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Abstract
The gut microbiota has been demonstrated to be correlated with the clinical phenotypes of diseases, including 
cancers. However, there are few studies on clinical subtyping based on the gut microbiota, especially in breast 
cancer (BC) patients. Here, using machine learning methods, we analysed the gut microbiota of BC, colorectal 
cancer (CRC), and gastric cancer (GC) patients to identify their shared metabolic pathways and the importance 
of these pathways in cancer development. Based on the gut microbiota-related metabolic pathways, human 
gene expression profile and patient prognosis, we established a novel BC subtyping system and identified a 
subtype called “challenging BC”. Tumours with this subtype have more genetic mutations and a more complex 
immune environment than those of other subtypes. A score index was proposed for in-depth analysis and 
showed a significant negative correlation with patient prognosis. Notably, activation of the TPK1-FOXP3-mediated 
Hedgehog signalling pathway and TPK1-ITGAE-mediated mTOR signalling pathway was linked to poor prognosis in 
“challenging BC” patients with high scores, as validated in a patient-derived xenograft (PDX) model. Furthermore, 
our subtyping system and score index are effective predictors of the response to current neoadjuvant therapy 
regimens, with the score index significantly negatively correlated with both treatment efficacy and the number 
of immune cells. Therefore, our findings provide valuable insights into predicting molecular characteristics and 
treatment responses in “challenging BC” patients.
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Introduction
The gut microbiota plays crucial roles in the occurrence, 
development, and treatment of diseases, including can-
cers [1–7]. For example, Fusobacterium nucleatum par-
ticipates in the regulation of colorectal cancer (CRC) 
development [8–10], and the abundances of Enterobac-
teriaceae and E. coli have been demonstrated to be sig-
nificantly increased in patients with inflammatory bowel 
disease and type 2 diabetes mellitus [11, 12]. Due to 
tumour heterogeneity and individual variations, tumours 
exhibit distinct microbial compositions, even within the 
same tumour type [13, 14]. This observation suggests that 
focusing on the microbial differences between tumours 
may be overly restrictive. Recent studies have shown that 
probiotics increase the production of short-chain fatty 
acids and effectively alleviate the symptoms of different 
diseases [3, 6, 15–17], indicating that the gut microbiota 
affects various diseases through common metabolites 
and pathways. Hence, exploring antitumour treatments 
based on the key metabolic pathways of the gut micro-
biota is a promising strategy.

Breast cancer (BC) is a malignant tumour originat-
ing from the mammary gland epithelium that often 
presents with inconspicuous early symptoms, making 
timely detection challenging [18, 19]. Statistically, 3-10% 
of newly diagnosed BC patients have distant metasta-
ses at the time of diagnosis [20]. Current treatments for 
advanced BC are typically stratified based on molecular 
subtype, considering the patient’s prior treatment his-
tory and therapeutic sensitivity [21–27]. Clinically, the 
molecular subtypes of BC are luminal A (LumA), lumi-
nal B (LumB), triple-negative breast cancer (TNBC), and 
HER2-positive BC, and each has distinct therapeutic 
approaches and efficacies [21, 23, 25–27]. The responses 
and outcomes of patients vary widely, even among 
patients with the same subtype [25, 28], suggesting that 
the traditional BC subtyping system may not be univer-
sally applicable. Therefore, the exploration of new BC 
subtyping approaches is necessary to increase the effec-
tiveness of treatments.

To identify gut microbiota-related metabolic pathways 
and develop a new subtyping system for BC, we first ana-
lysed the differentially abundant genera and various met-
abolic pathways in BC, CRC and GC by machine learning 
methods. Most of the differentially abundant genera were 
cancer specific, and 36 metabolic pathways were shared 
among the three cancer types, with consistent expres-
sion trends. This finding implies that these shared meta-
bolic pathways of the gut microbiota may play important 
roles in the occurrence and development of cancer. Next, 
based on gene expression profiles related to micro-
bial metabolic pathways and patient prognostic data, 
BC patients were subtyped into four clusters. Among 
these clusters, the subtype represented by Cluster 2 was 

called “challenging BC” due to the increases in genetic 
mutations and the complexity of the immune microen-
vironment. Accordingly, a score index was developed 
and was found to be negatively correlated with patient 
survival. We found that in the low-score group, ARH-
GAP15 tumour cells and CD8 + CCL5 immune cells 
were significantly colocalized, indicating good spa-
tial consistency, according to the spatial transcriptome 
sequencing (ST-seq) data. This pattern was also observed 
for the TPK1 tumour cells and both CD4 + FOXP3 and 
CD8 + CXCL13 + ITGAE immune cells in the high-score 
group. Pearson correlation analysis revealed a positive 
correlation between the number of colocalized cells in 
each score group. The applicability of this new subtyping 
method was subsequently validated by investigating the 
relationship between signalling pathways affected by the 
dominant cells in the high-score group and poor prog-
nosis in a patient-derived xenograft (PDX) mouse model 
and was further supported by the significant negative 
correlations between the score index and both treatment 
efficacy and the expression of immune cells.

