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with NSCLC and 5.5% for those with distant metasta-
ses [3]. Likewise, the median overall survival of German 
advanced NSCLC patients was equally as low as that of 
other countries as shown in a German retrospective 
data analysis [4]. Unlike NSCLC, the SCLC accounts for 
approximately 13%-15% of all lung cancers with a 5-year 
survival rate of less than 7%, a rapid doubling time and 
a high propensity to metastasize. SCLC is considered a 
“recalcitrant” cancer as no significant improvements in 
survival and therapeutic approaches have been achieved 
for more than 30 years [5, 6].

Since cancer cells have several mechanisms to evade 
immune surveillance, including the PD-1/PD-L1 axis, 
this axis has also been focused on for LC. Thus, the 
programmed cell death protein 1 (PD-1 [also known as 
CD279]) and its ligand, programmed death ligand 1 (PD-
L1 [also known as CD274]), have been utilized in several 

Introduction
Lung cancer remains the second most commonly diag-
nosed cancer worldwide [1], being categorized into two 
main types: non-small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC). Approximately 85% of 
patients exhibit a group of histological subtypes referred 
as NSCLC, of which lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC) represent the 
most common subtypes [2]. In the United States, 5-year 
survival between 2008 and 2014 was 24% for all patients 
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Abstract
Undeniably, cancer immunotherapies have expanded the spectrum of cancer treatment, however, some patients 
do not respond to immunotherapies. This scenario is no different for lung cancer, whose two main types, non-
small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), still pose a serious clinical challenge. Adoptive 
T-cell therapies (ATC), which primarily include cytokine-induced killer (CIK) cell therapy, chimeric antigen receptor 
T-cell (CAR T-cell) therapy and γδ-T-cell therapy, strengthen the patient’s immune system in combating cancer. 
Combining ATC with immune checkpoint inhibitors (ICI) further enhances the effectiveness of this approach to 
eradicate cancer. With a particular emphasis on CIK cell therapy, which recently completed 30 years, we highlight 
the role of the PD-1/PD-L1 axis in NSCLC and SCLC. Besides, we provide insights into the potential synergies of 
PD-1/PD-L1 inhibitors with adoptive T-cell immunotherapy in reshaping the treatment paradigm for lung cancer.
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standard first-line LC treatments. PD-L1, also known as 
Cluster of Differentiation (CD274) or B7 homolog 1 (B7-
H1), belongs to the growing B7 family of immune mol-
ecules and is involved in the regulation of cellular and 
humoral immune responses. B7-H1 belongs to the cell 
surface immunoglobulin superfamily with two Ig-like 
domains in the extracellular region and a short cytoplas-
mic domain within the extracellular region and a short 
cytoplasmic domain. Subsequent to nivolumab [7, 8], 
there have been additional PD-1 (pembrolizumab and 
cemiplimab) and PD-L1 (atezolizumab and durvalumab) 
inhibitors approved by the FDA. Unlike NSCLC cells, the 
efficacy of a combination of nivolumab and ipilimumab 
was enhanced in patients with high tumor mutation 
burden (TMB) in the nonrandomized or randomized 
cohorts of CheckMate 032 [9], possibly due to the nearly 
universal association of SCLC with smoking [10, 11]. 
However, in addition to improving survival, PD-1/PD-L1 
inhibitors were associated with a wide range of unfa-
vourable effects, for instance, immune-related adverse 
events (irAEs), including rash, colitis, hepatitis, endocri-
nopathies, and pneumonitis [12]. Thus, it is imperative to 
explore new therapeutic strategies to alleviate irAEs and 
improve the efficacy of immune effector cells.

Undeniably, the availability of the PD-1/PD-L1 axis 
also opens up the avenue for its combination with vari-
ous cancer immunotherapies. One among them is cyto-
kine-induced killer (CIK) cell therapy, pioneered by 
Ingo Schmidt-Wolf, et al. in 1991 [13]. CIK cells were 
described to have dual cytotoxic functions of innate 
immunity via NK-specific activating receptors and adap-
tive immunity via polyclonal TCR repertoire [14], and 
more than 80 clinical trials involving CIK cells ranging 
from solid tumors to hematologic malignancies (clini-
caltrial.gov). Concerning CIK treatment for lung can-
cer, 12 clinical trials have been conducted. Of these, 10 
studies reported that CIK treatment improved median 
progression-free survival, and 7 studies improved overall 
survival [15]. Like CIK cells, another alternatively novel 
immunotherapy chimeric antigen receptor T-cell (CAR-
T) also showed great promise for NSCLC. However, 
unlike hematologic malignancies, the clinical applica-
tion of CAR-T cells has remained limited success due to 
on-target/off-tumor as well as neurological toxicity [16]. 
Meanwhile, γδ T cell immune therapy also presented 
promising outcomes in a recent clinical trial on lung can-
cer patients [17]. Nevertheless, it is reasonable to opti-
mize CIK therapy, for instance, a combination of PD-1/
PD-L1 inhibitor based on T cell immune therapy. Partic-
ularly, the response of cancer cells to immunotherapy will 
be determined by both intrinsic properties of the cancer 
cells and specific interactions with the microenviron-
ment [18]. In this review, we will discuss the PD-1/PD-L1 
axis in the lung cancer microenvironment, current T cell 

adoptive immunotherapy combined with PD-1/PD-L1 
blockade combination, as well as future directions.

Landscape of PD-1/PD-L1 axis in NSCLC and SCLC
The role of PD-1/PD-L1 in the tumor immune 
microenvironment of NSCLC
Cancer stem cell (CSC)
Human lungs are composed of two distinct areas: the 
conducting airway, including the trachea, bronchi, and 
bronchioles, and the gas exchange regions, alveolar 
spaces. The division of these stem cells is thought to be 
sufficient to renew the lung’s structure of the lung dur-
ing normal adult life. In the trachea and main bronchi, 
the tracheal epithelium consists mainly of columnar and 
mucus secreting goblet cells. In addition, airway basal 
cells are considered as a stem cell population, which can 
maintain the balance between their proliferation and 
differentiation. The imbalance can contribute to squa-
mous cell metaplasia or dysplasia, which are precursors 
of squamous cell lung carcinoma [19, 20]. Meanwhile, 
in bronchioles and alveoli, non-ciliated club cells (Clara 
cells) are located in the bronchiolar and alveolar epi-
thelium and could differentiate into ciliated cells after 
exposure to oxidant induced damage [21, 22]. Club cells 
are shown to survive KRAS mutations and to form lung 
tumors after tobacco carcinogen exposure [23]. The high 
frequency of club cell-like cells in papillary adenocarci-
noma could be a useful histological marker for ALK+ 
lung cancers [24]. In addition, Club and Alveolar type 2 
(AT2) cells give rise to EML4-ALK lung adenocarcinoma 
in mice model [25]. Pulmonary neuroendocrine (PNE) 
cells are thought to serve as a precursor for the progress 
of small cell lung carcinoma. Clara cells are not necessary 
for PNE cell hyperplasia since proliferation and hyper-
plasia of PNE cells occurred in the conditional Clara cell 
ablation [25]. It is also believed that adenocarcinomas 
can originate from broncho alveolar stem cells or pneu-
mocytes of type I and type II [26]. (Fig. 1).

