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Abstract 

Background Intratumoral heterogeneity (ITH) and tumor microenvironment (TME) of pancreatic ductal adenocarci‑
noma (PDAC) play important roles in tumor evolution and patient outcomes. However, the precise characterization 
of diverse cell populations and their crosstalk associated with PDAC progression and metastasis is still challenging.

Methods We performed single‑cell RNA sequencing (scRNA‑seq) of treatment‑naïve primary PDAC samples 
with and without paired liver metastasis samples to understand the interplay between ITH and TME in the PDAC 
evolution and its clinical associations.

Results scRNA‑seq analysis revealed that even a small proportion (22%) of basal‑like malignant ductal cells could 
lead to poor chemotherapy response and patient survival and that epithelial‑mesenchymal transition programs 
were largely subtype‑specific. The clonal homogeneity significantly increased with more prevalent and pronounced 
copy number gains of oncogenes, such as KRAS and ETV1, and losses of tumor suppressor genes, such as SMAD2 
and MAP2K4, along PDAC progression and metastasis. Moreover, diverse immune cell populations, including naïve 
SELLhi regulatory T cells (Tregs) and activated TIGIThi Tregs, contributed to shaping immunosuppressive TMEs of PDAC 
through cellular interactions with malignant ductal cells in PDAC evolution. Importantly, the proportion of basal‑like 
ductal cells negatively correlated with that of immunoreactive cell populations, such as cytotoxic T cells, but positively 
correlated with that of immunosuppressive cell populations, such as Tregs.
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Conclusion We uncover that the proportion of basal‑like subtype is a key determinant for chemotherapy response 
and patient outcome, and that PDAC clonally evolves with subtype‑specific dosage changes of cancer‑associated 
genes by forming immunosuppressive microenvironments in its progression and metastasis.

Keywords Pancreatic ductal adenocarcinoma, Liver metastasis, Single‑cell RNA‑sequencing, Intratumoral 
heterogeneity, Tumor microenvironment

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most lethal diseases [1]. Most PDAC patients present 
with nonspecific symptoms at an advanced stage that is 
not amenable to curative surgery. Moreover, PDAC has 
clinical characteristics of early metastasis and resist-
ance to therapy [2]. However, molecular mechanisms 
underlying PDAC progression, metastasis, and therapy 
response are still poorly understood.

With recent advances in single-cell RNA sequencing 
(scRNA-seq) technologies, it is now possible to charac-
terize comprehensively the cellular composition and the 
transcriptomic landscape of the tumor microenvironment 
(TME) at the single-cell level. Therefore, scRNA-seq can 
be useful in studying the complex nature of intratumoral 
heterogeneity (ITH) and TME in PDAC for establishing 
novel therapeutic strategies. A few scRNA-seq studies 
of PDAC have been published, but the majority of these 
works are limited to either primary tumors [3–5] or liver 
metastases [6]. Furthermore, surgical specimens are usu-
ally acquired after portal vein dissection and vascular 
clamping, which would cause ischemic damage and autol-
ysis of pancreatic cells. However, endoscopic ultrasound-
guided fine needle biopsy (EUS-FNB) enables acquiring 
relatively undamaged and fresh tissue under the original 
physiologic status of the patient [7]. Recently, Zhang et al. 
reported that  CEACAM5+/CEACAM6+ ductal cells are 
associated with poor prognosis by analyzing three cases 
of primary PDAC and matched liver metastases. However, 
these datasets offer restricted insights into PDAC evolu-
tion due to their focus on only the advanced tumor stage 
and a relatively small sample size [8].

Here, we performed scRNA-seq analysis of treat-
ment-naïve 21 primary PDAC samples obtained by 
EUS-FNB and 7 matched liver metastasis samples 
acquired by percutaneous biopsy at the time of diag-
nosis to better understand the interplay between ITH 
and TME in tumor evolution and its clinical relevance 
in the treatment of PDAC.

Results
Patient characteristics
This study enrolled 21 treatment-naïve patients (Table 
S1). The median age was 61 (50–73  years), and 13 

patients (62%) were females. Tumor clinical stages (the 
8th AJCC) were 6 (29%) at stage III and 15 (71%) at 
stage IV. Among the 15 patients with stage IV disease, 
13 had metastasis to the liver, and two had metastasis 
to the bone or the lymph node but not the liver. The 
median overall survival (OS) was 9.7  months, ranging 
from 0.6 to 47.8 months.

