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Abstract 

Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-
renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression 
and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-
resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosup-
pressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs 
and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, 
stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication 
and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their 
current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim 
to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
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Introduction
CSCs were firstly identified in acute myeloid leukemia 
(AML), where they exhibited stem cell-like and cancer 
cell-like properties and were found to be the sole cause 
of the initiation and progression of the corresponding 
cancer [1]. The tumorigenicity and self-renewal ability 
are indispensable properties of CSCs. To identify poten-
tial populations of CSCs, an important test was devel-
oped to determine the ability of CSCs to form tumors at 
low cell densities. This test, known as Extreme Limiting 
Dilution Assays (ELDA) became widely used as a gold 

standard to estimate active CSCs frequencies [2]. Studies 
have shown that as few as 100 cells exhibiting the CSCs 
phenotype were capable of forming tumors in mice, while 
tens of thousands of cells with an alternative phenotype 
were unable to do so [3]. Furthermore, CSCs must have 
the ability to sustain themselves and continue to generate 
cells with the same tumorigenicity and primitive tumor-
forming capabilities [4]. A study provided evidence by 
using human cells with CD45 marker from the bone 
marrow of AML transplant recipients. These cells were 
found to have the same capacity to induce most subtypes 
of AML in secondary recipients, highlighting the self-
renewal property of CSCs [5]. Unfortunately, CSCs are 
highly resistant to systemic anti-cancer therapies due to 
their complicated drug resistance mechanisms and active 
DNA repair capacity. Even after successfully resecting the 
primary tumor, the dormant disseminated CSCs can con-
tribute tumor relapse and metastasis due to their long-
term capacity for self-renewal [6].

Based on CSC theory, only a small subset of cells 
sustain tumorigenesis and contribute to cellular heter-
ogeneity in primary tumors. These CSCs share certain 
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properties of stem cells although they are not neces-
sarily derived from stem cells found in normal tissues 
[7]. This suggests CSCs are a particular cell state that 
could initiate tumor growth. One widely accepted 
hypothesis is that cells can be transformed from more 
specialized, non-stem cells into stem-like cells through 
a process called epithelial-mesenchymal transition 
(EMT) [8]. During EMT, cancer cells undergo herit-
able phenotypic changes that are brought about by 
epigenetic modifications, rather than the introduc-
tion of new genetic alterations. As a result, the can-
cer cells lose their epithelial characteristics, such as 
cell–cell junctions and apical-basal polarity and gain 
mesenchymal features such as elongated, fibroblast-
like morphology. These EMT-activated cancer cells 
exhibit CSC-like characteristics, including the expres-
sion of cell markers associated with stemness, as well 
as the ability to form tumors [9, 10]. The coexistence 
of both epithelial and mesenchymal characteristics 
allows cancer cells to survive, metastasize and colo-
nize distal organs. Current research on CSCs focuses 
on understanding how these cells interact with the 
surrounding TME. This interaction involves vari-
ous bidirectional cellular mechanisms, such as direct 
cell-to-cell contact, ligand-receptor interactions, and 
interactions with non-tumor cells that are present in 
the TME [11]. These interactions play a role in driv-
ing tumor progression. The chronic inflammatory and 
immunosuppressive TME is thought to be the primary 
factor contributing to EMT and the high stemness of 
CSCs [12]. Signals from the TME activate intracellular 
signaling pathways, leading to changes in biomarker 
expression, and promote immune evasion, which ulti-
mately converge to maintain CSCs properties [13, 14].

Evidence suggests that conventional cancer thera-
pies often fail to completely eliminate cancer cells 
that have undergone a switch to the CSC state. This 
switch is made possible through the activation of the 
EMT program, which can lead to CSC-related clini-
cal recurrence. In light of these findings, eradicating 
or differentiating the CSC subpopulation appears to 
be a potential strategy for cancer treatment. However, 
despite these promising prospects, there is still a long 
way to go in comprehensively demonstrating the for-
mation and development of CSCs, as well as in devel-
oping targeted therapies to counter them. This review 
focuses on current status of research and development 
in eradicating CSCs. The strategies discussed include 
cell biomarker-/pathway-targeting strategies, TME-
targeting strategies, immune modification strategies, 
and agent-induced differentiation strategies. By exam-
ining these different approaches, this review aims to 
provide insight into the progress made thus far in the 

field of CSC-targeted therapies and to highlight the 
potential for future advancements in this area.

CSC biomarkers, stemness‑associated pathways 
targeting therapies
Cell markers that distinguish CSCs from normal cells 
have potential applications in the diagnosis, treatment, 
and prognosis of cancer.

CSCs biomarkers
Different biomarkers have been utilized to identify CSCs, 
with cancer type-specific biomarkers being well-reviewed 
and showed in Fig.  1 [15–33]. This revealed common 
biomarkers for CSCs including CD44, CD133, aldehyde 
dehydrogenase (ALDH), and epithelial cell adhesion mol-
ecule (EpCAM).

CD44 expression is upregulated in cancer cell sub-
populations and serves as a molecular marker of CSCs. 
 CD44+ cells isolated from cancer patients were capa-
ble of initiating tumor growth when transplanted into 
immunocompromised mice and showed increased 
resistance to radiochemotherapy [34]. CD44 is a cru-
cial receptor for hyaluronic acid (HA) and extracellular 
matrix (ECM). Binding of HA or osteopontin to CD44 
results in the activation of the STAT3, Oct4-Sox2-
Nanog or c-Src kinase signaling pathways, which are 
known to promote anti-apoptosis and chemoresistance 
in CSCs [35]. In addition, CD44 also acts as a recep-
tor for growth factors and cytokines such as trans-
forming growth factor (TGF)-β, vascular endothelial 
growth factor (VEGF), and matrix metalloproteinase 
(MMP). Through these interactions, CD44 facilitates 
intercellular communication and mediates process 
such as EMT. This suggests that CD44 plays a key role 
in coordinating the cellular responses to various envi-
ronmental signals to contribute to the self-renewal and 
invasiveness of CSCs [36]. Clinical studies have high-
lighted the clinicopathological role of CD44 in pro-
moting tumorigenesis and have identified CD44 as a 
potential therapeutic target.