CSCs are thought to be responsible for cancer initia-
tion, progression, metastasis, recurrence, and drug resis-
tance. The presence of CSCs with PD-L1 expression in 
the metastatic lymph nodes (LNs) in lung cancer patients 
might correlate with immunotherapy [27]. Additional 
data showed that PD-L1+ lung cancer stem cells modified 
the metastatic lymph-node immune microenvironment 
in NSCLC patients, positively correlated with the per-
centage of Tregs, PD-1+ CD4+ T cells and Tim3+ CD4+ 
T cells, while negatively correlated with that of CD4+ T 
cells and CD28+ CD4+ T cells [28]. Indeed, this suppres-
sive immunophenotype correlated with tumor PD-L1 can 
be evaluated by endobronchial ultrasound-guided trans-
bronchial needle aspiration before immune therapy [29] 
(Fig. 2A).
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Tumor-associated macrophages (TAMs)
Tumor-associated macrophages (TAMs) play an impor-
tant role on the tumorigenesis of lung cancer. TAMs con-
duct pro-angiogenic effects and polarization of TAMs 
can affect the proliferation, migration, invasion. TGF-β 
and IL-10 secreted from TAMs are important factors 
that form the microenvironment of immunosuppres-
sive tumors [30]. PD-L1 on cancer cells engages with 
PD-1 on immune cells, contributing to cancer immune 
escape [31]. Additionally, TAMs are known to be instru-
mental in the immunosuppressive effects of the PD-1/
PD-L1 pathway in the cancer microenvironment. PD-L1 
was significantly higher in macrophages in both the 
tumor and stromal compartment compared with other 
immune cells in NSCLC patients, correlating with better 
overall survival [32]. This self-protective immune escape 
could aid cells to evade being eliminated by neighboring 
cells, which might also benefit from PD-1/PD-L1 inhibi-
tors. PD-L1 overexpression on macrophages induced via 
STAT3 activation by cancer cell-derived GM-CSF was 
suggested to promote cancer progression in lung ade-
nocarcinoma in vitro and vivo animal models [33]. Fur-
thermore, data from lung adenocarcinoma patients has 

confirmed that high PD-L1 expression on macrophages 
was correlated with the presence of EGFR mutation, a 
lower cancer grade, and a shorter cancer-specific over-
all survival [33]. Watanabe H. et al. reported a case of a 
72-year-old man with PD-L1-nagative lung adenocarci-
noma harboring an EGFR mutation who responded to 
nivolumab for more than 2 years. The pathological evi-
dence demonstrated infiltration of PD-L1+ TAM and 
CD8+ lymphocytes in the tumor environment, revealing 
that PD-L1 high expression in TAM might be an indica-
tor of a positive response to anti-PD-1 antibodies [34]. 
Another study revealed that in patients with early-stage 
lung adenocarcinoma, expression of PD-L1 on the cell 
surface of tumor cells was observed, which was accom-
panied by an increase in TAMs, cytotoxic CD8+ T cells, 
and regulatory FoxP3+ T cells [35]. Additional in vitro 
investigations revealed that PD-L1 expression in lung 
cancer cell lines was significantly upregulated by co-cul-
ture with M2-differentiated macrophages, whereas it was 
downregulated by a transforming growth factor‐β inhibi-
tor. It is known that the interaction of CD47 on tumor 
cells and signal‐regulated protein (SIRPα) expressed on 
the surface of macrophages can protect cells from being 

Fig. 1  The putative origin of lung cancer stem cells in lung anatomical sites. In the trachea and main bronchi, airway basal cells are considered as a stem 
cell population, precursors of squamous cell lung carcinoma. Pulmonary neuroendocrine (PNE) cells are thought to serve as a precursor for the progress 
of small cell lung carcinoma. It is also believed that adenocarcinomas can originate from broncho alveolar stem cells or pneumocytes of type I and type II
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“eaten” by macrophages, as has been reported in NSCLC 
patients. And that dual targeting of CD47/PD-L1 innate 
and adaptive checkpoints may serve as new combined 
dual-targeting immunotherapy to enhances macrophage 
phagocytosis [36]. Taken together, tumor‐infiltrating 
TAM are extrinsic regulators of tumor PD‐L1 expres-
sion, indicating that combination therapy targeting both 
tumor PD‐L1 and stromal TAM molecular might be a 
possible strategy for effective treatment of lung cancer 
(Fig. 2A). Recently, Carfilzomib modulates tumor micro-
environment via driving M2 macrophages to express M1 
cytokines to potentiate PD-1 antibody immune therapy 
for lung cancer [37]. Liu M. et al. suggested that the 
transcription factor c-Maf critically regulates human 
M2 macrophages/monocytes infiltrating the tumor and 
circulating monocytes from patients with NSCLC, as 
inhibition of c-Maf partially overcomes resistance to anti-
PD-1 therapy in a subcutaneous LLC tumor model [38]. 
How c-Maf promotes immunoregulation of PD-1-ex-
pressed TAMs or CD8+ T cells in NSCLC patients is still 
unknown, while it has been already been demonstrated 

in multiple sclerosis and relapsed/refractory classic 
Hodgkin lymphoma [39, 40].

Cancer-associated fibroblasts (CAF)
Some clinical studies on immunotherapy via immune 
checkpoints emphasized the role of TGF-β. In meta-
static urothelial cancer (mUC), TGF-β attenuates tumor 
response to PD-L1 blockade (atezolizumab) by contrib-
uting to exclusion of T cells [41]. The lack of response 
was associated with a transforming growth factor β 
(TGF-β) signature in fibroblasts, particularly in patients 
with CD8+ T cells excluded from the tumor parenchyma 
and instead found in the fibroblast and collagen-rich 
peritumoral stroma. In an animal model, these immune 
exclusion properties were also recapitulated, and a TGF-
β-blocking antibody together with anti-PD-L1 reduced 
TGF-β signaling in stromal cells, facilitated T cell entry 
into the center of the tumor, and elicited potent anti-
tumor immunity [42]. TGF-β signaling primarily medi-
ates extracellular matrix (ECM) remodeling in the human 
NSCLC cell line A549. Ln-γ2, a member of the laminin 
family of ECM, was transcriptionally activated by TGF-β1 