Results
Gut microbiota-related metabolic pathways in BC, CRC and 
GC
To investigate the microbiota-related metabolic path-
ways shared by cancers, we analysed 16 S rRNA sequenc-
ing data of the gut microbiota obtained from four public 
datasets (PRJNA86188, PRJNA817689, PRJNA639644, 
and PRJNA658160) (Fig.  1A and Supplementary Tables 
1–3). PRJNA861885 contained data for 428 CRC speci-
mens and 260 normal samples. PRJNA817689 and 
PRJNA639644 contained data for 124 GC specimens 
and 140 normal samples, and PRJNA658160 contained 
data for 350 BC specimens and 308 normal samples. 
Using the Wilcoxon test and a random forest model, we 
identified significantly differentially abundant bacte-
rial genera between the normal groups and the cancer 
groups (Fig. 1B-D, Methods). Based on the differentially 
abundant bacterial genera, all patients were clustered 
into three subgroups by the self-organizing map (SOM) 
method. Each cancer cohort was divided into the G1, 
G2, and G3 subgroups (Fig.  1E-F and Supplementary 
Table 4), which exhibited distinct gut microbiota charac-
teristics at the phylum and genus levels (Supplementary 
Fig.  1A-I). For all three cancer types, the differentially 
abundant genera were tumour specific and enriched in 
different subgroups. For example, the BC cohort had 25 
unique differentially abundant genera, and the GC and 
CRC cohorts had 24 and 19 different genera, respectively. 
Only seven genera were shared among the three cancers 
(Fig.  1H). Escherichia Shigella was enriched in the G1 
subgroup of CRC patients, G3 subgroup of GC patients, 
and G2 subgroup of BC patients. These results suggest 
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Fig. 1 (See legend on next page.)
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that focusing on different bacterial genera has limited 
the understanding of the development of different can-
cer types. Therefore, using Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States 
(PICRUSt) software and one-way analysis of variance 
(ANOVA), we identified Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways that exhibited signifi-
cant differential enrichment among the subgroups. We 
focused on 36 differentially enriched metabolic pathways 
shared by the three cancer types and found that their 
enrichment trends were consistent among the subgroups 
(Fig.  1I and Supplementary Table 5). For example, we 
observed significant alterations in cysteine and methio-
nine metabolism in the G3 subgroups of the BC, CRC, 
and GC cohorts, consistent with previous reports [29, 
30]. These results showed that although the microbiomes 
of different tumours have different microbial composi-
tions, they have conserved effects on these 36 metabolic 
pathways, implying that these shared metabolic pathways 
may play important roles in tumour development.

Development of the new BC subtyping method
The expression of genes associated with the shared 
microbial metabolic pathways was then assessed. We 
integrated multiomics data from The Cancer Genome 
Atlas breast cancer (TCGA-BRCA) dataset, such as gene 
expression profile, clinical phenotype, RNA-seq and 
clinical data, to develop a new BC subtyping system. A 
total of 700 genes associated with gut microbiota-related 
metabolic pathways and patient survival were identified 
and used for clustering the TCGA-BRCA patients into 
four clusters using distance-based k-means clustering 
[31] (Fig.  2A and Supplementary Table 6). Each cluster 
exhibited distinct gene expression patterns and hallmark 
pathways, with Cluster 4 showing the best prognosis and 
Cluster 1 showing the poorest prognosis (Supplemen-
tary Fig. 2A-B and Fig. 2B). Analysis revealed significant 
enrichment of immune-related pathways in Cluster 4, 
validating the accuracy of our subtyping method (Sup-
plementary Fig.  2C-D). Furthermore, the clusters dem-
onstrated differences in PAM50 molecular subtyping 
[32] (P = 4.95e-142, 95% CI [0.49, 1.00]), stage distribu-
tion (P = 0.02, 95% CI [0.00, 1.00]), and TNBC incidence 
(P = 4.87e-65, 95% CI [0.48, 1.00]). The four clusters also 
exhibited different clinical characteristics (Fig.  2E-G). 

Cluster 2 included patients with all PAM50 molecular 
subtypes, such as the LumA, LumB, Her-2, basal and 
normal-like subtypes. Cluster 3 predominantly included 
patients with the LumA and LumB subtypes, and Cluster 
4 consisted primarily of patients with the LumA subtype 
(Fig. 2E). P (Fig. 2F). Cluster 2 was significantly enriched 
in TNBC patients (Fig. 2G). Additionally, at the genomic 
level, we evaluated the tumour mutation burden (TMB), 
aneuploidy score, fraction of genome alterations, and 
MSIsensor score. At the immune level, we calculated 
the abundances of CD4 + T cells, CD8 + T cells, neutro-
phils, and myeloid dendritic cells (Fig. 2H-O). Cluster 1 
and Cluster 2 had the highest TMB values, while Clus-
ter 3 and Cluster 4, especially Cluster 4, had the lowest 
TMB values, consistent with the results of our previous 
prognostic analysis. However, notably, Cluster 2 was 
associated with the highest TMB value but not the worst 
prognosis. This discrepancy may be related to the com-
plex immune environment of Cluster 2, as demonstrated 
in our findings. Overall, our multiomics-based subtyping 
method captures distinct molecular and immune charac-
teristics of BC.

The score was significantly associated with the prognosis 
of “challenging BC” patients
A new subtype of BC, termed “challenging BC”, was iden-
tified using the novel BC subtyping method developed in 
this study. Cluster 2 exhibited more genetic mutations 
and a more complex immune microenvironment than 
did the other clusters, leading to its designation as the 
“challenging BC” subtype. Cluster 2 contained patients 
with all of the traditional subtypes, including the LumA, 
LumB, Her-2-positive, basal, normal-like, and TNBC 
subtypes (Fig.  2C and E). Notably, TNBC patients were 
significantly overrepresented in Cluster 2. The inher-
ent complexity of treatment for Cluster 2 patients poses 
substantial challenges and underscores the clinical sig-
nificance of this subtype. To further analyse the “chal-
lenging BC” subtype, a score index was proposed based 
on gene expression and its independent prognostic coef-
ficient (Methods). Each patient was assigned a score, and 
Cluster 2 exhibited the highest degree of score dispersion 
(Fig. 3A and Supplementary Table 7). Patients were then 
divided into the high-score and low-score groups based 
on the median score, and analysis revealed significantly 