CD133, a pentosan membrane glycoprotein, is one 
of the most well-characterized biomarkers used for 
isolation of CSCs. It is found to promote tumorigenic-
ity, spheroid formation ability, and the EMT program 
[37]. One significant finding is that cancer cells from 
patients with lung cancer that express CD133 could be 
maintained in specific media indefinitely. In contrast, 
cancer cells lacking CD133 died within a few weeks of 
culture [38]. Moreover, the  CD133+ population con-
sistently generated tumors in immunocompromised 
mice, but not  CD133− cells [38]. These observations 
indicate the crucial role of CD133 in the maintenance 
and growth of cancer cells. Additionally, CD133 has 
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been found to recruit histone deacetylase 6 (HDAC6) 
to deacetylate β-catenin, thereby causing the stabili-
zation and nuclear localization of β-catenin. This, in 
turn, promotes the interaction between β-catenin and 
T-cell factors (TCF), resulting in the acceleration of 
cancer cell growth [39]. CD133 also interacted with 
p58 to activate the PI3K/Akt pathway, which further 
regulated CSC proliferation and tumorigenesis [40]. 
The combined expression of CD133 and CD44 in 
colorectal cancer has been shown a sevenfold increase 
in tumorigenicity. However, CD133 alone showed a 
change of more than 1.45 times, and CD44 alone led 
to a twofold increase in tumorigenicity [41]. Overall, 
these findings highlight the critical role of CD133 in 
the maintenance, growth, and tumorigenicity of can-
cer cells.

The EpCAM is considered as a multi-functional 
transmembrane protein associated with the regulation 
of cell adhesion, proliferation, migration, stemness, and 
EMT of cancer cells [42]. It served as an oncogenic sig-
nal transducer that is more accessible to be targeted by 
antibodies than those on normal cells [43]. The expres-
sion of EpCAM has been found to be tumorigenic, 
meaning that it is involved in the formation and growth 
of tumors. Transplantation of  EpCAM+CD45− cells 
isolated from patients with hepatocellular carcinoma 
(HCC) into NOD/SCID mice triggered tumor for-
mation, while  EpCAM−CD45− cells did not have the 
same effect [44]. EpCAM controls cell cycle progres-
sion and differentiation via regulated intramembrane 
proteolysis (RIP). Following RIP-mediated EpCAM 
cleavage, the EpCAM intracellular domain (EpICD) is 
released and translocated into nucleus, where it binds 

to transcription factors and adaptor molecules such 
as four-and-a-half LIM domains protein 2 (FHL2), 
β-catenin, and TCF to initiate the stemness-related 
gene expression and cell reprogramming [45]. The 
binding of TCF/β-catenin complex, in turn, could bind 
to EpCAM promoter and regulate EpCAM gene expres-
sion [46]. The interaction of EpCAM and β-catenin 
signaling creates a positive feedback loop to promote 
the enrichment of the  EpCAM+ cell population, which 
contributes to the promotion of cell self-renewal, dif-
ferentiation, and invasiveness [47]. In addition, the 
overexpression of EpCAM has been found to promote 
EMT and upregulate cellular transcriptional factors 
such as Nanog, Oct4 and SOX2 [48]. The high expres-
sion of EpCAM indicates poor differentiation grade 
that directly associated with poor survival rate [49]. 
The above findings suggest that the measurement of 
EpCAM expression could serve as a prognostic marker 
for cancer patients and its antibody-targeted therapy 
could have potential application.

ALDHs are essential regulators of aldehyde metabo-
lism in human body that protect organisms from active 
aldehydes-induced damage. ALDHs deficiency and 
polymorphisms in organisms are associated with dis-
eases such as Parkinson’s disease, Type 2 hyperproli-
naemia, hypertension and Sjögren-Larsson syndrome 
[50], while upregulated ALDH expression indicates a 
high degree of tumor malignancy [51, 52]. However, the 
exact mechanism of the effect by which ALDHs con-
tribute to the maintenance of CSCs has not been clari-
fied. Current research suggests that the interactions of 
ALDHs with retinoic acid (RA), reactive oxygen species 
(ROS), and reactive aldehydes may contribute to their 

Fig. 1 Specific biomarkers for CSCs in different types of cancer
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functional roles [50]. ALDHs suppress the transforma-
tion of retinal to RA, which in turn reduce the ability 
of RA to inhibit clonogenic and tumorigenic poten-
tial [53]. The administration of all-trans RA (ATRA) 
inhibited the expression of ALDH1 and the activation 
of nuclear factor erythroid 2-like 2 (NRF2), result-
ing in the attenuation of CSC-like properties [54]. In 
addition, ALDHs regulate the expression of hypoxia-
inducible transcription factors 2 (TIF-2) and decrease 
the ROS accumulation in tumor, thereby preventing 
CSCs apoptosis [55]. ALDHs can detoxify and metab-
olize cytotoxic chemotherapeutic drugs by oxidizing 
the aldehyde groups of chemotherapeutic drugs into 
non-toxic carboxylic acids. This is the main cause for 
CSCs maintaining drug resistance [56]. On the other 
hand, ALDH is associated with Nanog expression. 
It’s reported that the activity of ALDH is regulated by 
Nanog through the Notch1/Akt signaling pathway to 
induce CSC stemness and cellular radioresistance [57]. 
SOX2/Oct4 interacts with the Wnt/β-catenin signaling 
pathway to maintain CSC stemness and therapy resist-
ance [58, 59], and as an upstream regulator of Nanog, 
SOX2/Oct4 is thought to be involved in modulating 

ALDH activity to control CSC properties. Suppression 
of ALDH activity can induce apoptosis and alleviate 
drug resistance [60].