Fig. 2  Schematic representation of the negative regulation of anti-tumor immune responses of PD-1/PD-L1 in NSCLC and SCLC. (A) PD-L1 expression in 
lung cancer cell lines was significantly upregulated by co-culture with M2-differentiated tumor-associated macrophages (TAMs). PD-L1 overexpression 
on macrophages might be induced via STAT3 activation by cancer cell-derived GM-CSF. The interaction of CD47 on tumor cells and signal‐regulated 
protein (SIRPα) expressed on the surface of macrophages can protect cells from being “eaten” by macrophages in NSCLC patients. TGF-β secreted from 
cancer-associated fibroblasts (CAF cells) also reduced the proliferation and activation of CD8+ T cells. In addition, PD-L1+ lung cancer stem (CSC) cells as 
well as FoxP3+ Treg T cells may modify the metastatic lymph-node immune microenvironment in NSCLC patients. Besides, soluble PD-L1 (sPD-L1) might 
interrupt PD-1 and Anti-PD-1 mAb whereas interaction of sPD-1/sPD-L1 or sPD-1/PD-L1 may reduce inhibition of sPD-L1 or enhance Anti-PD-1 mAb. The 
interaction of PD-1/PD-L1 between TCRVγ9Vδ2+γδ tumor-infiltrating lymphocytes (TILs) and αβ T cells could restrain the activation of T cells. Intratumoral 
Vδ1 T cells demonstrated natural killer and CD8+ T cell function. (B) The role of PD-L1 in SCLC. In the SCLC-Y subtype, YAP1 not only affects PD-L1, but 
also upregulates CXCL5 to recruit myeloid-derived suppressor cells (MDSCs). YAP1 and Notch1 are complementary and each suppresses neuroendocrine 
(NE) differentiation
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secreted from cancer-associated fibroblasts via JNK/AP1 
signaling, and the mediated cell exclusion attenuates the 
response to anti-PD-1 therapy [42] (Fig. 2A).

TCR-αβ T cells exhaustion
T cell repertoire analysis has revealed that in early-
stage NSCLC patients, there is greater homology of the 
T-cell repertoire between the tumor and the uninvolved 
tumor-adjacent lung, suggesting a less tumor-focused 
T-cell response as well as an association with inferior 
survival. Furthermore, the accumulation of regulatory 
CD4+ T cells in the tumor center may impair the abil-
ity of CD8+ T cells to proliferate in response to antigens 
[43], although the increased proliferation of PD-1+ CD8+ 
T cells in peripheral blood after PD-1-targeting therapy 
in lung cancer patients may overcome it [44]. Conversely, 
PD-L1+ CD8+ T cells exerted regulatory functions that 
inhibit CD8+ T cell proliferation and cytotoxic capabili-
ties via the PD-L1/PD-1 axis. Moreover, tumor-derived 
IL-27 promotes PD-L1+ CD8+ T cell development 
through STAT1/STAT3 signaling [45]. Therefore, it is 
plausible that adoptive T-cell therapy combined with 
PD-1/PD-L1 inhibitors might increase clinical benefits 
because of cytotoxic T-cell infusion (Fig. 2A).

Soluble PD-1/PD-L1
Soluble PD-1/PD-L1 forms are generated by proteolytic 
shedding or alternative splicing of pre-mRNA, presenting 
an active circulating protein, with immune-modulatory 
functions [46]. In the recent study, PD-L1–vInt4, a splic-
ing variant of PD-L1, was reported to be detectable in 
clinical samples of lung squamous cell carcinoma (LUSC) 
and its secretion resisted anti–PD-L1 antibody treat-
ment via alternative polyadenylation. It is noteworthy 
that several LUSC samples presented a lack of capability 
of antigen presentation due to the loss of HLA expres-
sion overexpression in vitro experiment of PD-L1–vInt4 
in vitro experiment [47]. Besides, sPD-L1expression in 
plasma of small cell lung cancer is associated with dis-
ease progression [48]. In contrast, some animal outcomes 
have been documented the anti-tumor effect of sPD-1 
[49, 50]. An increased or stable sPD-1 level independently 
correlated with longer PFS in two cycles of nivolumab-
treated metastatic NSCLC patients, suggesting sPD-1 as 
a predictive biomarker of response to ICI treatment in 
patients with lung cancer [51, 52]. Considering the analy-
sis of sPD-L1 with immune-assays (ELISA) method may 
not distinguish between vesicular and soluble forms in 
circulation of cancer patients in some studies, dynamic 
blood PD-L1 expression for immune checkpoint inhibi-
tors in advanced NSCLC patients might be more reli-
able as a biomarker [53]. Nevertheless, further work is 
required to better understand the functions of soluble 
PD-1/PD-L1 variants in lung cancer (Fig. 2A).

TCR-γδ T cells tumor-infiltrating lymphocytes (TILs)
γ/δ T lymphocytes localize in different epithelial tis-
sues and are phenotypically distinct from peripheral γ/δ 
T cell-population. In about one-fourth of human lung 
cancers, γ/δ T cells represented a significant proportion 
of freshly isolated tumor-infiltrating lymphocytes [54]. 
Ferrarini M. et al. found that half of the Vδ1+ (as well 
as Vδ1−Vδ2−) γ/δ-lymphocytes that could be selectively 
expanded from human lung cancers also co-expressed 
the CD8α/α homodimer [55]. Furthermore, it has been 
reported that TCS1+ γ/δ+ tumor-infiltrating lympho-
cytes from human lung carcinomas lysed only autologous 
tumor cells and K-562 [56]. Human normal lung tissues 
and NSCLCs harbor resident populations of γδ T cells, 
particularly enriched in the Vδ1 subtype. Intratumoral 
Vδ1 T cells exhibited stemness characteristics and were 
skewed toward cytolysis and helper T cell type 1 func-
tion, similar to intratumoral natural killer and CD8+ T 
cells, which are considered beneficial to the patients [57]. 
Based on deconvolution of human cancers microarrays, 
TCRVγ9Vδ2+γδ TIL abundance in lung carcinoma was 
also reassessed by a study in ∼10,000 cancer biopsies. 
However, TCRVγ9Vδ2+ γδ TIL was not positively cor-
related with cytolytic activity and favorable outcome like 
αβ TIL [58]. In contrast, Cazzetta V. et al. revealed that 
NKG2A expression identifies a subset of human Vδ2 T 
cells exerting the highest antitumor effector functions 
[59]. This apparent discrepancy illustrates the complex-
ity of the relationship between TCRVγ9Vδ2+ γδ TIL 
and lung cancer and also depends on differences in mea-
surement methodologies (whole-tissue transcriptomic 
analysis, phenotypic analysis or immunohistochemistry 
analysis).