(See figure on previous page.)
Fig. 1 Gut microbiota characteristics and clustering analysis based on machine learning in BC, GC, and CRC patients. (A) Flowchart of the gut microbiota 
analysis. (B-D) The importance of the significantly different genera in CRC, GC and BC patients. Up: significantly upregulated genes in cancer; Down: sig-
nificantly downregulated genes in cancer. (E-G) Clustering of CRC, GC and BC samples based on the self-organizing map (SOM) method. All three cancer 
cohorts were divided into three clusters, denoted G1, G2, and G3. Fusobacterium and Escherichia Shigella were the key genera marking the clusters of 
CRC patients. Faecalibacterium and Escherichia Shigella were key genera marking the clusters of GC patients. Prevotella_9 and Escherichia Shigella were key 
genera marking the clusters of BC patients. (H) Venn diagram of the significantly different bacterial genera among the three cancers. The differences in 
the overlapping bacterial genera among the three cancers were not extensive, with nearly half of the genera unique to each cancer, a phenomenon pos-
sibly related to tumour specificity. (I) Heatmap of the differentially enriched metabolic pathways among the clusters in the three cancers. The microbial 
functions in the BC cohort were similar to those in the CRC and GC cohorts
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Fig. 2 Distinct features of the BC subtypes constructed based on the commensal microbiome and metabolic pathways and genes significantly associ-
ated with survival. (A) Flowchart of the TCGA-BRCA dataset analysis. Based on the significance of the identified pancancer pathways, we selected genes 
associated with those pathways and filtered for pathways significantly correlated with survival. (B) Survival curves for the BC clusters. The prognostic 
outcomes varied significantly, with Cluster 4 displaying the best prognosis and Cluster 1 the poorest. (C-E) Proportions and chi-square test P values based 
on the traditional molecular subtypes, clinical stage, and TNBC status in each cluster of BC patients. (F-I) Boxplots of the TMB, aneuploidy score, fraction 
of genome altered, and MSIsensor score for the BC clusters at the genomic level. Cluster 2 had the highest values, and Cluster 4 had the lowest values. 
(J-M) Boxplots of CD4 + T-cell, CD8 + T-cell, neutrophil, and myeloid dendritic cell counts for the BC clusters at the immune level. Cluster 2 had the highest 
abundances among the clusters. **** P < 0.0001. *** P < 0.001. **P < 0.01. *P < 0.05. ns, P > 0.05
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poorer survival outcomes in the high-score group 
(Fig. 3B). Moreover, the score index emerged as an inde-
pendent prognostic factor, with area under the receiver 
operating characteristic (ROC) curve (AUC) values of 
0.634 and 0.671 for 365-day and 3-year overall survival 
(OS), respectively (Fig.  3C and Supplementary Fig.  3A). 
Subsequent analysis demonstrated significant enrich-
ment of cancer-related and immune-related pathways in 

the high-score group within Cluster 2, confirming the 
association of Cluster 2 with poorer survival (Fig. 3D-E). 
Furthermore, notable differences between the high- and 
low-score groups in Cluster 2 were observed at both the 
immune and genomic levels, surpassing the differences 
observed in the other clusters (Fig. 3F-I and Supplemen-
tary Fig.  3B-G). These findings underscore the utility of 

Fig. 3 Identification and prognostic analysis of the “challenging BC” subtype and the molecular characteristics of this subtype. (A) Violin plots showing 
the distribution of scores across the four clusters. (B) Survival curves for the low-score and high-score groups. Patients in the high-score group exhibited 
poorer survival outcomes. (C) The predictive value of the score in the TCGA-BRCA cohort (AUCs: 0.857, 0.802, 0.634 and 0.671; 90-, 180- and 365-day OS, 
respectively). (D) Volcano plot of the DEGs between the high-score and low-score groups. Red indicates significantly upregulated genes in the high-score 
group, and blue indicates significantly upregulated genes in the low-score group. (E) Bar plot of differentially enriched pathways between the high-score 
and low-score groups. The pathways associated with cancer were significantly enriched in the high-score group, accompanied by significantly higher 
scores. (F) Comparison of immune cell populations in Cluster 2 between the high-score and low-score groups. (G-I) Boxplots showing the fraction of 
genome alterations, TMB, MSI MANTIS score and nonsynonymous TMB between the high-score and low-score groups for the BC clusters at the genomic 
level. The high-score group in Cluster 2 had significantly greater values of these parameters, indicating a greater mutation burden in patients in the high-
score group. *** P < 0.001. **P < 0.01. *P < 0.05
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Fig. 4 (See legend on next page.)
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the score index as an independent prognostic factor for 
the “challenging BC” subtype.

Single-cell expression atlas and cell type identification in 
“challenging BC”
To explore immune cells linked to the prognosis of “chal-
lenging BC”, we analysed single-cell sequencing data from 
two patients with “challenging BC”, both of whom were 
pathologically diagnosed with TNBC (Fig.  4A and Sup-
plementary Table 8). Initially, we constructed a classifi-
cation model by leveraging the random forest algorithm, 
integrating the expression profiles of 700 genes with the 
classification data shown in Fig. 2. We then meticulously 
screened the expression of these 700 genes in each cell 
through single-cell sequencing and determined the aver-
age expression level of each gene. With this model, we 
were able to predict the subtype of the samples and assign 
a score to each cell based on the patient’s prognosis. The 
patients were then stratified into the high-score and low-
score groups, and the model proficiently identified them 
as having the “challenging BC” subtype (Fig.  4A, Meth-
ods). We categorized the 16,282 cells that passed quality 
control into five major cell types (Fig.  4B and Supple-
mentary Fig. 4A-C): tumour cells, three types of immune 
cells (natural killer T [TNK] lymphocytes, B cells, and 
myeloid cells), and stromal cells. Notably, a significant 
proportion of tumour cells exhibited higher scores than 
did cells of the other types (P = 0.00, 95% CI [0.69, 1.00], 
Fig.  4C). Each cell type exhibited the expression of its 
well-known marker genes with high specificity (Fig. 4D). 
Pathway enrichment analysis based on the high- and low-
score groups revealed significant differences in immune-
related pathways, particularly T-cell-related pathways 
(Fig.  4E). Further comparison of the pathways of TNK 
cells revealed enrichment of immune-related pathways 
in the low-score group (Fig. 4F-G). TNK cells were clus-
tered into eight distinct subtypes. CD8 + CCL5 cells, 
which are cytotoxic T cells, were more abundant in the 
low-score group and were potentially associated with 
a better prognosis [33, 34] (P = 1.44e-31, 95% CI [0.16, 
1.00], Fig.  4H-J). Conversely, CD4 + FOXP3 cells, rep-
resenting Treg cells, and CD8 + CXCL13 + ITGAE cells, 
representing tissue-resident T cells, were more preva-
lent in the high-score group, possibly contributing to the 

poorer prognosis observed in this group [35] (Fig.  4J). 
The results of the multicolour immunofluorescence 
experiments confirmed these findings (Fig. 4K), suggest-
ing that specific immune cell populations are associated 
with the prognosis of “challenging BC”.