Single‑cell transcriptional landscape of primary PDACs 
and matched liver metastases
From these 21 patients, we obtained the following 
samples; 1) primary PDAC without metastasis (Pm0, 
N = 6), 2) primary PDAC with metastasis (Pm1, N = 15), 
3) liver metastasis matched with primary PDAC (Lm, 
N = 7), and 4) adjacent normal pancreas (Pn, N = 5) 
(Fig.  1A, Table S2). We divided cells into 26 clusters 
and identified seven major cell types (Fig. S1A and B) 
(Supplementary Methods). We did not observe a batch 
effect, although the ductal cell clusters showed evident 
patient-, rather than origin-, specific gene expression 
profiles, which is typical in tumor cells with patient-
specific copy number variations (CNVs) [5, 6] (Fig. 
S1C-E). When compared to previous scRNA-seq stud-
ies of PDAC, T cells were relatively enriched while 
fibroblasts were somewhat depleted in our data. This 
may be due to the way of acquiring tissues with EUS-
FNB in our study, while most of the previous works 
used surgical resection.

Stratification of PDAC subtypes
Sub-clustering analysis classified ductal cells into 21 
subclusters, each of which was largely patient-specific 
(Fig. S2A). To identify distinct transcriptional pro-
grams, we applied consensus non-negative matrix fac-
torization (cNMF) on the gene expression profiles of 
ductal cells. Among the four NMF subtypes determined 
by stability and error (Fig. S2B), three NMF subtypes 
were well matched with the previously reported PDAC 
(Supplementary Results). Therefore, we hereafter desig-
nated NMF-1 as ‘cycling’, NMF-2 as ‘classical’, NMF-3 
as ‘normal-like’, and NMF-4 as ‘basal-like’.

Since the ‘epithelial–mesenchymal transition (EMT)’ 
pathway was involved in both classical and basal-like 
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subtypes (Fig.  1B), we further investigated different 
EMT mechanisms between the two subtypes through 
pseudobulk-based differential gene expression analy-
sis and gene set enrichment analysis  (GSEA) among 
origins. Interestingly, the ’EMT’ pathway was signifi-
cantly activated in Pm1 of both classical and basal-
like subtypes (Fig. 1C); however, actual genes involved 
in the ’EMT’ pathway were different between the two 
subtypes, implying subtype-specific EMT programs 
might exist in PDAC (Fig. S3C). To interrogate factors 
potentially contributing to the subtype-specific EMT 
programs, we analyzed underlying transcription fac-
tors (TFs) associated with the distinct subtype-specific 
EMT genes in Pm1. As shown in the Fig. S3D and E, 
38 and 62 TFs were identified as Pm1-specifically acti-
vated regulons in the classical and basal-like PDAC 
subtypes, respectively. Among the Pm1-specifically 
activated TFs in the classical subtype, we found that 
TFDP1 and CUX1 were known to respectively regulate 
IGFBP2 and MFAP5 that were detected as the classical-
specific EMT-associated differentially expressed genes 
(DEGs) in Pm1 (Fig. S3D). We also discovered that 16 
out 62 Pm1-specifically activated TFs in the basal-like 
subtype are involved in regulating all the basal-like-
specific EMT-associated DEGs in Pm1 except COL1A2 
(Fig. S3E). Interestingly, the two Pm1-specifically acti-
vated TFs in the classical subtype and the 16 Pm1-spe-
cifically activated TFs in the basal-like subtype did not 
overlap with each other.

PDAC subtypes and clinical outcomes
We identified that malignant ductal cells with differ-
ent subtypes coexist in individual samples and that 

the proportion of each subtype varied across the sam-
ples even within the same patient (Fig. S3F). Inter-
estingly, among seven patients having both matched 
primary PDAC and liver metastasis samples, five patients 
(PB2191, PB2264, PB2349, PB2409, and PB2410) shared 
common predominant subtypes, but two patients 
(PB2155 and PB2311) exhibited different predominant 
subtypes (Fig. S3F).