The role of PD-1/PD-L1 in small-cell lung carcinoma (SCLC)
SCLC is broadly classed as limited stage-small cell lung 
cancer (LS-SCLC) and extensive stage- small cell lung 
cancer (ES-SCLC). Although SCLC harbors a high muta-
tion rate (tumor mutational burden/TMB, a biomarker of 
sensitivity to immunotherapy in SCLC) [60], the pooled 
prevalence of PD-L1 expression stands at 26.0%, and 
22.0% respectively, after excluding the potential outlier 
studies, which remains lower compared to NSCLC [61]. 
In addition, low expression of MHC-I, which leads to a 
decrease of cytotoxic T-lymphocytes (TILs) infiltrating 
the SCLC tumor, and excess of regulatory T cells (Tregs), 
which can inhibit activation, expansion and effector func-
tions of other T cells [62], may contribute to low response 
to immune checkpoint inhibitors (ICIs) (approximately 
10% with anti-PD-1 monotherapy) [63, 64].

In SCLC, small cell lung cancer stem cells display mes-
enchymal properties and exploit immune checkpoint 
pathways in activated cytotoxic T lymphocytes [65]. A 
subpopulation of pulmonary neuroendocrine cells are 
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reserve stem cells regulated by the tumor suppressors Rb, 
p53, and Notch, and are considered tumor-initiating cells 
for SCLC [66].

A new classification of SCLC subtypes has been defined 
by differential expression of four key transcription regu-
lators: achaete-scute homologue 1 (ASCL1; also known 
as ASH1), neurogenic differentiation factor 1 (Neu-
roD1), yes-associated protein 1 (YAP1) and POU class 
2 homeobox 3 (POU2F3) [67]. YAP1 has been shown 
to contribute to inducing immunosuppressive TME by 
upregulating PD-L1 [68] or stimulating cytokines such 
as CXCL5 from tumor cells to recruit tumor-infiltrating 
macrophages, myeloid-derived suppressor cells (MDSCs) 
[69] and Tregs cells. In fact, it has been associated with 
mutations in the phosphatidylinositol 3-kinase (PI3K)/
AKT/mTOR signaling pathway [70, 71]. Additionally, 
Notch signaling has been documented to play a criti-
cal role in the response to ICB in SCLC [72]. YAP1 and 
Notch1 are complementary and may be involved in cell 
proliferation, EMT, drug resistance, and neuroendocrine 
(NE) differentiation [73]. The mechanism of SCLC has 
not been fully understood (Fig. 2B).

The possible mechanism of PD-1/PD-L1 in NSCLC cells
Several extrinsic factors (e.g., release of interferon-γ by 
immune cells that upregulate PD-L1 expression) and 
intrinsic factors regulate PD-L1 expression in NSCLC. 
As one of extrinsic factors, environmental tobacco smoke 
(ETS), contributes to a distinct PI3K (phosphatidylino-
sitol 3-kinase)–Akt pathway that leads to cell survival in 
adenocarcinoma [74]. Genomic alterations that activate 
KRAS, EGFR, and ALK, as well as the loss of PTEN, have 
been associated with increased PD-L1 expression. Sev-
eral tumorigenic intrinsic factors such as activation of 
the mechanistic target of rapamycin (mTOR), mitogen-
activated protein kinase (MAPK) and Myc pathways can 
increase PD-L1. Alternatively, methylation, allelic loss 
and gene silencing expression might be considered [75]. 
Also, the molecular involvement of PD-L1 single nucleo-
tide polymorphisms and non-synonymous single nucleo-
tide polymorphisms (nsSNPs) with oncogenic potential 
in NSCLC, cannot be excluded [76, 77].

PD-1, is a type I transmembrane protein encoded by 
the PDCD1 gene of the CD28 immunoglobulin super-
family, comprised of a single Ig variable-type (IgV) 
extracellular domain, a transmembrane domain and a 
cytoplasmic domain. N-terminal and C-terminal tyro-
sine residues in the cytoplasmic domain are involved in 
the formation of immunoreceptor tyrosine-based inhibi-
tory motifs (ITIMs) and immunoreceptor tyrosine-based 
switch motifs (ITSMs) [78]. The engagement of PD-1 
in T cells and PD-1 ligands leads to the recruitment of 
SHP-1/2 (Src homology 2-containing tyrosine phospha-
tase 1/2) to the C-terminal of the ITSM. SHP-2 then 

dephosphorylates TCR-associated CD-3ζ and ZAP70, 
resulting in the inhibition of downstream signaling [79]. 
The advent of human T cell non-Hodgkin lymphomas 
and relative animal models has revealed that the activity 
of PD-1 enhances levels of the tumor suppressor PTEN 
and attenuates signaling by the kinases PI3K/AKT and 
PKCθ/NF-κB pathways in oncogenic T cells [80]. PD-1 
on CD4+ T regulates cell cycle and inhibits T cell pro-
liferation via Akt and Ras pathways [81]. Moreover, Lck 
signaling has been shown to contribute to PD-1+ T cell 
exhaustion via CD28 co-stimulation in a humanized 
mouse model [82] (Fig. 3A and B).

In recent years, the role of intrinsic PD-1 in NSCLC 
cells raises consideration. Wang X. et al. proposed that 
PD-1 and PD-L1 reduces tumor growth by suppressing 
AKT and ERK1/2. In the absence of an adaptive immune 
system, tumor cell-intrinsic PD-1/PD-L1 mediates the 
resistance to anti-PD-1/PD-L1 antibodies by activat-
ing AKT and ERK1/2, which induces tumor growth [83] 
(Fig. 3C and D).

Current adaptive T cells clinical trials combined 
with PD-1/PD-L1 blockades in lung cancer
Blockade of PD-1 immunosuppression boosts CIK/DC-CIK 
therapy
Shortly after injection of CIK cells, a bioluminescent sig-
nal was detected in the lung followed by the liver and 
spleen in the animal model [84]. CIK cells are heterog-
enous T cells, composed of CD3+CD8+, CD3+CD4+, 
CD3+CD56+ subpopulations and the main dominant 
of CIK cells is TCR αβ T cells [14]. Mechanistically, cell 
signaling not only through TCR/CD3 but also through 
NKG2D, DNAM-1, and NKp30 leads to CIK cell activa-
tion resulting in granule exocytosis, cytokine secretion, 
and cytotoxicity [14, 85]. FasL is another major effector 
mechanism used by CIK cells to induce the apoptosis 
of tumor cells [86]. Alternatively, it has been reported 
that TCR αβ CD3+CD56+CIK cells can be retargeted to 
exert antibody-dependent cellular cytotoxicity (ADCC) 
function by antigen-specific mAbs [87]. Although CIK/
DC-CIK therapy has improved anti-tumor responses in 
a total of 12 clinical trials targeting lung cancer in recent 
years [15], the dynamic phenotype profiles of check-
point molecules on CIK cells derived from patients with 
NSCLC patients has revealed that CIK cells may partly 
be exhausted before the clinical transfusion. This has 
been also characterized by the elevated expression of 
PD-L1, LAG-3, TIM-3 and the reduced expression of 
PD-1 and CTLA-4. Based on these findings, blocking 
PD-1/PD-L1 improve the efficiency of CIK therapy for 
NSCLC patients [88]. Furthermore, a clinical report on 
the enhancement of autologous CIK cells after treatment 
with PD-1 blocking antibodies in patients with advanced 
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NSCLC provided additional evidence for this combina-
tion strategy [89].