The spatial transcriptome data suggest pathways 
associated with poor prognosis
Spatial information plays a crucial role in the under-
standing of transcriptional heterogeneity and the cellu-
lar spatial distribution. In this study, we utilized ST-seq 
to acquire in situ gene expression profiles from four 
patients with “challenging BC”. The quality control results 
indicated significant differences among the 15 identi-
fied clusters (Supplementary 5A-C and Fig.  5A). Using 
a classification model and calculation methods, all four 
patients were identified as “challenging BC” patients who 
were pathologically diagnosed with TNBC. Two patients 
(SXR_1 and SXR_2) belonged to the low-score group, 
and the other two patients (YZL_1 and YZL_2) belonged 
to the high-score group (Fig.  5A). Although all 15 cell 
types were detected in each patient, their proportions 
and marker gene expression levels varied greatly (Fig. 5B 
and Supplementary Fig.  5D-F). Malignant tumour cells 
were more abundant in the high-score group, whereas 
the low-score group exhibited greater abundances of 
immune cells, especially cytotoxic immune cells, such as 
cytotoxic (CD8+) T cells, consistent with the results of 
prognostic analysis and single-cell sequencing (Fig.  5C, 
Supplementary Fig.  4D-E and Supplementary Fig.  5G-
H). Specifically, the proportion of CD8 + CCL5 cells was 
greater in the low-score group, and CD4 + FOXP3 and 
CD8 + CXCL13 + ITGAE cells were more prevalent in 
the high-score group. These findings are consistent with 
previous findings (Figs.  4J-K and 5C). According to the 
single-cell sequencing results, most of the tumour cells in 
both the low- and high-score groups were ARHGAP15 
and TPK1 cells, respectively (Supplementary Fig.  4F). 
Moreover, significant colocalization of tumour cells with 
specific types of immune cells was observed (ARHGAP15 
cells and CD8 + CCL5 cells in the low-score group; TPK1 
and both CD4 + FOXP3 and CD8 + CXCL13 + ITGAE cells 
in the high-score group), demonstrating spatial consis-
tency with the ST-seq data (Fig. 5D). Pearson correlation 

(See figure on previous page.)
Fig. 4 Analysis of relevant factors in “challenging BC” at the single-cell level. (A) Uniform manifold approximation and projection (UMAP) plot showing the 
scores in all the clusters of single-cell sequencing data. (B) UMAP plot showing the 5 cell types identified by integrated analysis of all the clusters. (C) Heat-
map showing the expression of marker genes in the indicated cell types. The bar across the top labels the clusters corresponding to specific cell types. 
(D) Bar plot sho wing the percentages of the annotated cell types derived from samples with high scores and samples with low scores. I Bubble charts 
showing the KEGG enrichment of the DEGs between the high-score group and low-score group in all clusters. (F) T-distributed stochastic neighbour 
embedding (t-SNE) plot showing the scores for the TNK cell types. (G) Bar graphs showing the KEGG enrichment of the TNK cell types in the high-score 
group and low-score group. (H) t-SNE plot showing 8 cell types identified by integrated analysis of the TNK cell types. (I) Heatmap showing the expression 
of marker genes in the TNK cell types. The bars on the left label the clusters corresponding to specific cell types. (J) Bar plot indicating the percentages of 
annotated TNK cell types derived from samples in the high-score and low-score groups. (K) Representative multispectral images of 5 markers in tumour 
tissues. DAPI: cyan; CD4: red; CD8: purple; CCL5: pink; ITGAE: yellow; and FOXP3: blue
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analysis revealed positive correlations between gene 
expression in these cells (CD8 + CCL5 and ARHGAP15, 
p value = 0 [Fig.  5D]; TPK1 and both CD4 + FOXP3 and 
CD8 + ITGAE, p values = 1.6e-10 and 6.8e-08 [Fig.  5E]), 
further suggesting the influence of tumour cell popula-
tions on T-cell enrichment and the immune microen-
vironment. Analysis of the shared immune signalling 
pathways associated with prognosis identified potential 
pathways related to good (NOD-like receptor signalling) 
and poor (Hedgehog and mTOR signalling) prognoses in 
the low- and high-score groups, respectively (Fig. 5F-H). 
To validate these findings, we established a PDX model 
using tumour tissues from a patient in the high-score 
group and treated the mice with inhibitors targeting the 
identified signalling pathways (Fig.  5I). The inhibitors 
used were sonidegib and rapamycin, which are a clini-
cally approved SMO inhibitor that inhibits Hedgehog 
signalling pathway activity [36–38] and an immunosup-
pressive mTOR inhibitor [39, 40], respectively. Significant 
inhibition of tumour growth was observed (Fig.  5J-K), 
and the identified pathways were suppressed, confirming 
the importance of the immune signalling pathways asso-
ciated with poor prognosis identified by the score index.

Use of the subtyping method and score index for 
neoadjuvant therapy
Our subtyping method and score index were also vali-
dated in a neoadjuvant therapy dataset containing data 
for 221 patients who received anthracycline and/or tax-
ane-based therapy [41]. We used the classification model 
to determine molecular subtypes using gene expres-
sion profiles, integrating these data with survival data to 
derive the corresponding scores (Methods). Our objec-
tive was to assess the impact of molecular subtype on 
the treatment response and treatment efficacy (Supple-
mentary Table 9). Although we observed no significant 
difference in the score distribution between the residual 
disease (RD) and pathologic complete response (pCR) 
groups (Supplementary Fig. 6A), the molecular subtyping 
method and the evaluation of molecular features yielded 
consistent results in this dataset (Fig.  6A-E). The four 
clusters exhibited varied responses to treatment, with 
the RD samples in Clusters 1, 2, and 4 (but not those in 
Cluster 3) having significantly higher scores (Fig.  6F-I). 
This pattern underscores the utility of our novel molec-
ular subtyping method for BC, as it correlates the score 
index with treatment efficacy, indicating that higher 
scores are associated with lower treatment efficacy. Simi-
lar results were observed for the TNBC subset (Fig.  6J 
and Supplementary Fig. 6B-C). Furthermore, we analysed 
differential gene expression and pathway enrichment 
between the pCR and RD groups of TNBC patients in 
Cluster 2 (Fig.  6K-L). Immune activation-related path-
ways, such as Cytokine − cytokine receptor interaction, 

T-cell receptor signalling pathway, and Natural killer cell-
mediated cytotoxicity, were significantly enriched in the 
pCR group (Fig.  6L). Correlation analysis between the 
highly expressed genes in the pCR group and the scores 
revealed a significant negative correlation, suggesting 
that the expression of immune-activating genes, such as 
NKG7, CD3E, CD247, GZMA, and IL6R, increased with 
decreasing score (Fig. 6M). These results indicate that the 
score index calculated using our subtyping method can 
serve as an indicator of the immune microenvironment 
and predict the treatment efficacy and response in BC 
patients receiving neoadjuvant therapy.