Although the number of CSC markers identified 
is growing, it has been reported that not all of these 
markers are equally effective in identifying CSCs. On 
this case, investigation that focuses on stemness-asso-
ciated CSCs signaling networks is necessary to com-
prehensively understand the role of CSCs in tumor 
progression.

Stemness‑associated pathways
Deregulated signaling pathways controlling self-
renewal and differentiation of CSCs are identified 
during CSC-induced tumor initiation, including Wnt/
β-catenin, Notch, Hedgehog (Hh), and Hippo signaling 
pathways. In addition, these self-renewal related path-
ways interact with other oncogenic signaling pathways, 
including the nuclear factor-κB (NF-κB), signal trans-
ducer and activator of transcription 3 (STAT3), and 
PI3K/Akt signaling pathways, to inhibit apoptosis and 
promote cell proliferation [61] (Fig. 2).

Fig. 2 Contribution of aberrantly activated pathways in CSCs. Dysregulated pathways activate the transcriptional activity of target genes, thereby 
contributing to the maintenance of the proliferation/dormancy, survival, self-renewal, migration, and evasion properties of CSCs
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Wnt signaling pathway
The canonical Wnt signaling pathway, also known as 
Wnt/β-catenin signaling, is activated when Wnt ligands 
bind to Frizzled (FZD) family receptors and LRP5/6 core-
ceptors. This binding then transduces signals into the 
β-catenin signaling cascade. In the absence of canonical 
Wnt ligands, the β-catenin complexes are phosphoryl-
ated and subsequently degraded in the cytoplasm [62]. 
However, in the presence of Wnt ligands, the binding of 
Wnt ligands and receptors induces the accumulation of 
β-catenin in cytoplasm, which is then phosphorylated by 
glycogen synthase kinase 3β (GSK3β). The phosphoryl-
ated β-catenin translocates to the nucleus to activate the 
transcription of CCND1 and MYC directly, followed by 
upregulation of SNAIL1, IFNG, CCL28, PD-L1, and oth-
ers, to initiate the EMT process and regulate cell progres-
sion and differentiation [63]. Canonical Wnt signaling 
is also reported to interact with canonical TGF-β path-
way to induce the development of EMT [64]. The accu-
mulated β-catenin in the nucleus reinforces canonical 
Wnt signaling in response to TGF-β reactions [65]. Both 
nuclear β-catenin and TGF-β repress the expression of 
E-cadherin gene. Loss of E-cadherin expression during 
EMT is believed to promote metastasis by allowing can-
cer cells to dissociate and invade [66, 67].

In contrast, the non-canonical Wnt signaling cascade 
induces CSC dormancy [68]. In the process of Wnt/
PCP signal transduction, ROR1 receptors induce RhoA-
mediated YAP stabilization and nuclear translocation, 
reprogramming LGR5 + proliferating CSCs into LGR5-
dormant CSCs [69]. The ROR2 receptor induces CSC 
dormancy by inhibiting canonical Wnt signaling espe-
cially through promoting the degradation of β-catenin 
[70]. It is worth noting that proliferative CSCs are more 
vulnerable to DNA damage caused by chemotherapy, 
while non-proliferative CSCs are more resistant to such 
treatments [71]. Both canonical and non-canonical Wnt 
signaling pathways contribute to therapeutic resistance 
and subsequent relapse occurs due to the expansion of 
proliferative CSCs and the survival of dormant CSCs.

Notch signaling pathway
The canonical Notch cascade operates by direct cell-
to-cell contact. This contact is initiated when trans-
membrane ligands expressed by signal-sending cells 
ligate receptors expressed on signal-receiving cells 
[72]. The ligand-mediated activation induces a series 
of proteolytic cleavages in Notch family receptors and 
releases the receptors’ NICD [73]. The NICD then 
translocates to the nucleus to initiate the Notch target 
genes transcription [74].

It is important to note that abnormal Notch signaling 
has been found to facilitate self-renewal and metastasis 

of CSCs [75]. Additionally, there is a crosstalk between 
Notch signaling and other pathways, such as TGF-β and 
EGFR. Activated Notch pathway leads to an expansion 
of TGF-β-induced smad2/3 signaling and EGFR inhibi-
tors resistance [14, 76]. Notably, the pathogenic role of 
the Notch pathway appears to be tumor type depend-
ent. Aberrant activation of Notch signaling promotes the 
development of most solid tumors but suppresses mye-
loid malignancies [77, 78]. Therefore, a comprehensive 
demonstration of the mechanisms of Notch signaling in 
specific cancers is essential for the successful develop-
ment of therapeutics targeting this pathway.

Hh signaling pathway
Accumulating evidence suggests that aberrant Hh acti-
vation leads to tumor transformation, progression, and 
therapeutic resistance in a variety of cancers. The Hh 
signaling drives cancer progression by regulating can-
cer cell proliferation, malignant transformation, metas-
tasis, and the CSC expansion [79]. Upon binding of the 
Hh ligands, such as Sonic (SHh), India (IHh), or Desert 
(DHh) to their receptors, the Hh signaling pathway 
is activated to initiate GLI transcription factors. The 
nucleus localization of GLI drives the expression of Hh 
target genes, most of which are associated with prolif-
eration, cell survival, angiogenesis, and genetic instabil-
ity [80]. The relatively high expression of GLI1, GLI2, 
PTCH1, and Hedgehog interacting protein (Hip) in CSCs 
indicates that the Hh signaling is preferentially activated 
in this cellular compartment [81].

The Hh signaling pathway has been shown to cross-
talk with other oncogenic pathways in many cancer 
types, such as RAS/RAF/MEK/ERK, PI3K/Akt, EGFR, 
and Notch [82]. KRAS has been reported to activate Hh 
signaling by modulating the expression, phosphoryla-
tion, and degradation of GLI1. Simultaneous activation 
of RAS/RAF/MEK/ERK and Hh pathway increases the 
proliferation of CSCs and their potential for tumor for-
mation. Activation of the PI3K/Akt pathway promotes 
GLI1 phosphorylation and nuclear translocation, which 
in turn increases the expression of GLI1 target genes and 
its oncogenic function. EGFR cooperates with Hh signal-
ing to enhance CSCs attributes. The combined activation 
of EGFR and Hh pathway synergistically promote tumor 
formation, in part due to EGFR-GLI regulated RAF/
MEK/ERK target JUN/AP-1 expression. JUN/AP-1 inter-
acts with GLI protein to activate downstream GLI/EGF 
target genes.