Alternatively, in a phase I clinical trial in patients with 
advanced solid tumors including NSCLC, pembroli-
zumab-activated DC-CIK cells demonstrated superior 
antitumor properties with increased IFN-γ secretion 
in ex vivo and an overall disease control rate of 64.5% 
[90]. A case report of a 63-year-old man with squamous 
cell carcinoma has provided further clinical evidence. 
The patient received a diagnosis of squamous cell carci-
noma after biopsy of the right lower lobe lung mass and 
had developed multiple metastases on CT scans. After 
first-line and second-line chemotherapy, the disease was 
processed. After receiving pembrolizumab in combina-
tion with seven cycles of CIK cell transfer, the patient 

continued to be in remission 185 days posttreatment 
and had no adverse events. The tumor cells from pre-
treatment biopsies showed strongly expression of PD-L1 
instead of PD-1, and large number of tumor-infiltrating 
CD3+ T cells were observed [91]. Taken together, this 
study suggested that a combination of CIK cells and pem-
brolizumab could synergistically enhance therapeutic 
efficacy in metastatic NSCLC patients, especially when 
PD-L1 expression in tumor biopsies was high. Han Y. et 
al. also documented that autologous CIK cells improved 
the clinical response to PD-1 blocking antibodies in 
patients with advanced NSCLC [89]. Recently, a Phase 
IB Trial of autologous CIK cells in combination with 
Sintilimab, (mAb PD-1), plus chemotherapy in patients 
with advanced NSCLC also showed encouraging efficacy 

Fig. 3  Interaction of PD-1/PD-L1 between T cells and NSCLC cells. (A-B) The engagement of PD-1 in T cells and PD-1 ligands leads to the recruitment of 
SHP-1/2 (Src homology 2-containing tyrosine phosphatase 1/2) to the C-terminal of the ITSM. SHP-2 then dephosphorylates TCR-associated CD-3ζ and 
ZAP70, resulting in the inhibition of downstream signaling and T cell inactivation (A). In the presence of Anti-PD-1 mAb, T cells might be reactivated via 
PD-1/PD-L1 axis (B). (C-D) The effect of tumor cell-intrinsic PD-1 on NSCLC cells. PD-L1 expressed by NSCLC cells or other cells acts on PD-1+ tumor cells to 
mediate PD-1 signaling in tumor cells via ITIM and ITSM. The AKT and ERK1/2 pathways can suppress tumor growth by dampening AKT and ERK signaling 
(C). Anti-PD 1 mAb blocks PD-1/PD-L1-mediated tumor suppression, leading to hyperprogression in NSCLC cells (D)
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(NCT03987867) [92]. Additionally, Mankor JM. et al. 
observed that the efficacy of nivolumab and ipilimumab 
in patients with malignant pleural mesothelioma was 
related to a subtype of cytotoxic T cells effector memory 
[93]. Therefore, it is important to stratify patients using 
accessible markers of T-cell status or tumor genomic 
detection to design therapeutic trials.

PD-1/PD-L1 blockades in CAR T-cell therapy in lung cancer
The concept of adaptive immunotherapy resurfaced with 
the advent of CAR T-cell therapy. The first report of a 
combined approach of CAR T cells with PD-1 blockade 
in Her-2 transgenic mice was reported in 2013 [94, 95]. It 
was demonstrated that anti-PD-1 antibody can potently 
enhance CAR T-cell therapy by the eradication of estab-
lished tumors without severe toxicity. Beyond PD-1 
blockade, constructed CAR T cells that target PD-L1 
were found to exert cytotoxic activity against PD-L1high 
NSCLC cells and xenograft tumors. An additional sub-
therapeutic dose of local radiotherapy improved the 
efficacy of PD-L1-CAR T cells against PD-L1low NSCLC 
cells and tumors [96]. Novel CAR.αPD1-T cells were gen-
erated based on the anti-CD19 CAR, and constitutive 
anti-PD-1 secretion was more efficient in tumor eradica-
tion than parental anti-CD19 CAR T cells in human lung 
carcinoma xenograft tumors [97]. Due to dual expression 
of mesothelin (MSLN) in both lung cancer and normal 
mesothelium, the development of mesothelin-specific 
CAR-T cell therapy that incorporates an HLA-gated 
safety mechanism can selectively kill MSLN(+)A*02(-) 
malignant cells [98]. Furthermore, image-guided intra-
pleural delivery of CAR T cells using intracavitary or 
intratumoral routes and pembrolizumab treatment after 
CAR-T infusion is feasible, repeatable and safe across 
anatomically variable pleural cancers (NCT 02414269) 
[99].

Currently, there are 17 clinical trials worldwide inves-
tigating the safety and efficacy of CAR-T cell therapy in 
the treatment of lung cancer. They are specifically target-
ing epidermal growth factor receptor (EGFR); human 
epidermal growth factor receptor 2 (HER2); mesothe-
lin (MSLN); prostate stem cell antigen (PSCA); mucin 
1 (MUC1); carcinoembryonic antigen (CEA); tyrosine 
kinase-like orphan receptor 1 (ROR1); programmed 
death ligand 1 (PD-L1) and CD80/CD86. There are three 
clinical trials involving PD-1/PD-L1 (NCT03525782, 
NCT02862028 and NCT03198052). In NCT03525782, 8 
patients with NSCLC (IIIb to IV stage) were infused with 
anti-MUC1 CAR-T cells combined with PD-1 knock-
out engineered T cells. All patients experienced signifi-
cant symptoms in the first 2 weeks after infusion. Serum 
CYFRA 21, a tumor marker of squamous cell carcinomas, 
declined following infusion and subsequently increased 
4 weeks after treatment. In 2/6 patients, lung tumor 

size shrunk significantly within 4 weeks after treatment, 
while the effect on metastasis was limited. No cytokine 
release syndrome (CRS) or adverse effects were observed 
in patients [100]. This study suggests that combined 
MUC1-CAR+/PD-1-KO therapy is feasible but effec-
tive individually. Additional studies of CAR-T in LC are 
ongoing (NCT02862028, NCT03198052).