Discussion
In this study, for the first time, we successfully developed 
a novel subtyping system for BC that integrates informa-
tion on the gut microbiota, human gene expression, and 
patient prognosis. Through this system, we introduced 
a new subtype termed “challenging BC”, characterized 
by the presence of more genetic mutations and a more 
complex immune environment than other subtypes. Fur-
thermore, we introduced a score index associated with 
patient prognosis, enabling the identification of “chal-
lenging BC” cases and the prediction of therapeutic 
responses in BC patients. The association between the 
classification system and the score index is hierarchical 
and progressive. The classification system was employed 
to identify cases of “challenging BC”, and the score index 
was subsequently utilized to conduct an in-depth analy-
sis of these “challenging BC” cases. In this study, we lev-
eraged multiomics data based on the gut microbiome 
acquired through machine learning methods, providing a 
scientific foundation for predicting molecular character-
istics and treatment responses in patients with “challeng-
ing BC”.

Recent studies have revealed a strong association 
between the gut microbiota and BC [19, 42–44]. Micro-
bial dysbiosis has been implicated in influencing the inci-
dence of various BC subtypes. Notably, cancer patients 
exhibit more significant alterations in the gut microbiota 
composition than patients with benign tumours [45]. 
The gut microbiota can impact the metabolism of oes-
trogen and progesterone, thereby differentially affect-
ing the incidence of steroid hormone receptor-positive 
and steroid hormone receptor-negative BC [46]. Hence, 
investigations of the mechanisms that improve the gut 
microbiota composition hold promise for improving the 
survival outcomes of BC patients and optimizing anti-
cancer therapies. In our study, we employed machine 
learning methods to analyse gut microbiome data from 
BC, GC, and CRC patients. Although differences in the 
microbial genera have been implicated in different can-
cers, the metabolic pathways in which they participated 
were notably consistent. Shared metabolic pathways were 
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Fig. 5 (See legend on next page.)
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observed across the BC, GC, and CRC subgroups, high-
lighting the importance of gut microbiota-related meta-
bolic pathways in cancer development.

Several research groups have developed TNBC-spe-
cific subtyping systems, each including a different num-
ber of subtypes. For instance, Lehmann et al. described 
six subtypes [47], Burstein et al. identified four subtypes 
[48], Jézéquel et al. identified three subtypes [49], and 
Jiang et al. proposed four subtypes [50]. However, the 
inconsistency in results across these studies, likely stem-
ming from differences in algorithms and patient popu-
lations, may limit the practical clinical utility of these 
systems. Moreover, recent findings indicate that non-
TNBC tumours exhibit a limited response to treatment. 
For instance, sensitivity to treatment varies based on the 
lymphocyte concentration in Her-2-positive tumours 
[51–54], highlighting the heterogeneity within this sub-
type. These limitations underscore the need for explor-
ing new BC subtyping approaches to improve treatment 
outcomes. Traditionally, BC subtyping has relied on gene 
expression characteristics, a strategy that also has limita-
tions. To address this issue, we challenged the traditional 
BC subtyping approach and established a new system 
based on the gut microbiota, human gene expression 
profiles, and clinical features. Our novel BC subtyping 
method, which is based on integrated multiomics data, 
demonstrated applicability and accuracy across various 
datasets, including single-cell sequencing, single-cell spa-
tial transcriptome, and neoadjuvant therapy datasets.

In summary, we employed machine learning methods 
to develop a novel BC subtyping method that integrates 
the gut microbiota, human genetics, and patient progno-
sis. This innovative approach can be used to predict not 
only molecular subtypes but also the prognosis of BC 
patients. Importantly, its applicability extends beyond BC 
to other types of cancers, demonstrating its universality. 
This method provides valuable insights for cancer treat-
ment, particularly in addressing challenging cancer cases. 
However, notably, our system does not entirely replace 
gene expression data. Noninvasive gut microbiome data 

alone cannot be relied upon for direct subtyping, prog-
nostic prediction, or treatment response assessment. This 
limitation of our study is acknowledged, and we aim to 
address it in future research efforts.

Conclusion
In this study, for the first time, we established a ground-
breaking subtyping system for BC that integrates the gut 
microbiota, human gene expression patterns, and patient 
prognosis, enabling the prediction of molecular char-
acteristics and treatment responses. A novel subtype 
characterized by an increase in genetic mutations and 
a highly complex immune environment was identified 
and termed “challenging BC”. Additionally, a score index 
related to patient prognosis was developed, facilitating 
the identification of “challenging BC” cases and the pre-
diction of therapeutic responses in BC patients. Overall, 
we leveraged multiomics data analyses based on the gut 
microbiome using machine learning methods to provide 
a robust scientific foundation for predicting molecular 
characteristics and treatment responses in patients with 
“challenging BC”.

Methods
Sample collection
We analysed 16  S rRNA sequencing data of the 
gut microbiome collected from four public datas-
ets (PRJNA86188, PRJNA817689, PRJNA639644, and 
PRJNA658160). PRJNA861885 included 260 normal 
samples and 428 CRC samples. PRJNA817689 and 
PRJNA639644 included 140 normal samples and 124 GC 
samples, and PRJNA658160 included 308 normal sam-
ples and 350 BC samples.