Hippo signaling pathway
Hippo pathway is a conserved signaling that modulates 
cell proliferation, differentiation, and survival. The dys-
regulation of the Hippo pathway can cause a variety of 
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diseases including cancer [83]. The Hippo pathway status 
controls the dynamic localization of YAP/TAZ between 
nucleus and cytoplasm. Once activated, the Hippo path-
way limits cell proliferation through phosphorylation and 
degradation of YAP/TAZ in cytoplasm. In contract, when 
the Hippo pathway is off, YAP/TAZ translocates into 
nucleus and binds with TEAD to induce cell prolifera-
tion, survival and migration [84]. As highly tumor-associ-
ated transcriptional regulators, YAP/TAZ are pervasively 
activated in human malignancies and initiates the growth 
of most solid tumors [85]. In addition, Hippo signaling 
and subsequent activation of YAP/TAZ is a major mech-
anism involved in CSC therapy resistance and therefore a 
potential target for CSC eradication [86].

Interactions between self‑renewal pathways and oncogenic 
pathways
Self-renewal signaling pathways contribute to cell prolif-
eration, survival, and differentiation properties in CSCs. 
In the meanwhile, oncogenic pathways including NF-κB, 
STAT3, and PI3K/Ak signaling pathways, participate cell 
stemness regulation by controlling their downstream 
gene expression, such as cytokines, growth factors, apop-
tosis genes in CSCs [61].

The NF-κB signaling pathway (including canoni-
cal and alternative NF-κB signaling) plays a crucial role 
in the regulation of inflammation and immune system, 
and its overactivation is associated with cancer progres-
sion by promoting cell proliferation, survival, angiogen-
esis and invasion [87]. Researches demonstrated that 
both canonical and alternative NF-κB and their targeted 
genes are upregulated in the majority cancers [88, 89]. 
The increased transcriptional activity of NF-κB-targeted 
genes leads to the upregulated expression of Cyclin D1, 
Cyclin E, and c-Myc, which are responsible for cell pro-
liferation [90]. What’s more, NF-κB participates in the 
regulation of a variety of carcinogenic mechanisms, 
including enhancing inflammatory responses through 
secretion of tumor necrosis factor (TNF)-α, IL-1β, IL-6, 
MCP1, COX2, and iNOS; promotion of EMT by the 
expression of vimentin and Twist; remodeling the extra-
cellular matrix through induction of angiogenesis fac-
tors (e.g., IL-8 and VEGF); and facilitating invasion and 
metastasis through MMPs [91].

STAT3 signaling has been shown to have central 
role in CSCs in promoting cell proliferation, survival, 
tumor invasion, angiogenesis, and immunosuppres-
sion [92]. IL-6 acts directly on cancer cells to induce 
the expression of STAT3 target genes, including Cyclin 
D1, BCL2-like protein 1 (BCL-xL), VEGF, MMPs, IL-10, 
and TGF-β, thereby contributing to the maintenance 
of CSC properties [93]. Activated STAT3 is essen-
tial for maintaining the expression of CSC biomarkers 

such as CD24, CD34, CD38,CD44, CD90, CD133, and 
ALDH [94]. Additionally, induction of EMT and expan-
sion of the CSC population were observed followed by 
STAT3 activation [95]. NF-κB and STAT3 are major 
factors regulating CSC angiogenesis and invasive-
ness during cancer progression, and their activation 
and interaction play an important role in controlling 
communication between cancer cells and inflamma-
tory cells [96]. NF-κB is a key transcription factor that 
drives the expression of IL-6 [97]. In particular, NF-κB 
is overexpressed in multiple human cancers and acti-
vated STAT3 in tumor also induce IL-6. This creates 
a positive-feedback loop and suggests that IL-6 may 
be the basis for NF-κB and STAT3 interaction [98]. 
Wnt/β-catenin is involved in the IL-6 feedback loop to 
provides an important basis for inflammation-induced 
tumorigenesis [99]. The Wnt ligands are upregulated 
in inflammatory tissues and produce IL-1β and IL-6 by 
acting on the transcriptional factors NF-κB and STAT3. 
These cytokines activate STAT3, which facilitates Wnt 
ligands production and to Wnt/β-catenin pathway acti-
vation [68].

PI3K/Akt pathway is a highly conserved major trans-
duction network in cells that promotes cell survival, 
growth and proliferation [100]. Dysregulation of PI3K/
Akt pathway is achieved by variety of mechanisms, 
including loss or inactivation of the tumor suppressor 
PTEN, mutation or amplification of PI3K, and activation 
of tyrosine kinase growth factor receptors or oncogenes 
upstream of PI3K [101]. Increasing evidence indicated 
that activation of PI3K in cancers is associated with can-
cer progression by enhancing CSC phenotype, EMT, 
and therapy resistance [102]. Downregulation of PTEN 
induces PI3K activation to promote cell survival, mainte-
nance of stemness, and tumorigenicity of prostate cancer 
stem-like cell population [103]. Indeed, important cross-
talk and interactions between Notch signaling and PI3K/
Akt pathway has been observed. Overactivation of PI3K/
Akt pathway can upregulate the expression of Notch 
1 ligand via NF-κB. Notch 1 in turn supports PI3K/Akt 
activity and prevents their dephosphorylation by inhibit-
ing protein phosphatase 2 (PP2A) and PTEN activation, 
thereby supporting and promoting cancer progression 
[104]. Additionally, membrane-tethered Notch may acti-
vate the PI3K/Akt pathway to promote the transcription 
of IL-10 and IL-12 [105]. The cross talk between Hh and 
PI3K/Akt is a crucial regulator of EMT, Hh-GLI induces 
EMT and invasion and metastasis by activation of PI3K/
Akt [106]. Furthermore, the mechanistic Target of Rapa-
mycin (mTOR) is a downstream component of the KI3K/
Akt pathway and has been reported to be involved in pro-
grammed cell death protein 1 (PD-1) expression through 
Hh signaling cascade, independent of SMO [107, 108].
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Abnormal activation of Wnt, Notch, Hh, and Hippo 
pathways has been shown to facilitate the maintenance of 
CSC properties and promote tumor progression. More-
over, these pathways interact with other oncogenic cas-
cades, such as RAF/MEK/ERK, PI3K/Akt, TGF-β, EGFR, 
STAT3, and NF-κB to further enhance the tumorigenic-
ity of CSCs. Therefore, targeting the WNT, Notch, Hh, 
and Hippo pathways and related oncogenic pathways is 
crucial for the eradication of CSCs and the prevention of 
tumor progression.