To date, one phase 1 clinical trial (NCT03392064) has 
been conducted using AMG 119, a chimeric antigen 
receptor (CAR) T cell therapy targeting DLL3 for the 
treatment of relapsed/refractory SCLC patients [101]. 
The target gene in this study is delta-like ligand 3 (DLL3), 
an inhibitory ligand of Notch receptors that regulate neu-
roendocrine differentiation in SCLC. Given the serious 
side effects of CAR-T cells targeting healthy tissue [102, 
103], DLL3 is highly restricted to SCLC with a neglect-
able expression in the normal adult tissues, making it an 
ideal target for cancer immunotherapy [104]. A new clin-
ical trial using DLL3-directed chimeric antigen receptor 
T-cells in patients with extensive stage small cell lung 
cancer (NCT05680922) has also been listed but not yet 
recruiting. Another study in in vitro and xenograft mouse 
models demonstrated that the PD-1 inhibitory antibody 
dramatically improved the anti-tumor efficacy of the 
DLL3 bispecific antibody [105], suggesting the feasibility 
of DLL3 CAR-T combined with PD-1 inhibitors. In addi-
tion, regional mesothelin-targeted CAR T-cell therapy in 
patients with malignant pleural disease, in combination 
with the anti-PD-1 agent pembrolizumab showed prom-
ising outcomes in a Phase I Trial [106]. Alternatively, a 
phase I clinical trial to evaluate the safety and tolerabil-
ity of autologous mesothelin (MSLN)-targeted chimeric 
antigen receptor (MSLN-CAR) T cells secreting PD-1 
nanobodies (αPD1-MSLN-CAR T cells) in patients with 
solid tumors achieved good outcomes (NCT04503980). 
All patients showed expansion of CAR-T cells and 
increased PD-1 nanobodies in circulation. The CAR 
T-cell therapy is a relatively safe therapeutic option safe 
and the total objective response rate was 63.64% [107].

Recently, a Phase I study of CAR-T cells with PD-1 
and TCR disruption in mesothelin-positive solid 
tumors establish the preliminary feasibility and safety of 
CRISPR-engineered CAR-T cells with PD-1 disruption 
(NCT03747965). Lung squamous cell carcinoma cell line 
NCI-H226 was used in vitro experiment. PD-1/PD-L1 
pathway inhibits CAR-T cell function in vitro. knocking 
out the PDCD1 gene would enhance the antitumor effect 
of CAR-T cells. PDCD1 knockout P4 (MPK-CAR-T) cells 
were generated via electroporation of Cas9-sgRNA ribo-
nucleoprotein (RNP), had substantial cytotoxic effects 
against the cell line PD-L1+ cell line and released sub-
stantial amounts of IFN-γ in vitro. A total of 15 patients 
received one or more infusions of MPTK-CAR-T cells 
without prior lymphodepletion. No dose-limiting toxicity 
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or unexpected adverse events were observed in any of the 
15 patients. The best overall response was stable disease 
(2/15 patients) [108]. Therefore, we conclude that CAR 
T-cells are uniquely equipped with specific molecules 
and a combination with PD-1/PD-L1 blockade is feasible. 
Continued safety monitoring in future trials is essential.

Blockade of PD-1 immunosuppression enhances γδ T cells 
therapy in lung cancer
δ T cells represent a unique T cell subpopulation capa-
ble of recognizing cancer cells not only through a TCR-
dependent pathway, but also through natural killer 
receptors (NKRs) that are not restricted to the major 
histocompatibility complex (MHC). As aforementioned, 
human Vδ1 T cells exerted anti-tumoral function in 
the tissues of NSCLC patients [57]. Human Vδ1 T cells 
can be isolated from the peripheral blood mononuclear 
cells (PBMC) of healthy donors and proliferated in vitro 
induced by mitogen concanavalin A (Con A) [109]. The 
cytotoxic Vδ1 T cells against B-cell chronic lymphocytic 
leukemia cells were correlated with the expression of 
Vδ1 TCR, CD56, and CD95. In contrast, using the same 
expansion method, Vδ2 T cells can be expanded by tar-
geting chronic myeloid leukemia-derived cells, which 
correlate with Vδ2 TCR and NKG2D [109]. Although 
peripheral blood Vδ1 T cells typically represent a minor-
ity population compared to the more dominant Vγ9Vδ2 
[110], allogeneic CAR Vδ1 T cells expanded from PBMCs 
and genetically modified to express a 4-1BB/CD3z CAR 
against GPC-3 display robust antitumor efficacy against 
hepatocellular carcinoma [111].

Human Vγ2Vδ2 T cells constitute important circulat-
ing γδ T cells that bridge adaptive and innate immunity. 
γδ T cells can be effectively expanded using synthetic 
antigens such as pyrophosphomonoesters and nitrogen-
containing bisphosphonates (N-BPs). Adoptive transfer 
of autologous or allogeneic Vγ9Vδ2-T cells expanded 
with zoledronate in patients with refractory NSCLC [17, 
112, 113] resulted in good antitumor responses. High 
PD-1 levels on the activated γδ T cells also suggest the 
potential of combination therapy involving γδ T cells 
and PD-1 ICIs. Of particular interest, HDAC inhibitors 
attenuate the antitumor cytotoxic potential of γδ T cells, 
whereas PD-1 blockade enhances the antitumor effec-
tor functions of HDAC inhibitor-treated γδ T cells [114]. 
However, Vδ T cells are double-faced immunocytes in 
cancer treatment. The interaction between PD-1 on αβ 
T cells and its ligand PD-L1 on γδ T cells restrains αβ 
T cell activation [115]. It is reasonable to conduct γδ T 
cell functional identification and elimination of suppres-
sive subgroup before transferring the γδ-T cells into the 
patients. In addition, CD16 has been shown to medi-
ate ADCC in γδ T cells by PD-1 blockade in follicu-
lar lymphoma [116]. Considering the percentage of γδ 

CD16+CD3+CD56+ CIK cells accounts for approximately 
31% of total CD16+ CIK cells [87], isolation and expan-
sion of this subset of CIK cells may expand the scope of 
immune therapy in the future.