As the basal-like subtype of PDAC is known to be 
associated with a poor prognosis [9], we interrogated 
which proportion of basal-like subtype is associated with 
patients’ survival. When we tested a range of basal-like 
cell proportions (10% ~ 35%) while maintaining the num-
ber of samples in each group greater than 10% of total 
samples based on the external PDAC scRNA-seq datasets 
(WashU [4] and MGH [10], N = 25), the lowest cutoff for 
basal-like cell proportion showing a statistical association 
with survival was 22% (P = 0.024, Fig. S4A). In addition, 
we deconvoluted bulk RNA-seq data from TCGA PDAC 
cohort [11] (N = 148) using our scRNA-seq data and 
estimated cellular fraction of the four PDAC subtypes 
in each TCGA PDAC sample. When we scanned the 
proportions of basal-like cells and their statistical asso-
ciation with survival based on the deconvoluted TCGA 
PDAC data, 22% of basal-like cell fraction was the lowest 
threshold showing a statistical association with survival 
(P = 0.033, Fig. 1D and Fig. S4A). This result was also con-
sistent in our cohort (SMC, N = 18) (P = 0.023, Fig.  1E). 
To estimate the prognostic relevance of NMF subtypes, 
we also performed multivariate Cox regression analy-
sis for OS with age, sex, grade, and proportion of NMF 
subtypes in our data combined with the two previously 
published scRNA-seq data [4, 10]. Only the proportion 

(See figure on next page.)
Fig. 1 ScRNA‑seq analysis of PDAC subtypes and their clinical relevance. A Schematic of the experimental design. ScRNA‑seq was performed 
on PDAC samples from 21 patients, including non‑metastatic PDACs (N = 6), metastatic PDACs (N = 15), and matched liver metastases (N = 7). 
B Heatmap showing the expression of signature genes for NMF subtypes. Each column in the heatmap corresponds to one cell and each row 
of the heatmap corresponds to a signature gene of four NMF subtypes. Origin, patient, NMF subtype, and previously reported PDAC classification 
schemes for each cell are shown at the top of the plot, and the results of GSEA for each signature gene set are shown on the right side of the plot. C 
Pathway enrichment analysis focusing on origin‑specific differences within classical and basal‑like subtypes. D and E Kaplan–Meier overall survival 
curves for PDAC patients based on the fraction of basal‑like subtype in the deconvoluted TCGA PDAC RNA‑seq dataset (D), and in their primary 
PDAC in our dataset (SMC cohort) (E). F Forest plot showing the estimated hazard ratios for the clinicopathologic parameters and the proportions 
of NMF subtypes by multivariate Cox regression analysis of combined scRNA‑seq data from our cohort and the two previously published PDAC 
cohorts. Data are presented as hazard ratio ± 95% confidence interval. G Waterfall plot showing the best percentage change in the sum of the target 
lesions according to the RECIST v1.1. Each bar indicates a study sample, and the sample is divided into two groups: those with basal‑like proportion 
above 22% (red) and those below (cyan). H and I The proportion of PDAC NMF subtypes and CT scan images before and after chemotherapy 
of PDAC patients PB2341 (H) and PB2311 (I). J Boxplot showing the distribution of mean CNV correlation coefficients among malignant ductal 
cells within origins (two‑sided Wilcoxon rank sum test: *P < 0.05, **P < 0.01, ***P < 0.001). K and L Hierarchical clustering of CNV profiles in individual 
patients PB2155 (K) and PB2191 (L). M and N Unsupervised transcriptional trajectories of ductal cells in individual patients PB2155 (M) and PB2191 
(N) colored by sample origin. Trajectory directions were indicated by arrows. O and P Dots on trajectory projections (left) were colored by copy 
number scores at the cellular level and overlaid with contour plots of cells with the strongest copy number variation for known cancer‑associated 
genes in individual patients PB2155 (O) and PB2191 (P). Violin plots (right) showed copy number scores of genes by origin (two‑sided Wilcoxon rank 
sum test: *P < 0.05, **P < 0.01, ***P < 0.001)
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of basal-like was significantly associated with shorter OS 
(Hazard ratio, 24.9; 95% CI, 2.02–310; P = 0.012; Fig. 1F).