Biomarker‑ and pathway‑targeting strategies
Biomarker‑targeting strategies
Selective targeting of CSCs is an effective strategy to 
inhibit cancer progression and reduce risk of tumor 
relapse. Clinical trials have shown that suppressing 
the expression of CSCs biomarkers can reduce CSCs 
stemness [109–118] (Table  1). The interaction between 
CD44 and HA is associated with poor prognosis, and 
CD44 has been shown to be an important biomarker for 
CSCs. RG7356, for example, is a recombinant anti-CD44 
immunoglobulin G1 humanized monoclonal antibody. It 
binds specifically to the HA-binding region of the extra-
cellular domain of all CD44 heterodimers, to inhibit 
the interaction between HA and CD44, and has exhib-
ited growth inhibition effect on several tumors in  vitro 
[109]. A randomized phase II trial of HA-irinotecan on 
CD44-expressing SCLC showed significant clinical ben-
efit in patients, suggesting that delivery of chemothera-
peutic agents to activated CD44, thereby abrogating the 
interaction of CD44 with HA, is a compelling approach 
to cancer treatment [110]. CD133 has been reported 
to play a role in tumor spread and is considered a good 
candidate for targeting CSCs. A phase II clinical study 
provides preliminary evidence that CART-133 cells 
have antitumor activity with a manageable safety pro-
file in advanced HCC [118]. High expression of EpCAM 
has been observed on CSCs and targeting EpCAM is an 
effective strategy for cancer treatment. A phase I clini-
cal trial indicated that VB4-845 successful blocks tumor 
growth in patients with high EpCAM expressing non-
muscle-invasive bladder cancer [115]. However, although 
in  vitro experiments have shown significant anticancer 
effects, clinical trials of adecatumumab, huKS-IL-2, and 
catumaxomab targeting EpCAM exhibited limited clini-
cal benefits for cancer patients [114, 116, 117]. ALDHs 
have been evaluated as potential prognostic markers of 
cancer. In a clinical trial of curcumin and curcumin com-
bined with 5-fluorouracil/oxaliplatin in patients with 
colorectal liver metastases (CRLM), curcumin alone 
and in combination significantly reduced the number of 
spheroids and ALDH-active cells. Curcumin enhanced 
anti-proliferation and apoptosis effects of 5-fluorouracil/

oxaliplatin and reduced the expression of stem cell asso-
ciated markers ALDH and CD133 [111]. Nevertheless, no 
clinical benefits were observed in phase II trials of pacli-
taxel (in combination with reparixin) and disulfiram [112, 
113]. In summary, targeting CSC biomarkers to eradicate 
CSCs selectively is expected to be an effective strategy to 
inhibit cancer progression and reduce the risk of tumor 
relapse.

Pathway‑targeting strategies
Developmental signaling pathways that regulate the 
maintenance and survival of CSCs are potential targets 
to eradicate CSCs, such as Wnt, Notch, Hh, and Hippo 
(Table 1, Fig. 3).

Inhibition of Wnt signaling involves several critical 
steps, including blocking the secretion of Wnt ligands, 
interference with ligand-receptor binding, and modula-
tion of intracellular signal transduction. Targeting these 
steps is crucial to inhibit Wnt signaling and its effects on 
CSCs. Porcupine inhibitors, which block the secretion of 
Wnt ligands, hold promise as ideal drugs for eliminating 
proliferative CSCs induced by canonical Wnt signaling 
and dormant CSCs induced by non-canonical Wnt sign-
aling. Clinically, porcupine inhibitors have shown their 
therapeutic potential in various tumors. Currently, only 
4 molecules, namely LGK974, ETC159, CGX1321, and 
RXC004, are undergoing Phase I clinical trials [119, 190]. 
However, the clinical use of these inhibitors may have a 
relatively narrow therapeutic window due to the involve-
ment of the Wnt signaling cascade in the homeostasis of 
key organs and tissue [191]. Interfering with the binding 
of Wnt ligands to their receptors is another effective strat-
egy to inhibit Wnt signaling. Wnt/FZD antagonists such 
as ipafricept (IPA; OMP54F28) and vantictumab (OMP-
18R5) can directly bind to Wnt ligands or FZD receptors, 
competing with Wnt ligands for binding to FZD recep-
tors [120, 121]. This competition inhibits Wnt regulatory 
processes in both the canonical and non-canonical Wnt 
pathways [192, 193]. Alternatively, blocking intracellular 
signal transduction may help to inhibit Wnt signaling. 
DVL inhibitors disrupt the interaction between DVL and 
PDZ, resulting in the subsequent inhibition of the sign-
aling pathway [194, 195]. In canonical Wnt signaling, 
the LRP5/6 inhibitor BMD4503-2 competitively binds 
to the LRP5/6-sclerostin complex, thereby reversing 
Wnt/β-catenin pathway activation [196]. Stabilization of 
the β-catenin structural complex prevents the localiza-
tion of β-catenin in the nucleus, making it an attractive 
therapeutic target. Tankyrases inhibitor, E7449, regu-
lates the stability of AXIN by directing its ubiquitylation 
and proteasomal degradation, thereby increasing the 
activity of the destruction complex and reducing free 
β-catenin [122, 197]. CK1 agonists selectively potentiate 
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Table 1 Clinical trials of different strategies for eradicating CSCs

Therapies Agents Targets Diseases Clinical trial ID Study phase Ref.

