the human genome and real-time PCR, respectively. The
vectors pSUPER-control and pSUPER-DIx-2 shRNA
were transfected using jetPEI, and stable cell line selec-
tion performed with 1-2 mg/ml G418. Several clones
were isolated after shRNA transfection in each cell type
and individually characterized.

Real-time analysis and immunohistochemical staining for
DIx-2 expression in human cancer issues

The expression of the DIx-2 gene in normal and cancer-
ous human tissues was estimated by real-time PCR. Fro-
zen cancer and normal matched tissue pairs from the
same individuals were provided by the National Biobank
of Korea, PNUH. For RNA extraction, tissues were added
to 1 ml of Trizol reagent (Invitrogen, NY) and vortexed
twice for 10 s each time, using the FastPrep-24 system
(MP Biomedicals LLC.). After vortexing, tissue lysates
were quick chilled on ice, and then the procedure was
continued in accordance with the manufacturer’s proto-
col. Isolated 2 pg of total RNA were used as the template,
and reverse transcription was performed in the presence
of M-MLV reverse transcriptase (Invitrogen), 5x first
strand buffer, RNase inhibitor, oligo (dT)20, dNTP, and
DTT, according to manufacturer’s protocol using Ther-
mal Block (MyGenie96, Bioneer, Korea).

IHC was performed on 4-um sections of formalin-fixed,
paraffin-embedded human cancer tissues (Department of
Pathology, College of Medicine, Chosun University). Sec-
tions were deparaffinized in xylene and graded alcohol.
Antigen retrieval was performed by autoclaving for
15 min. After incubation with blocking solution for
30 min, sections were incubated with anti-DIx-2 antibody
for 1 h, biotinylated secondary antibody for 20 min, and
then with streptavidin horseradish peroxidase for 10 min.
Staining was carried out with diaminobenzidine chromo-
gen and counterstaining with hematoxylin.

Statistical analysis

All experiments were independently performed at least 3
times. Data were analyzed by the Student’s ¢-test and
P < 0.05 was considered statistically significant.

Additional material

Additional file 1: Figure S1. Full scan blots. (A) Full scan of blot
depicted in Figure 1D. A549 cells were pretreated with PMA (100 nM) for
30 min and treated with GD for 12 h. The cells were analyzed using
Western blotting with antibodies against DIx-2 and a-tubulin (10 pg
protein extract). (B) Full scan of blot depicted in Figure 1F. A549, HepG2,
MDA-MB-231, HCT116, and Hela cells were treated with GD for the
indicated times and then analyzed using Western blotting with
antibodies against DIx-2 and a-tubulin (10 pg protein extract). (C) MCF-7
cells were transiently transfected with a control or DIx-2 expression
vector for 2 d and cell morphology was examined using phase-contrast
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microscopy and photographed under a magnification of 400x. DIx-2
expression was analyzed using Western blotting with antibodies against
DIx-2 and a-tubulin. Arrow, a putative modified form of DIx-2.

Additional file 2: Figure S2. Real-time PCR analysis for expression of
DIx-2 in human tumors, including breast, colon, and ovarian cancers.
DIx-2 expression was analyzed with real-time PCR using the RNAs
extracted from paired biopsy breast, colon, and ovarian cancer tissues and
the corresponding normal tissues. Values are normalized to B-actin. *P <
0.05, **P < 0.01 versus normal tissues. N, normal tissues; T, tumors.

Additional file 3: Figure S3. Ponceau S staining pattern of Figure 4P.
MDA-MB-231 cells that were stably transfected with control or DIx-2
shRNA were treated with GD for 12 h, and both medium and cell pellets
were prepared and analyzed with SDS-PAGE and Ponceau S staining.

Additional file 4: Table S1. Primer sequences for RT-PCR and real
time PCR.

Abbreviations

CoQC: cobalt-quenched calcein; CuZnSOD: copper-zinc superoxide
dismutase; DII: Drosophila distal-less; Dix: Distal-less; GD: glucose deprivation;
HMGB1: high mobility group box 1; IHC: immunohistochemistry; IL-1a:
interleukin-1a; ROS: reactive oxygen species; A¥Ym: mitochondrial membrane
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permeability transition; MTSs: multicellular tumor spheroids; NAC: N-
acetylcysteine; PMA: phorbol-12-myristate-13-acetate; RAGEs: receptor for
advanced glycation end products; RIRR: ROS-induced ROS release; shRNA:
short hairpin RNA; TLR: Toll-like receptor.
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