Evaluation of treatment response according to PDAC 
subtypes
We then explored the association of PDAC subtypes 
with treatment responses (Fig. 1G-I, Fig. S4D-G). In line 
with the result above, the proportion of basal-like was a 
key determinant for chemotherapy response. The mean 
best percentage change in the sum of the target lesions 
according to the RECIST v1.1 increased by 39% in the 
group contains more than 22% of basal-like subtype, and 
decreased by 34% in the group with less than or equal 
to 22% of basal-like subtype (Fig. 1G). The change in the 
sum of the target lesions between the two groups was 
statistically significant (P = 0.0002, Fig. S4B). In addition, 
the proportions of basal-like showed positive correlations 
with changes in tumor dimension (r = 0.73, P = 4.9 ×  10–5) 
(Fig. S4C).

Figure  1H, I and Fig. S4D to G showed the  1st line 
chemotherapeutic response according to the propor-
tion of PDAC subtypes. For example, patient PB2341 
having primary PDAC with mixed subtypes of classical 
(56%) and basal-like (36%) did not respond to the first 
four cycles of gemcitabine plus nab-paclitaxel (GnP) fol-
lowed by aggressive progression, and died with an OS 
of 5.3 months (Fig. 1H). In addition, PB2256 with a high 
proportion (79%) of basal-like in primary PDAC showed 
rapid progression of primary mass after four cycles of 
FOLFIRINOX and poor response to the subsequent 
GnP treatment as well, with progressive disease (PD) 
after three cycles (Fig. S4D). Interestingly, in the case of 
PB2311 with different subtype compositions between 
primary PDAC (49% of basal-like and 42% of classical) 
and its liver metastasis (81% of classical), the primary 
tumor mass increased whereas the liver metastasis mass 
decreased after FOLFIRINOX treatment (Fig.  1I). On 
the other hand, patient PB2366 with normal-like pre-
dominant known to be excellent prognosis (93%) pri-
mary PDAC had partial response (PR) after four cycles of 
FOLFIRINOX treatment as the first-line chemotherapy, 
and the tumor was down-staged to resectable status. The 
patient received pylorus-preserving pancreatoduodenec-
tomy with adjuvant FOLFIRINOX chemotherapy and has 
now been followed up for 44.9 months with no evidence 
of disease (Fig. S4E). Patient PB2032 with mixed sub-
types of normal-like (58%) and classical (41%) in primary 
PDAC showed the best response as PR with palliative 
GnP treatment and was still alive with 45.6 months of OS 
(Fig. S4F). Furthermore, patient PB2191 with more than 
90% of classical in both primary PDAC and liver metasta-
sis had favorable responses to chemotherapeutic drugs in 
both sites with 17.8 months of OS (Fig. S4G).

Dynamics of clonal evolution during PDAC progression
To understand clonal heterogeneity and evolution in the 
progression of primary PDAC to liver metastases, we 
performed CNV analysis of ductal cells from both pri-
mary PDAC and liver metastases. The CNV profiles were 
highly patient-specific but still largely concordant with 
those of TCGA PDAC cohort (Fig. S5A). We analyzed 
the average CNV correlation coefficients among malig-
nant ductal cells in each sample to measure the level of 
clonal heterogeneity in the tumor (Fig. 1J). Interestingly, 
the average CNV correlation coefficients were lowest in 
Pm0-derived malignant ductal cells and highest in Lm-
derived ones, and the differences were significant. The 
level of clonal heterogeneity of Pm1-derived malignant 
ductal cells was in between Pm0 and Lm (Fig.  1J, Fig. 
S5B). This result suggests that the clonal heterogeneity 
decreases as the tumor progresses and metastasizes to 
the liver.