Three clinical trials using γδ-T cells against lung can-
cer have been reported. NCT03183232 was originally 
designed to evaluate the safety and efficiency of autolo-
gous PBMC-derived γδ-T cells against lung cancer. How-
ever, PBMCs from the majority of cancer patients cannot 
be effectively expanded in terms of cell number, purity 
and function. Moreover, cancer patients cannot afford 
to donate 100 ml of blood for culture every 2–3 weeks. 
Therefore, they optimized the protocol of ex vivo expan-
sion of Vγ9Vδ2-T cells derived from allogeneic PBMCs. 
The clinical trial has been completed but the results are 
not yet available. Another clinical trial NCT02459067, 
designed to determine the safety, tolerability, maximum 
tolerated dose (MTD) and efficacy of Autologous γδ T 
Lymphocytes (ImmuniCell®) in patients with melanoma, 
renal cell cancer (RCC) or non-small cell lung cancer 
(NSCLC) has been terminated. Taken together, γδ T-cell 
therapy for lung cancer is still in its early stages, and 
clinical data is inadequate. An overview of three types of 
adaptive immunotherapies in clinical trials involving the 
PD-1/PD-L1 axis is shown in Table 1.

Conclusion and future perspectives
A few clinical trials of adaptive T-cell therapy with PD-1/
PD-L1 blockade have been conducted in recent years. 
However, understanding the impact of the PD-1/PD-L1 
axis on lung cancer is still in the nascent stages. More 
importantly, we have paid little attention to PD-L2 (a 
second ligand of PD-1), despite the fact that its expres-
sion has been upregulated in patients with lung adeno-
carcinoma [117, 118] and has the potential to serve as a 
clinicopathological and prognostic marker [119]. Unde-
niably, PD-L2 has previously been considered an insig-
nificant ligand, although it binds to PD-1 with a 2-6-fold 
higher affinity [120]. It can inhibit T cell activation via 
recruiting SHP-2, yet it does not inhibit T cells due to 
cell cycle arrest in G0/G1. This characteristic is similar 
to that of CTLA-4. Notably, cemiplimab, a human PD-1 
monoclonal antibody that binds to PD-1 and blocks its 
interaction with PD-L1 and PD-L2 has been approved 
by FDA in 2018 [121]. In fact, cemiplimab monotherapy 
significantly improved overall survival and progression-
free survival compared to chemotherapy in patients with 
advanced NSCLC with PD-L1 of at least 50% [122, 123], 
providing another option for immune therapy.

Secondly, the moderate understanding of the tumor 
microenvironment is still a major hurdle to the complete 
success of lung cancer immunotherapy. For instance, 
lower airway dysbiosis led to the activation of check-
point inhibitor [124]. Of importance, this lower airway 
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Study/drug Target 
population

Study design Treatment Key inclusion criteria Key results 
summary

CIK
NCT03987867
 [92]
Autologous CIK 
cells with PD-1 
inhibitor (IBI308, 
sintilimab) and 
chemotherapy

Advanced 
NSCLC

n = 30
Objective response rate 
(ORR) was calculated by 
the percentage of pa-
tients with a confirmed 
complete (CR) or partial 
response (PR).

IBI308 intravenous infusion 
200 mg d1; Pemetrexed in-
travenous infusion 500 mg/
m² d2 or Liposome pacli-
taxel intravenous infusion 
135 mg/m² d2;
Carboplatin intravenous 
infusion AUC5 d2; CIK cells, 
1 × 1010 (10 billion), intrave-
nous infusion, d14; Q3W.

Age 18–75 years;
Patients with stage IIIB/IIIC/IV 
NSCLC;
Adenocarcinoma with wild type 
of EGFR gene and ALK fusion 
gene negative can be included;

The ORR were 82.4%;
Median PFS was 19.3 
months; autologous 
CIK cells immuno-
therapy in combina-
tion with sintilimab 
plus chemotherapy 
was well tolerable 
and showed encour-
aging efficacy in pa-
tients with previously 
untreated, advanced 
NSCLC.

NCT04836728
Autologous 
CIK cells with 
PD-1 inhibitor 
(IBI308,sintilimab) 
and chemother-
apy A Random-
ized, Multicenter, 
Open-label Phase 
II Study

Stage IV 
NSCLC

n = 156
A Randomized, Multi-
center, Open-label Phase 
II Study Overall survival 
Progression-free survival

IBI308 intravenous infusion 
200 mg d1; Pemetrexed in-
travenous infusion 500 mg/
m² d2 or Albumin pacli-
taxel intravenous infusion 
260 mg/m² d2; Carboplatin 
intravenous infusion AUC5 
d2; CIK cells, 1 × 1010, intrave-
nous infusion, d14; Q3W.

Age 18–75 years; stage IV 
NSCLC; adenocarcinoma with 
wild type of EGFR gene and ALK 
fusion gene negative can be 
included.

Ongoing

CAR-T
NCT02414269
 [99]
Autologous T cells 
genetically engi-
neered to target 
the cancer-cell 
surface antigen 
mesothelin with 
pembrolizumab

Malignant 
pleural me-
sothelioma; 
non-small 
cell lung 
cancer met-
astatic to 
the pleura; 
breast can-
cer meta-
static to the 
pleura

n = 113
Composite measure of 
severity and number of 
adverse events (AEs); 
response of complete 
response (CR); partial 
response (PR); and 
stable disease (SD);serum 
levels of the biomarker 
soluble mesothelin re-
lated peptide (SMRP) after 
treatment

cyclophosphamide intra-
venously (at 1.5 g/m²), 2–7 
days before T cell infusion; 
Administration through the 
pleural catheter- On day 
0 patients will be treated 
with genetically modified 
T cells. Pembrolizumab 4 
weeks (+ 3/-1 week window) 
after completing CAR T cell 
administration.

Age ≥ 18 years;
Karnofsky performance 
status ≥ 70%; Malignant pleural 
mesothelioma;
non-small cell lung cancer or 
breast cancer metastatic to the 
pleura; Mesothelin expression 
(> 10% of the tumor expressing 
mesothelin) by IHC analysis; 
Elevated serum SMRP levels 
(> 1.0 nM/L).

CAR T cells were de-
tected in peripheral 
blood for > 100 days 
in 39% of patients. 
Median overall 
survival from CAR 
T-cell infusion was 
23.9 months (1-year 
overall survival, 83%). 
Stable disease was 
sustained for ≥ 6 
months in 8 patients; 
2 exhibited complete 
metabolic response 
on PET scan.

NCT03525782
 [100]
Anti-MUC1 CAR 
T Cells and PD-1 
Knockout Engi-
neered T Cells

Advanced 
NSCLC

n = 8
Following treatment, 
levels of lymphocytes, 
IL-6, hs-CRP, PCT, CYFRA21, 
NSE(E), and SCC were 
monitored at regular in-
tervals. Changes in tumor 
size were examined by 
MRI scans.

MUC1-specific CARs were 
constructed using the 
SM3 scFv. PD-1 gene KO 
in the CAR positive T cells 
was achieved using the 
CRISPR-Cas9 system and 
validated by sequencing. 
MUC1-CAR+/PD-1- KO 
engineered T cells at a dose 
of 2.5 × 10²/KG were infused 
over 60 min.