Biomarker-targeting 
strategy

RG7356 CD44 Solid tumors NCT01358903 Phase I [109]

HA-irinotecan CD44 Extensive-stage SCLC / Phase IIa [110]

CART-CD133 CD133 HCC NCT02541370 phase II [118]

Curcumin ALDH CRC NCT01490996 Phase I [111]

Paclitaxel
(with reparixin)

ALDH TNBC NCT01861054 Phase II [112]

Disulfiram ALDH Germ cell tumor NCT03950830 Phase II [113]

Adecatumumab EpCAM Hormone refractory 
prostate cancer

/ Phase I [114]

VB4-845 EpCAM Nonmuscle-invasive 
bladder cancer

/ Phase I [115]

huKS-IL2 EpCAM Advanced solid tumors NCT00132522 Phase Ib [116]

Catumaxomab EpCAM Epithelial cancer NCT01320020 Phase I [117]

Pathway-targeting 
strategy

WNT974 Porcupine CRC NCT01351103 Phase I [119]

Ipafricept (IPA)
with nabpaclitaxel/
gemcitabine

FZD Pancreatic cancer NCT01351103 Phase Ib [120]

Vantictumab
(OMP-18R5)
with paclitaxel

FZD HER2-nagetive BC NCT01973309 Phase Ib [121]

E7449 Tankyrase Advanced solid tumor NCT01618136 Phase I [122]

CWP232291 β-catenin complex AML NCT01398462 Phase I [123]

Acylhydrazones β-catenin complex AML NCT00990587 Phase I [124]

Cirmtuzumab ROR1 Chronic lymphocytic 
leukemia

NCT02222688 Phase I [125]

Collagenase (CHH) YAP Uterine fibroids NCT02889848 Phase I [126]

PF-03084014 GSIs Desmoid fibromatosis NCT00878189 Phase I [127]

OMP-59R5 GSIs Solid tumors NCT01277146 Phase I [128]

BMS-986115 GSIs Advanced solid tumor NCT01986218 Phase I [129]

RO2929097 GSIs High grade gliomas NCT01119599 Phase 0/I [130]

MK-0752 GSIs Pancreatic ductal adeno-
carcinoma

NCT01098344 Phase I [131]

RO4929097
(with Vismodegib)

GSIs Advanced sarcoma NCT01154452 Phase Ib/II [132]

LY900009 GSIs Advanced-stage cancer NCT01158404 Phase I [133]

Demcizumab
(with pemetrexed/
carboplatin)

Notch ligand NSCLC NCT01189968 Phase IB [134]

Rovalpituzumab tesirine Notch ligand Extensive-stage-SCLC NCT03033511 Phase III [135]

Enoticumab Notch ligand Advanced-stage solid 
tumors

NCT00871559 Phase I [136]

Brontictuzumab Notch receptor Solid tumors NCT01778439 Phase I [137]

Tarextumab (with etopo-
side/cisplatin)

Notch receptor Extensive-stage SCLC NCT01859741 Phase II [138]
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Table 1 (continued)

Therapies Agents Targets Diseases Clinical trial ID Study phase Ref.

Vismodegib
(GDC-0449)

SMO Advanced Basal-Cell 
Carcinoma

NCT00607724 Phase I [139]

IPI-926 SMO Solid tumors / Phase I [140]

TAK-441 SMO Advanced solid tumors NCT01204073 Phase I [141]

PF-04449913 SMO Advanced solid tumors NCT01286467 Phase I [142]

LDE225 SMO Extensive stage SCLC 01579929 Phase I [143]

LY2940680 SMO Advanced/metastatic 
cancer

NCT01226485 Phase I [144]

Sarigegib
(with cetuximab)

GLI Recurrent/metastatic 
head and neck squa-
mous cell carcinoma

NCT01255800 Phase I [145]

Itraconazole GLI Biochemically
relapsed prostate
cancer

NCT01787331 Phase II [146]

AZD9150 STAT3 Lymphoma/lung cancer / Phase I [147]

OPB-111077 STAT3 Advanced Cancers NCT01711034 Phase I [148]

Alpelisib PI3K Epithelial ovarian cancer NCT01623349 Phase Ib [149]

Duvelisib PI3K T-cell lymphoma NCT01476657 Phase I [150]

TME-targeting strategy Bintrafusp Alfa TGF-β/
PD-L

NSCLC NCT02517398 Phase I [151]

M7824 TGF-β Advanced solid tumors NCT02517398 Phase I [152]

Galunisertib TGF-β Advanced rectal cancer NCT02688712 Phase II [153]

FIGHT-101 FGF/
FGFR

Advanced malignancies NCT02393248 Phase I/II [154]

Fruquintinib VEGF/
VEGFR

metastasis CRC NCT02314819 Phase III [155]

Ramucirumab /Pembroli-
zumab versus Standard 
of care (SOC)

VEGF/
VEGFR

NSCLC NCT03971474 phase II [156]

Rilotumumab
(AMG 102)

HGF NSCLC NCT02318368 Phase I/II [157]

Siltuximab IL-6 Advanced solid tumors / Phase I/II [158]

Immune-targeting 
strategy

Neo-DCVac DC NSCLC NCT02956551 Phase I [159]

DCs in combination 
of NAC-AC

DC Breast cancer NCT03450044 Phase I/II [160]

DCs in combination 
of poly-ICLC

DC Pancreatic cancer NCT01410968 Phase I [161]

DCVax-L plus SOC DC Glioblastoma NCT00045968 Phase III [162]

Decitabine
(with talazoparib)

DNMT AML NCT02878785 Phase I [163]