To understand the clonal evolution of primary PDAC 
to liver metastasis in individual patients, we performed 
a hierarchical clustering analysis of ductal cells based 
on their CNV profiles for each patient (Fig.  1K and 
L, Fig. S5C and D). Overall, CNV profiles of primary 
PDACs and their matched liver metastases were gen-
erally concordant to each other. However, several pri-
mary PDAC- or liver metastasis-dominant CNV events 
were identified. We further investigated copy number 
changes along the tumor evolution by performing tra-
jectory analysis of ductal cells in each patient. The lin-
eage differentiations from Pn-derived ductal cells into 
Pm1- and eventually Lm-derived malignant ductal cells 
were well reconstructed (Fig.  1M and N, Fig. S5E and 
F). Notably, copy number gains of oncogenes or losses 
of tumor suppressor genes gradually become prevalent 
and pronounced along with PDAC evolution. In the 
cases where basal-like was predominant in liver metas-
tases, the CNV score of KRAS showed a significantly 
positive correlation with pseudotime (Fig. 1O, PB2155: 
r = 0.26, P = 1.9 ×  10–6; Fig. S5G, PB2349: r = 0.20, 
P = 3.0 ×  10–15). Furthermore, malignant ductal cells 
with the top 10% CNV score of KRAS were mostly Lm-
derived cells, and the CNV score of KRAS was also sig-
nificantly higher in Lm than in Pm1 (Fig. 1O, Fig. S5G). 
In contrast, CNV score of tumor suppressor genes such 
as SMAD2 and MAP2K4 showed a negative correla-
tion with pseudotime, and the copy number losses of 
SMAD2 and MAP2K4 were more prominent in the Lm 
of PB2155 and PB2349, respectively (Fig. 1O, Fig. S5G). 
In the classical dominant cases, the CNV score of ETV1 
had a significant positive correlation with pseudo-
time (Fig. 1P, PB2191: r = 0.20, P = 3.9 ×  10–7; Fig. S5H, 
PB2264: r = 0.11, P = 4.1 ×  10–8), but the CNV score of 
KRAS did not significantly correlate with pseudotime. 
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The malignant ductal cells with the top 10% CNV score 
of ETV1 were mostly observed in Lm, and the CNV 
score of ETV1 was significantly higher in Lm than in 
Pm1 (Fig.  1P, Fig. S5H). The CNV scores of two other 
oncogenes NFE2L2 and PIK3CB also showed positive 
correlations with pseudotime, and their CNV scores 
were significantly higher in Lm than in Pm1 of PB2191 
and PB2264, respectively (Fig. 1P, Fig. S5H).

To further interrogate origin- and subtype-specific 
CNVs, single-cell CNV profiles were merged into the 
sample level and the frequencies of CNV events were 
measured across samples. Copy number gains of chro-
mosome 2q31, 2q32, and 8q24 and losses of 6q21, 6q22, 
18q12, 18q21, and 18q22 occurred more frequently in 
Pm1 compared to Pm0. Due to these differential copy 
number alterations between Pm1 and Pm0, metastasis-
associated genes such as NFE2L2 and EXT1 were ampli-
fied while metastasis suppressor genes such as FOXO3, 
GOPC, PTPRK, SETBP1, and SMAD2 were deleted in 
Pm1 (Fig. S6A). Interestingly, Lm showed significantly 
more frequent copy number gain of the chromosomal 
region containing PPFIBP1 (12p11) that was known 
to be associated with tumor development, progres-
sion, and metastasis of PDAC than Pm1 (Fig. S6B). In 
addition, copy number gain of chromosome 12q11-12 
containing KRAS occurred more frequently in the basal-
like than in the classical (Fig. S6C), which was consist-
ent with previous reports that KRAS amplification was 
more prominent in the basal-like subtype [6, 12]. How-
ever, copy number gain of chromosome 7p21 spanning 
ETV1 that was reported to promote pancreatic cancer 
metastasis was more frequently observed in the classical 
than in the basal-like.

Niche and subtype‑specific characteristics of T and NK cells
We sub-clustered T/NK cells to analyze their functional 
characteristics in primary PDACs and liver metastases 
and identified a total of 24 subclusters (Fig. S7A), which 
were subsequently classified by the expression profiles 
of canonical marker genes (Fig. S7B). Differential gene 
expression analysis was also conducted to further charac-
terize each subcluster (Fig. S7C and D).

When comparing Pm1 with Pm0, a naïve/resting regu-
latory T cell (Treg) subcluster, Treg-SELL, and an unstim-
ulated natural killer (NK) cell subcluster, NK-XCL2, were 
notably enriched in Pm1. We also found that the propor-
tions of helper T cell (Th)-GRP183 and NK-KLRC2 with 
antitumor properties were significantly reduced in Lm 
compared to in Pm0 and Pm1 and to in Pm1, respec-
tively. In contrast, exhausted T cell (Tex)-LAG3 and Treg-
TIGIT with immunosuppressive characteristics were 
remarkably enriched in Lm compared to in Pm1 and to in 
Pm0 and Pm1, respectively. A dysfunctional NK cell sub-
cluster, NK-KLRC1, was also marginally enriched in Lm 
(Fig.  2A, Fig. S8A). These patterns were also identified 
in individual patients with primary PDAC and matched 
liver metastases (Fig. 2B, Fig. S8B and C). The trajectory 
analysis of  CD4+ T cells,  CD8+ T cells, and NK cells con-
firmed that their regulatory natures and dysfunctional 
characteristics gradually became prominent along PDAC 
progression and metastasis (Figs. S9 and S10).