Age 36 to 84 years; MUC1 is 
expressed in malignancy tissues 
by immuno-histochemical 
(IHC); ECOG performance status 
of 0–1 or karnofsky perfor-
mance status (KPS) score is 
higher than 60; Patients have a 
life expectancy > 12 weeks.

All patients had 
significant symptom 
improvements in 
the first 2 weeks 
after infusion. Serum 
CYFRA 21 declined 
following infusion 
and subsequently 
increased 4 weeks 
after treatment. In 
2/6 patients, lung 
tumor size shrunk 
significantly within 
4 weeks. No other 
adverse effects.

Table 1  Completed and ongoing clinical trials
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dysbiotic signature was found to be more prevalent in 
the stage IIIB-IV tumor-node-metastasis lung cancer 
group, associated with poor prognosis and accompanied 
by the upregulation of the IL-17, PI3K, MAPK, and ERK 
pathways in airway transcriptome. It is also important to 
mention about microbiome, it has been suggested that 
normal human oral flora, Veillonella parvula, may act 
as a key driver force in lung cancer [125]. Moreover, use 
of antibiotics during ICIs treatment regimen has been 
shown to significantly decrease their efficiency against 
lung cancer [126, 127]. In addition, the relationship of 
lung microbiota to PD-1/PD-L1 inhibitors responses 
has been investigated [128]. CXCL9 levels in bronchoal-
veolar lavage fluid (BALF) were significantly elevated in 
responders compared with non-responders, along with a 
greater diversity of the lung microbiome profile in BALF 
and a greater frequency of the CD56+ subset in blood T 
cells before initiating nivolumab. Antibiotic treatment in 
a preclinical lung cancer model significantly decreased 
CXCL9 in the lung TME, resulting in reduced sensitiv-
ity to anti-PD-1 antibody. Unfortunately, authors could 
not identify the specific bacterial species involved in 
the therapeutic effect of ICIs in this study [128]. Further 
research is needed to fully understand how lung micro-
biota can more specifically influence the outcome of 
cancer immunotherapy. Interestingly, Ochi N. et al. sug-
gested that antibiotics treatment was significantly asso-
ciated with a shorter median overall survival (OS), but 
not progression-free survival (PFS) in NSCLC patients 
who received antibiotics before or after ICI treatment in 
a retrospective study. The detrimental effect of impact 

of antibiotics uses on the efficacy of ICIs differed based 
on PD-L1 expression in patients with advanced NSCLC 
[129]. However, this effect was not observed at the mul-
tivariate analysis. The influence factor on overall survival 
needs to be explored further.

Thirdly, PD-1/PD-L1 inhibitors might promote the 
efficacy of CAR-T/CAR-CIK, bispecific antibody or δ T 
cells, however, this assumption requires experimental 
validation. Notably, a recent clinical trial NCT02425748 
was designed to evaluate the safety and efficiency of γδ T 
cells in combination with DC-CIK against NSCLC (with-
out EGFR mutation) compared to either monotherapy of 
DC-CIK or γδ T cells. Although the results have not been 
published, this study offers another promising immuno-
therapy approach.

Finally, a very limited number of reports are available 
on clinical trials of adaptive immunotherapy in SCLC. 
For instance, there was only one ongoing clinical trial of 
SCLC registered as NCT02688673. This study aims to 
evaluate the safety and efficacy of recombinant adenovi-
rus-code MUC1 and Survivin-transfected dendritic cells 
(DC) combined with CIK cell treatment in patients with 
extensive-stage SCLC. Furthermore, a combination of 
bispecific DLL3-targeted antibody and PD-1 inhibition 
retained the growth of SCLC more efficiently [105]. Thus, 
it may also be potentially envisioned as a novel strategy 
for SCLC.

Similarly, recent observation suggested that PD-L1/
PD-1 blockage enhanced the cytotoxicity of natural killer 
(NK) cells on NSCLC by granzyme B secretion. This 
finding was also demonstrated in NK cells isolated from 

Study/drug Target 
population

Study design Treatment Key inclusion criteria Key results 
summary

CIK
NCT03198052
CAR-T Cells 
Targeting PSCA, 
MUC1, TGFβ, 
HER2, Mesothelin, 
Lewis-Y, GPC3, 
AXL, EGFR, B7-H3 
or Claudin18.2

Lung Cancer n = 30
Number of Patients with 
Dose Limiting Toxicity; 
Percent of Patients with 
best response as either 
complete remission or 
partial remission; Median 
CAR-T cell persistence.

3 or more cycles of the 
CAR-T cells treatment via sys-
temic or regional injection, 
from 1 × 106/kg-10 × 106/kg 
weight.

Advanced cancer that expresses 
PSCA, MUC1, GPC3, AXL, EGFR 
or B7-H3 protein; Autologous 
transduced T cells with greater 
than or equal to 20% expression 
of PSCA, MUC1, GPC3, AXL, 
EGFR or B7-H3 CAR determined 
by flow cytometry and killing 
of PSCA, MUC1, GPC3, AXL, 
EGFR, or B7-H3-positive targets 
greater than or equal to 20% in 
cytotoxicity assay.

Recruiting

NCT04503980
αPD1-MSLN-CAR 
T Cells [107]

MSLN-
positive 
advanced 
solid tumors

n = 10
Maximum tolerated dose 
(MTD); Objective response 
rate (ORR); Progression-
free survival (PFS); Overall 
survival (OS); Peak Plasma 
Concentration (Cmax); 
Pharmacodynamics (PD).

Four doses of CAR T cells will 
be evaluated in this study:
1 × 105 CAR+ T cells/kg,
3 × 105 CAR+ T cells/kg,
1 × 106 CAR+ T cells/kg,
3 × 106 CAR+ T cells/kg.

Age 18-70 years; advanced solid 
tumors; ECOG performance sta-
tus of 0 or 1; Staining of MSLN 
must be greater than 50%; of 
the cells in the tumor tissue, 
apparent expressing in the 
membrane; PD-L1 expression 
must be positive.

The total objective 
response rate was 
63.64%. All enrolled 
patients are still alive. 
The longest PFS was 
up to 26 months. 
Median follow-up 
was four months.

ECOG performance: Eastern Cooperative Oncology Group performance; IHC: immunohistochemistry; CRS: cytokine release syndrome

Table 1  (continued) 
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NSCLC patients. Their outcomes highlight that PD-L1/
PD-1 blockade enhances cellular adaptive immune ther-
apy [130].

In this review, we emphasize the role of three T cell 
adoptive therapeutic approaches and discuss whether 
PD-1/PD-L1 blockade can effectively ‘unleash’ T cell 
response. In our opinion, PD-1/PD-L1 blockade could 
give a boost to T-cell immunotherapy if patient-centered 
trials can be considered.
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