The mRNA expression data, clinical information, and 
survival data for BC patients were obtained from two 
publicly available data platforms: the TCGA database 
(https://gdc-portal.nci.nih.gov/) and the UCSC Xena 
Browser website (https://xenabrowser.net/datapages/). 
Tumour microenvironment (TME) data were obtained 

(See figure on previous page.)
Fig. 5 Single-cell spatial transcriptome analysis of “challenging BC” patients. (A) UMAP plot demonstrating the cell distribution and score variance in 4 
primary tumour tissues, colour-coded by the annotated cell type and score group. (B) UMAP plots and spatial feature plots demonstrating the cell distri-
bution in every tumour tissue, colour-coded by the annotated cell type. (C) Bar charts and spatial feature plots showing the differences in the percentages 
of tumour cells, TNK cells, CD8 + CCL5 cells, CD4 + FOXP3 cells, and CD8 + CXCL13 + ITGAE cells between the selected tissue sections. (D) Scatter plots and 
spatial feature plots showing the relationships between ARHGAP15 tumour cells and CD8 + CCL5 immune cells. The scatter plots were generated with 
data from the TCGA cohort. (E) Scatter plots and spatial feature plots showing the relationships among TPK1, FOXP3 and ITGAE. The scatter plots were 
generated with data from the TCGA cohort. (F) Bar graphs showing the pathways associated with the differences identified by KEGG analysis between 
ARHGAP15 tumour cells and CD8 + CCL5 immune cells. (G) Bar graphs showing the pathways associated with the differences identified by KEGG analysis 
between TPK1 + tumour cells and CD4 + FOXP3 immune cells. (H) Bar graphs showing the pathways associated with the differences identified by KEGG 
analysis between TPK1 + tumour cells and CD8 + CXCL13 + ITGAE immune cells. (I) Schematic diagram showing the experimental procedure for the im-
plantation of patient-derived xenografts (YZL-1) into NOG mice injected with placebo, sonidegib (20 mg/kg), or rapamycin (10 mg/kg) (n = 5 mice per 
group). Student’s test; ***P < 0.001. The data are presented as the means ± SDs. (J) Tumour images and tumour volume curve showing the changes in 
tumour volume after treatment with sonidegib (20 mg/kg). Student’s test; ***P < 0.001. The data are presented as the means ± SDs. (K) Tumour images 
and tumour volume curve showing the changes in tumour volume after treatment with rapamycin (10 mg/kg). Student’s test; ***P < 0.001. The data are 
presented as the means ± SDs.

https://gdc-portal.nci.nih.gov/
https://xenabrowser.net/datapages/
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Fig. 6 (See legend on next page.)
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from Tumor IMmune Estimation Resource (TIMER) 2.0 
(https://cistrome.shinyapps.io/timer/).

The neoadjuvant therapy data were obtained from the 
National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) public database 
(GSE163882).

A total of 6 patients with BC were enrolled from the 
Department of Breast Surgery, Fudan University Shang-
hai Cancer Center, Shanghai Medical College, Fudan 
University (Shanghai, P. R. China) in 2022. Fresh breast 
tumour tissues were collected for single-cell transcrip-
tome analysis (2 samples) and single-cell spatial tran-
scriptome analysis (4 samples). All diagnoses of BC were 
based on histopathology and were made in accordance 
with the World Health Organization criteria. Ethical 
approval for the study was obtained from the Fudan Uni-
versity Shanghai Cancer Center Ethics Committee. Our 
single-cell transcriptome data and single-cell spatial tran-
scriptome data have been deposited in NCBI BioProjects 
GSE252175 and GSE252176.

Microbiome analysis
The raw sequencing data were in FASTQ format. Paired-
end reads were then preprocessed using Trimmomatic 
software [55] to detect and trim ambiguous (N) bases. 
Low-quality sequences with an average quality score of 
less than 20 were also removed using the sliding win-
dow trimming approach. After trimming, paired-end 
reads were assembled using FLASH software [56]. The 
parameters used for assembly were as follows: 10  bp of 
minimal overlap, 200 bp of maximum overlap and a 20% 
maximum mismatch rate. Further denoising was per-
formed on the sequences as follows: reads with ambigu-
ous sequences, homologous sequences, or fewer than 
200  bp were removed; reads in which 75% of the bases 
had a quality score of more than 20 (Q20) were retained; 
and chimaeric reads were then detected and removed. 
These steps were performed using QIIME software [57] 
(version 1.8.0).

The clean reads were subjected to removal of primer 
sequences and clustering to generate operational taxo-
nomic units (OTUs) using Vsearch software [58] with a 

cutoff of 97% similarity. The representative read of each 
OTU was selected using the QIIME package. All repre-
sentative reads were annotated and BLASTed against 
the Silva database version 123 (or Greengenes) (16 S/18S 
rDNA) using the Ribosomal Database Project (RDP) clas-
sifier [59] (confidence threshold, 70%). All representa-
tive reads were annotated and searched against the Unite 
database (ITS rDNA) using BLAST [60].

Clusters were then identified. Based on the identified 
differentially abundant genera between normal and can-
cer samples, we further employed a random forest model 
to assess the importance of the genera, selecting those 
with an importance greater than the average value to 
obtain the final genus information [61]. Using the SOM 
neural network [62] library (Kohonen), we determined 
the optimal number of clusters and performed clustering 
of the cancer samples. For each identified cluster type, we 
used a decision tree classifier to establish classification 
rules.

To identify human-related genes via KEGG, we used 
PICRUSt [63] to project the KEGG pathways within the 
gut microbiome data across three cancer datasets. We 
integrated these predictions with the microbial clustering 
data and employed one-way ANOVA to identify specific 
pathways with significant differential enrichment across 
the subgroups. Subsequently, we determined the func-
tional modules shared among CRC, GC, and BC. Then, 
the KEGG pathways that were also present in humans 
were retained. Finally, we screened the genes involved 
in these pathways and integrated cancer patient survival 
data from TCGA to identify gene sets significantly asso-
ciated with survival.

Identification of TCGA-BRCA cancer sample subtypes and 
construction of the score model
Subtyping method: Cluster analysis was performed using 
the R ConsensusClusterPlus [64] package with a dis-
tance-based k-means algorithm, with the number of sub-
sets (reps) set to 1000.