Azacitidine
(with pembrolizumab)

DNMT Colorectal cancer NCT02260440 Phase II [164]

Guadecitabine
(with GM-CSF)

DNMT Advanced colorectal 
cancer

NCT01966089 Phase I [165]

Abexinostat HDAC Solid tumor malignan-
cies

EudraCT-2009–013691-47 phase II [166]

Panobinostat HDAC AML / Phase I [167]

Entinostat HDAC HER2 + metastatic BC NCT02833155 Phase I [168]
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CK1 kinase activity and stabilize the β-catenin destruc-
tion complex that decreasing Wnt signaling [198]. Finally, 
targeting the downstream effectors, such as β-catenin/
TCF and β-catenin-dependent transcriptional activa-
tors, is another feasible strategy to inhibit Wnt-mediated 
transcriptional activity [199, 200]. Previous studies have 
suggested that compounds like CWP232291 and acyl-
hydrazones block or disrupt the interaction between 

β-catenin and the TCF complex, suppressing Wnt tar-
get genes [123, 124]. In non-canonical Wnt signaling, 
ROR1-inhibitors ameliorate the access of a ctivated 
Wnt-signaling-mediated cancer cell proliferation, inva-
sion, and therapy resistance [201]. Cirmtuzumab has 
shown obvious inhibitory effects on ROR1 expression 
and tumor progression in chronic lymphocytic leukemia 
patients [125].

Table 1 (continued)

Therapies Agents Targets Diseases Clinical trial ID Study phase Ref.

Tazemetostat EZH2 B-cell non-Hodgkin 
lymphoma

/ Phase II [169]

GSK2816126 EZH2 solid tumors or B-cell 
lymphomas

NCT02082977 Phase I [170]

SHR2554 EZH2 Mature lymphoid neo-
plasms

NCT03603951 Phase I [171]

Nivolumab (with chemo-
therapy)

PD-1 Oesophageal adenocar-
cinoma

NCT02872116 Phase III [172]

Pembrolizumab PD-1 Advanced
Colorectal Cancer

NCT02563002 Phase III [173]

Balstilimab/Zalifrelimab PD-1/
CTLA-4

Advanced cervical 
cancer

NCT03495882 Phase II [174]

Tremelimumab CTLA-4 HCC NCT01853618 Phase I/II [175]

LY3415244 PD-L1/
TIM-3

Advanced solid tumors NCT03752177 Phase I [176]

Atezolizumab PD-L1 Non-squamous
NSCLC

JapicCTI-184038 Phase II [177]

Pembrolizumab PD-L1 NSCLC NCT02142738 Phase III [178]

Tiragolumab PD-L1 NSCLC NCT03563716 Phase III [179]

Induced differentiation 
strategy

ATRA 
(with apatinib)

Differentiation Head and neck adenoid 
cystic carcinoma

NCT02775370 phase II [180]

ATRA Differentiation Adenoid cystic carci-
noma

/ phase II [181]

ATRA 
(with belinostat)

Differentiation Pancreatic cancer NCT03307148 Phase I [182]

ATRA 
(with paclitaxel 
and interferon α2b)

Differentiation Cervical cancer / phase II [183]

IDH1-vac IDH1 Newly
diagnosed glioma

NCT02454634 phase I [184]

Olutasidenib
(FT-2102)

IDH1 Relapsed or refractory 
IDH1-mutant glioma

NCT03684811 Phase Ib/II [185]

Ivosidenib IDH1 Chemotherapy-refrac-
tory
cholangiocarcinoma

NCT02989857 phase III [186]

Vorasidenib IDH1/2 Recurrent or progressive 
glioma

NCT02481154 Phase I [187]

Temozolomide IDH1/2 1p/19q
non-co-deleted anaplas-
tic glioma

NCT00626990 phase III [188]

Olaparib IDH1/2 IDH1/IDH2-Mutant
Mesenchymal Sarcomas

NCT02576444 phase II [189]
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Various potential anticancer therapeutics targeting the 
Notch pathway have been explored to eliminate CSCs 
including inhibiting the release of Notch ligands, block-
ing the proteolytic cleavage of Notch receptors, inter-
rupting the Notch signaling transduction and inhibiting 
the expression of target genes associated with Notch sign-
aling. Targeting Notch ligands or receptors can inhibit 
aberrant signaling initiation and decrease tumorigenesis 
in CSCs [135–138, 202]. Phase I Clinical trials have dem-
onstrated the antitumor activity of DLL4-targeted agents, 
such as demcizumab and enotizumab, either as mono-
therapy or in combination therapy [134, 136]. Brontictu-
zumab, a Notch 1 inhibitor, has shown efficacy signal in 
patients with Notch 1 activation and combination ther-
apy with other anticancer agents has improved clinical 

benefits [137]. However, Notch 2/3 receptor inhibitor 
tarextumab had limited additional effects when com-
bined with gemcitabine and nab-paclitaxel in untreated 
advanced pancreatic adenocarcinoma [138]. ADAMs-
catalyzed S2 cleavage occurs in the ligand-receptor bind-
ing domain, which mediates the release of the ectodermal 
structural domain and regulates the rate of Notch signal-
ing [203]. Notch signaling from extracellular to intracel-
lular relies heavily on the γ-secretase complex-mediated 
final cleavage. γ-secretase inhibitors (GSIs) block the 
S3 cleavage of Notch receptors, preventing the release 
of NICO and subsequent activation of Notch signal-
ing [204]. Several GSIs including PF-03084014, OMP-
59R5, BMS-986115, RO2929097, MK-0752, RO4929097, 
and LY900009, have been investigated in clinical trials 