According to the above results, we hypothesized that 
the incremental activation of Tregs in PDAC evolution 
was potentially attributed to their interaction with malig-
nant ductal cells, and investigated cellular interactions 
between ductal cells and Tregs. We discovered that Treg-
activating intercellular interactions gradually established 
as PDAC progressed and metastasized into the liver. For 

Fig. 2 The interplay between ITH and TME in the primary PDACs and matched liver metastases. A Box plots indicating the percentage differences 
in T cell subclusters among origins (two‑sided Wilcoxon rank sum test: *P < 0.05, **P < 0.01, ***P < 0.001). B Area plots displaying the changes 
in T cell subcluster composition by origin for each patient. C Dot plots illustrating ligand‑receptor interactions between malignant ductal cells 
and Tregs. The size of a circle indicates an interaction score, and the color of a circle represents the origin. D Multiplex immunohistochemistry 
(IHC) showing the interaction between ICAM1 (magenta)‑ or IGF2R (orange)‑expressing  FOXP3+ (green) Tregs (arrows) and AREG (cyan)‑ or IGF2 
(yellow)‑expressing cytokeratin (CK)+ (red) tumor cells. Nuclei are counterstained with DAPI (blue). E and F Scatter plot displaying the correlation 
between the fraction of basal‑like in ductal cells and the fraction of cytotoxic T cells in T cells (E), and between the expression level of S100A9 
in ductal cells and the fraction of cytotoxic T cells in T cells (F). G and H Pearson correlation between the proportion of basal‑like among ductal 
cells and the proportion of Tregs among the T cell population (G), and between the expression level of S100A9 in ductal cells and the fraction 
of Tregs among T cells (H). I and J Mapping of major cell types (I) and NMF subtypes (J) to spatial transcription spots from treatment naïve PDAC 
patient published by Zhou et al. using a robust cell type decomposition (RCTD) method. K The spots on the spatial transcriptome slide were 
colored by NMF subtypes and overlaid with contour plots of Treg enriched spots. L and M Multiplex IHC showing the expression of S100A9 (yellow) 
and the distribution of T cells in basal‑like dominant (L) and classical dominant (M) PDAC tissues. CD8 (green) for cytotoxic T cells, FOXP3 (red) 
for Tregs, CK (white) for ductal cancer cells, S100A2 (magenta) for basal‑like ductal cells and DAPI (blue) for nuclei were co‑stained. Scale bar, 50 μm. 
N Box plots indicating the percentage differences in myeloid subclusters among origins (two‑sided Wilcoxon rank sum test: *P < 0.05, **P < 0.01, 
***P < 0.001). Samples from the same patients were connected by solid lines. O Area plots showing the change in the composition of the myeloid 
subclusters by origin for each patient. P and Q Scatter plot displaying the Pearson correlation between the fraction of basal‑like in ductal cells 
and the fraction of Mono‑FCN1 (P) and Mp‑TGFBI (Q)

(See figure on next page.)
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example, Treg-stabilizing LGALS9-CD44 interactions 
between ductal cells and Tregs were identified in all three 
origins (Fig.  2C). However, FOXP3-inducing TNFSF9-
TNFRSF9 interactions were observed in Pm1 and Lm, 
but not in Pm0. Interestingly, an IGF2-IGF2R interaction 
known to promote Treg proliferation was only observed 
in Lm, and another Treg-enhancing AREG-ICAM1 inter-
action between ductal cells and Treg-TIGIT was also 
identified uniquely from Lm (Fig.  2C). These two liver 
metastases-specific immunosuppressive interactions 
between ductal cells and Tregs were further validated 
using multiplex immunohistochemistry (mIHC) (Fig. 2D, 
Fig. S11-13).