Scoring method [31]: For each sample, the score was 
calculated as ∑ (beta × Exp), where beta is the inde-
pendent prognostic coefficient obtained through 

(See figure on previous page.)
Fig. 6 Patients with different molecular subtypes exhibit varied responses to and efficacies of neoadjuvant therapy. (A) Principal coordinate analysis 
was performed based on the Bray‒Curtis distance matrix generated from the clusters in the neoadjuvant therapy cohort. We selected 221 samples from 
patients who underwent neoadjuvant therapy (anthracycline and/or taxane-based therapy) to assess the impact of molecular subtype on treatment 
response and efficacy. (B-E) Proportions and chi-square P values for stage (P = 0.56, 95% CIs [0.00, 1.00]), TNBC status (P = 1.25e-09, 95% CIs [0.30, 1.00]), 
traditional molecular subtype (P = 1.19e-11, 95% CIs [0.26, 1.00]) and therapeutic response (P = 3.59e-03, 95% CIs [0.00, 1.00]) in each cluster. Upon molecu-
lar subtyping and evaluation of molecular features, we found consistent results in the new dataset, with Cluster 2 showing enrichment in TNBC samples 
compared with samples of other subtypes. (F-J) Boxplots showing the difference in the score between the pCR and RD groups in each cluster and in 
TNBC samples in Cluster 2. The four clusters exhibited different responses to treatment, with significantly higher scores in the RD group in Clusters 1, 2, 
and 4 (but not in Cluster 3). Similar patterns were observed in the TNBC samples. (K) Volcano plot of the differentially expressed genes between the pCR 
and RD groups in TNBC samples. Genes significantly upregulated in the pCR group are shown in red, and those significantly upregulated in the RD group 
are shown in blue. (L) Bar plot of differentially enriched pathways between the pCR and RD groups in TNBC samples. Immune activation-related pathways 
were significantly enriched in the pCR group. (M) Correlation analysis between the highly expressed genes in the pCR group and the score revealed a 
significant negative correlation, indicating that as the score decreased, immune-activating gene expression increased. *** P < 0.001. **P < 0.01. *P < 0.05

https://cistrome.shinyapps.io/timer/
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single-factor Cox regression analysis of the gene and Exp 
is the expression level of the gene.

Pathway enrichment analysis [65]: Gene set variation 
analysis (GSVA) is an algorithm building on gene set 
enrichment analysis (GSEA) that is available at http://
www.gsea-msigdb.org/. Analysis of hallmark gene sets 
and pathways was conducted using the GSVA package in 
R. The limma package in R was used to identify signifi-
cantly differentially expressed genes (DEGs) in pairwise 
comparisons. The R packages GSEABase, clusterProfiler, 
and org.Hs.eg.db were used for Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses of the differentially 
expressed genes. The Benjamini–Hochberg procedure 
was used to control the false discovery rate (FDR; p.adj) 
for multiple comparisons, and FDR < 0.05 was applied as 
the threshold for selection.

Single-cell transcriptome analysis
Sequencing data quality control and gene quantifica-
tion: Raw data generated via high-throughput sequenc-
ing, in fastq format, were processed using the official 10x 
Genomics software Cell Ranger (version 7.0.1). This soft-
ware allows the acquisition of data quality statistics and 
alignment to the reference genome (human: GRCh38, 
mouse: mm10). By identifying cell-specific barcode 
markers and unique molecular identifiers (UMIs) for 
each mRNA molecule within a cell, Cell Ranger quan-
tifies high-throughput single-cell transcriptome data, 
calculating quality control statistics such as the number 
of high-quality cells, the median number of genes, and 
sequencing saturation.

Gene quantification quality control and data prepro-
cessing: After preliminary quality control processing 
with Cell Ranger, additional quality control processing 
was performed using Seurat (version 4.0.0). Based on the 
distribution of indicators such as nUMI, nGene, and per-
cent.mito, filtering criteria were applied to retain high-
quality cells. The specific quality control criteria included 
retention of cells with a gene count of greater than 200, 
a UMI count of greater than 1000, a log10GenesPerUMI 
value of greater than 0.7, and a mitochondrial UMI 
count of less than 5%; and a percentage of red blood cells 
expressing a gene of less than 5%. Additionally, Doublet-
Finder software (version 2.0.3) was utilized to remove 
doublet cells. After quality control, the NormalizeData 
function in Seurat was applied for data normalization.

Dimensionality reduction and clustering analysis: The 
FindVariableGenes function (mean.function = FastExp-
Mean, dispersion.function = FastLogVMR) in Seurat was 
used to select the top 2000 highly variable genes (HVGs). 
Principal component analysis (PCA) was performed 
using the expression profiles of the highly variable genes, 
and the results were visualized in two-dimensional 

space using uniform manifold approximation and pro-
jection (UMAP; a nonlinear dimensionality reduction 
technique).

Identification of marker genes: The FindAllMarkers 
function in Seurat (test.use = presto) was used for marker 
gene identification. This process allowed the identifi-
cation of genes that were upregulated in each cell type 
compared to the other cell types, thus serving as poten-
tial marker genes. Visualization of the identified marker 
genes was performed with the VlnPlot and FeaturePlot 
functions.

Cell type identification: Via the SingleR package (ver-
sion 1.4.1), the expression profiles of the cells to be iden-
tified were correlated with a common reference dataset. 
The cell type with the highest correlation in the reference 
dataset was assigned to the cells being identified, reduc-
ing subjective interference. The identification principle 
involved calculating the Spearman correlation coefficient 
between the expression profile of each cell in the sample 
and each annotated cell expression profile in the refer-
ence dataset, with the cell type with the highest correla-
tion selected as the final identified type.

Differential gene expression and enrichment analyses: 
The FindMarkers function in Seurat (test.use = presto) 
was used to select differentially expressed genes. Genes 
with a P value less than 0.05 and a fold change greater 
than 1.5 were considered significantly differentially 
expressed. GO term and KEGG pathway enrichment 
analyses of the significantly differentially expressed genes 
were conducted using the hypergeometric distribution 
test.