To interrogate the association between PDAC subtypes 
and the immune environment, we analyzed correlations 
between the proportions of ductal and T cell subtypes. 
The proportion of basal-like was negatively correlated 
with the proportion of cytotoxic T cells (Fig. 2E), as pre-
viously reported by Raghavan et al. [6] and Hwang et al. 
[4]. Especially, S100A9, a basal-like signature gene known 
to suppress T cell proliferation by activating myeloid-
derived suppressor cells, showed significant negative 
correlation (Pearson’s correlation r = -0.63; P = 0.001) 
between its expression level and the proportion of cyto-
toxic T cells (Fig. 2F). In contrast, the proportion of Tregs 
was positively correlated with the proportion of basal-
like (Pearson’s correlation r = 0.42; P = 0.048, Fig. 2G), and 
the expression level of S100A9 showed a positive rela-
tionship with the fraction of Tregs in T cells (Pearson’s 
correlation r = 0.43; P = 0.039, Fig. 2H). To validate these 
results, we performed a deconvolution analysis of PDAC 
spatial transcriptomic data published by Zhou et al. [10] 
using our scRNA-data as a reference (Fig.  2I-K). Tregs 
were largely enriched in the regions where basal-like 
was predominant, and a significant positive correlation 
between the proportions of basal-like and Tregs in spatial 
transcriptomic spots was identified (Pearson’s correlation 
r = 0.135; P < 0.001). The distribution of  CD8+ T cells and 
Tregs around basal-like ductal cells expressing S100A2 
and S100A9 were further confirmed by mIHC (Fig.  2L 
and M, Fig. S14).

TGFBIhi macrophage shapes an immunosuppressive 
environment in liver metastasis
Fourteen distinct clusters of myeloid cells were identi-
fied (Fig. S15A), and each cell type were specified with 
previously described markers for myeloid (Fig. S15B). 
Pro-inflammatory monocyte (mono)-IL1B and anti-
inflammatory mono-CDKN1C subclusters were signifi-
cantly increased in Pm1 while Mono-CCR2, macrophage 
(Mp)-C1QB, Mp-LY6E, and Mp-TGFBI subclusters 
involved in tumorigenesis and immunosuppression were 

enriched in Lm compared to Pm1 (Fig.  2N and O, Fig. 
S15C and D).

Furthermore, the proportion of mono-FCN1, which is 
a classical monocyte involved in the initial inflammatory 
response, was inversely correlated with the proportion of 
basal-like malignant ductal cells (Fig. 2P). In contrast, the 
fraction of Mp-TGFBI with immunosuppressive proper-
ties was positively correlated with the fraction of basal-
like cells (Fig. 2Q). Among 59 basal-like signature genes 
in ductal cells, 32 genes were negatively associated with 
Mono-FCN1 and 32 genes such as immunosuppression-
related HCAR2 and CTHRC1 were positively correlated 
with Mp-TGFBI (Fig. S15E).

Discussion
We have explored the landscape of diverse cellular 
populations in primary PDACs and their matched liver 
metastases to comprehensively understand the molecu-
lar mechanisms of tumor progression, metastasis, and 
treatment response in PDAC. Our work demonstrates 
the complex nature of ITH and TME of PDAC at the 
single-cell level and its association with chemotherapy 
responses and clinical outcomes. We also discovered that 
TME becomes more immunosuppressive and that the 
clonal heterogeneity of tumor decreases as PDAC pro-
gresses and metastasizes into the liver.

Several studies have investigated the characteristics of 
PDAC subtypes and their association with patient prog-
nosis using bulk RNA-sequencing data [9, 12]. However, 
this approach has a fundamental limitation in that only 
dominant subtypes can be identified, making it difficult 
to interrogate the association between heterogeneous 
cellular compositions of PDAC subtypes and clinical 
prognosis. In this study, we revealed that even a small 
proportion (~ 22%) of basal-like  malignant ductal cells 
has a detrimental effect on patients’ survival and the 
overall response rate to chemotherapy, highlighting the 
advantages of scRNA-seq in estimating the exact cellular 
proportion of specific subtypes, which is more informa-
tive than the prevailing subtypes for predicting a patient’s 
prognosis.