Multiplex immunofluorescence staining
We conducted multiplex immunofluorescence (mIF) 
staining using antibodies specific for CD4 (rabbit mono-
clonal, clone EPR19514, Abcam, Cat# ab183685), CD8 
(rabbit monoclonal, clone EPR21769, Abcam, Cat# 
ab217344), CCL5 (RANTES) (rabbit polyclonal, clone 
25HCLC, Thermo Fisher, Cat# 710,001), CD103 (inte-
grin alpha E)) (mouse monoclonal, clone 2E7, Thermo 
Fisher, Cat# 14-1031-82), and FoxP3 (rabbit monoclonal, 
clone D6O8R, Cell Signaling Technology, Cat# 12,653). 
Tissue sections were deparaffinized with xylene, rehy-
drated with ethanol, and subjected to antigen retrieval by 
boiling in Tris-EDTA buffer (pH 9.0) for 15 min. Endog-
enous peroxidase activity was blocked by incubation with 
3% hydrogen peroxide at room temperature for 15 min. 
Nonspecific antigens were blocked by incubation with a 
goat serum solution for 30 min. The sections were then 
incubated with primary antibodies overnight at 4 °C and 
with horseradish peroxidase (HRP)-conjugated second-
ary antibodies at room temperature for 30  min. Subse-
quently, the sections were incubated with Opal tyramide 
signal amplification (TSA) fluorochromes (Opal Colour 

http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
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Manual IHC Kit, Perkin Elmer, NEL811001KT) at 37 °C 
for 20  min. Between each run, the antibody (Ab)-TSA 
complexes in the sections were removed by microwave 
heating, and the sections were blocked with a goat serum 
solution. In the final run, 4’,6-diamidino-2-phenylindole, 
dihydrochloride (DAPI) was added for visualization of 
nuclei, and the sections were mounted with glycerin.

Single-cell spatial transcriptome analysis
Sequencing data quality control and gene quantifica-
tion: Raw data generated via high-throughput sequenc-
ing, in fastq format, were processed using the official 10x 
Genomics software Space Ranger (version 2.0.1) for the 
Visium spatial transcriptome sequencing data and bright-
field microscopy slice images. The software detected the 
capture regions of tissues on the chip, aligned them to the 
reference genome (human: GRCh38, mouse: mm10), and, 
based on spatial barcode information, differentiated the 
reads for each spot. Statistical evaluations included the 
total spot count, reads per spot, detected gene count, and 
UMI count, providing an assessment of sample quality.

Gene quantification quality control and data prepro-
cessing: After preliminary quality control processing 
with Space Ranger, further quality control and process-
ing were performed using Seurat (version 4.3.0) [66]. The 
sctransform function was used to normalize the data, 
detect high-variance features, and store the data in the 
SCT matrix.

Dimensionality reduction and clustering analysis: The 
FindVariableGenes function n Seurat was used to select 
the top 3000 highly variable genes. PCA was conducted 
using the expression profiles of the highly variable genes, 
and the results were visualized in two-dimensional space 
using UMAP (nonlinear dimensionality reduction).

Identification of spatial feature genes: The FindAll-
Markers function in Seurat (test.use = bimod) was 
employed for the identification of marker genes, reveal-
ing genes upregulated in each spot group compared to 
the other spot groups. These genes represented potential 
marker genes for each spot group, and visualization of 
the identified marker genes was performed with the Vln-
Plot and FeaturePlot functions.

Spatial cell type annotation: Robust cell type decom-
position (RCTD) [67] (version 1.1.0) is a robust cell type 
deconvolution method that leverages cell type profiles 
obtained via single-cell RNA-seq to decompose mix-
tures of cell types while correcting for differences across 
sequencing techniques. For RCTD, the creat.RCTD func-
tion was used with default parameters, ensuring at least 
1 cell per cell type and at least 1 UMI per spot. The run.
RCTD function was used with doublet_mode set to 
FALSE, allowing the cell type composition of each spot 
to be inferred.

Differential gene expression and enrichment analyses: 
The FindMarkers function of Seurat was used for selec-
tion of differentially expressed genes, and genes with a 
P value less than 0.05 and a fold change greater than 1.5 
were identified by filtering. GO term and KEGG path-
way enrichment analyses of the significantly differentially 
expressed genes were conducted using the hypergeomet-
ric distribution test.

PDX mouse models and drug treatment
Tumour tissues isolated from patient YZL_1 were dis-
sected into 1-mm3 pieces. After NOG mice were anaes-
thetized, the BC tissues were subcutaneously implanted 
into the right superior flank. When the tumour diameter 
reached 1  cm (approximately 60 days after transplanta-
tion), we removed the subcutaneous PDX tumours, dis-
sected them into 3 pieces of approximately 2 × 2 × 2 mm 
each, and then retransplanted the pieces into the flanks of 
the nude mice to allow tumour growth for approximately 
one month. The mice were euthanized after no more than 
5 weeks or when the tumour diameter reached 10  mm. 
Beginning on the seventh day after transplantation, each 
mouse in the drug treatment groups received 20  mg/kg 
sonidegib or 10 mg/kg rapamycin every two days via tail 
vein injection. Beginning on the seventh day after trans-
plantation, each mouse in the control group received pla-
cebo every two days via tail vein injection.

Subtype identification based on TCGA classification
Following the classification process, we employed the 
random forest algorithm using the R software package 
library(randomForest) to develop a predictive model 
based on the gene expression profiles and classification 
data. This model had predictive capability, allowing the 
input of expression profile data from new datasets to 
determine the corresponding classification outcomes.

For the single-cell sequencing data, we first screened 
the expression of the 700 genes associated with gut 
microbiota-related metabolic pathways and patient 
survival within each cell and determined their average 
expression levels.

Statistical analysis
Student’s t test and the Mann‒Whitney test were applied 
to compare continuous variables and categorical vari-
ables, respectively, where appropriate. The associations 
between clinical information and metabolic pathway-
based subtypes were examined using the chi-square test 
and Fisher’s exact test. Survival curves were constructed 
using the Kaplan‒Meier method and compared with the 
log-rank test. Univariate and multivariate Cox propor-
tional hazards regression models with or without adjust-
ment for available prognostic clinical covariates were 
used to calculate hazard ratios (HRs) and 95% confidence 



Page 16 of 17Qin et al. Molecular Cancer           (2024) 23:99 

intervals. Correlations were analysed with Spearman 
correlation analysis. All the statistical analyses were per-
formed with R software or GraphPad Prism software.
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