EMT has been reported to be predominantly acti-
vated in the basal-like subtype in PDAC  [12]. However, 
when comparing primary PDACs and liver metastases 
separately by PDAC subtypes in our scRNA-seq data, 
the EMT pathway was notably enriched in both classical 
and basal-like ductal cells of metastatic primary PDACs, 
although the EMT-related genes were largely subtype-
specific. Interestingly, we discovered that TFs known to 
regulate the subtype-specific EMT genes were also acti-
vated in a subtype-specific fashion, which implies that 
gene regulatory networks controlling EMT programs 
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may be differently wired in the two PDAC subtypes, 
resulting in the activation of the  subtype-specific  EMT 
genes and indicating the need to develop personalized 
treatment strategies considering the ITH of PDAC.

Furthermore, we revealed that clonal homogeneity of 
tumor cells increases with PDAC progression and metas-
tasis from the CNV analysis. Although primary PDACs 
and liver metastases shared most of CNVs, CNVs unique 
to either primary PDACs or liver metastases were also 
observed at a single-cell level. This result confirms that 
metastatic tumor cells evolve from one of clonal groups 
within the primary PDAC and that continuous clonal 
expansion occurs in both the primary and metastatic 
tissues even after metastasis [13]. Our analysis further 
identified CNV events conferring metastatic advan-
tages. Notably, the copy numbers of cancer-associated 
genes such as KRAS, ETV1, and SMAD2, displayed a 
subtype-specific increase in prevalence and magnitude 
along PDAC progression, highlighting the importance 
of matched primary and metastatic samples for uncover-
ing such patterns. In particular, our findings are in line 
with the assertion by Mueller et  al. that KRAS dosage 
is an important contributor to PDAC progression and 
metastasis [14]. As previously reported, KRAS amplifica-
tion was more prominent in the basal-like subtype than 
the classical subtype in our data [12]. However, in the 
classical subtype, we found that ETV1 dosage exhibits a 
trend similar to KRAS dosage in the basal-like subtype, 
with ETV1 gain being more widespread and pronounced 
along PDAC progression and metastasis. These findings 
provide new avenues for understanding the complex 
mechanisms of PDAC progression and metastasis in a 
subtype-specific manner.

Immunosuppressive Tregs are accumulated in PDAC 
and pancreatic intraepithelial neoplasia and related 
to metastasis and poor prognosis [3]. However, the 
impact of Tregs in PDAC progression and metastasis 
still remains elusive. We identified two Treg subclus-
ters, Treg-SELL and Treg-TIGIT, significantly enriched 
in primary PDACs and liver metastases, respectively. 
Treg-TIGIT is terminally differentiated or activated Treg 
while Treg-SELL is in a naïve or resting state [15]. Nota-
bly, Treg-activating cellular interactions were established 
stepwise during PDAC progression and metastasis. These 
findings indicate that Tregs play an essential role in shap-
ing the immunosuppressive TME of both primary PDAC 
and liver metastasis and that their functional characteris-
tics become more regulatory as PDAC progresses.

CD8+ and  CD4+ T cells are depleted while  C1QC+ 
macrophages are predominant in the TME of the basal-
like subtype-dominant cases [6]. We confirmed that the 
proportion of  CD8+ T cells is negatively correlated with 
that of basal-like ductal cells. However, the proportions 

of  CD4+ T cells and  C1QC+ macrophages did not cor-
relate significantly with the proportions of basal-like sub-
type in our scRNA-seq data. Instead, the proportions of 
 C1QC+ macrophages were significantly more enriched 
in liver metastases than in primary PDACs. Moreover, 
the proportions of classical monocytes (Mono-FCN1) 
were negatively correlated with the proportions of basal-
like ductal subtype. In contrast, the proportions of Tregs 
and immunosuppressive macrophages (Mp-TGFBI) were 
positively correlated with the basal-like ductal subtype. 
Therefore, these suggest that the proportions of basal-like 
subtype tend to be associated with more immunosup-
pressive environments compared to the other subtypes.

Conclusions
Here, we provide a comprehensive catalog of ITH and 
TME from non-metastatic PDAC and metastatic PDAC 
with matched liver metastases to better understand the 
roles of ITH and TME in PDAC evolution at the single-
cell resolution. Our study may provide an exciting entry 
point for developing novel therapeutic strategies taking 
into account the ITH and TME of PDAC.
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