Fig. 3 Illustration of abnormal pathways and potential targets in CSCs. FZD antagonists target either the Wnt proteins or FZD receptor complexes 
to inhibit the ligand-receptor interactions in both canonical and non-canonical Wnt pathway. DVL inhibitors block the DVL-PDZ interaction, 
resulting in subsequently inhibition of the signal transduction pathway. Tankyrase inhibitors stabilize Axin via inhibition of its proteasomal 
degradation, conversely resulting in increased degradation of β-catenin. CK1 agonists selectively potentiate CK1 kinase activity and stabilize 
the β-catenin destruction complex that decreasing Wnt signaling. β-catenin/TCF regulators inhibit Wnt-mediated transcriptional activity. LRP5/6 
inhibitors competitively bind to the LRP5/6-sclerostin complex thus reverse the activation of Wnt/β-catenin signaling. ROR1-inhibitors ameliorate 
the access activated Wnt-signaling-mediated cancer cell proliferation, invasion, and therapy resistance. Potential anticancer therapeutic agents 
targeting the Notch pathway include targeting Notch ligands or receptors, inhibitors of the γ-secretase complex, and inhibitors of NICD-interacting 
transcriptional complex. SMO inhibitors block the Hh signaling by cyclopamine-competitively binding to SMO. GLI inhibitors prevent 
the transportation of GLI protein to nucleus thus decreased tumorigenesis gene expression. Inhibition of STAT3 and PI3K blocks their interactions 
with self-renewal pathways to facilitate CSCs eradication
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[127–133]. However, dose-limiting toxicities have been 
observed with most GSIs. A potentially superior option 
to GSIs is the use of γ-secretase modulators (GSMs). 
GSMs modify the catalytic activity of γ-secretase rather 
than non-selectively inhibiting it, thereby preserving 
some Notch signaling function and theoretically reduc-
ing side effects [205]. Activating target gene transcription 
is the final step in Notch signaling transduction. Disrupt-
ing the Notch transcriptional complex downstream of 
abnormal Notch activation has advantages in repressing 
the expression of Notch targeted genes [206]. Although 
inhibition of the Notch pathway has shown significant 
anti-tumor efficacy in preclinical research, these results 
have not been consistently identified in clinical trials.

Inhibiting the expression of Hh ligands, SMO and GLI 
transcription factors is thought to be an effective way to 
suppress the over activation of the Hh signaling in CSCs. 
Clinical trials are currently underway for agents target-
ing these components [207]. Intracellular cyclopamine is 
known to inhibit the activity of the Hh pathway through 
directly binding and inactivating SMO. Cyclopamine 
derivatives also show SMO inhibitory effect by competi-
tively binding to SMO, thereby blocking Hh signaling 
[208]. Several SMO inhibitors, including GDC-0449, IPI-
926, TAK-441, PF-04449913, LDE225, and LY2940690 
were under clinical trials, all of which showed antican-
cer effects through interrupting Hh signaling [139–144]. 
However, tumor cells frequently acquire resistance to 
SMO inhibitors through SMO mutation [209]. Fur-
thermore, SMO antagonists have limited efficacy when 
aberrant Hh activation occurs due to genetic altera-
tions downstream of SMO, or SMO-independent acti-
vation of GLI transcription factors. In this context, the 
development of GLI inhibitors is considered an alterna-
tive strategy [210]. In preclinical studies, GLI inhibitors 
have shown promising results. Encouraging anticancer 
effects was observed in Sarigerib treated recurrent/meta-
static head and neck squamous cell carcinoma patients. 
Mechanical research indicated that the clinical response 
was associated with the regulation of Hh signaling path-
way [145]. Importantly, targeting both SMO and GLI, 
in a synergistic inhibition of the Hh pathway, provides 
stronger efficacy than monotherapy [211]. Endoplasmic 
reticulum aminopeptidase 1 (ERAP1) plays a positive 
role in regulating Hh signaling. Inhibition of ERAP1 con-
trols Hh-induced tumor growth, suggesting that ERAP1 
is a promising therapeutic target in Hh over-activated 
tumors [212]. Continued research and clinical trials are 
necessary to further explore and optimize strategies tar-
geting the above signaling pathway for the effective treat-
ment of CSCs and related cancers.

Inhibition of YAP/TAZ activity is a potential strategy 
to eliminate CSCs, while the direct inhibitors of YAP/

TAZ are still under development [86]. A clinical trial of 
collagenase on patients with uterine fibroids showed that 
collagenase decreased the expression of cell prolifera-
tion marker and phosphorylated YAP [126]. Inhibition of 
upstream Hippo kinases can be an attractive strategy to 
suppress tumor progression. Loss of LATS1/2 in tumor 
cells inhibits tumor growth and enhances anti-tumor 
immune response [213].

On the other hand, interfering the interaction between 
pathways might help to eradicate CSCs. STAT3 inhibi-
tor, AZD9150, has showed preclinical activity in patients 
with highly treatment-refractory lymphoma and NSCLC 
in a phase I dose-escalation study [147]. OPB-111077, a 
novel inhibitor of STAT3 and mitochondrial oxidative 
phosphorylation, showed notable clinical activity in a 
subject with diffuse large B-cell lymphoma [148]. PI3K 
inhibitor, alpelisib, provided preliminary clinical activity 
in epithelial ovarian cancer [149]. Duvelisib (IPI-145) is 
an oral inhibitor, which demonstrated promising clini-
cal activity and an acceptable safety profile in relapsed/
refractory T-cell lymphoma [150].

TME and TME‑targeting strategies
The TME play a crucial role in maintaining CSC proper-
ties and creating an inflammatory and immunosuppres-
sive niche [214]. TME-induced chronic inflammation and 
immunosuppressive niche are closely related to the high 
cancer incidence. A prolonged and unresolved inflam-
matory response leads to the aberrant activation and 
accumulation of various stromal cells, which disrupts the 
normal function of stromal cells in maintaining homeo-
stasis and promotes EMT activation and the formation 
of a tumorigenic environment. Furthermore, exosomes 
secreted from CSCs and stromal cells contribute to drug 
resistance and tumor immunosuppression environment 
formation, thus promoting CSC stemness [215, 216]. A 
properly functioning host immune system is essential 
to prevent inflammation-induced dysregulation of TME 
homeostasis. However, the recruitment and activation of 
stromal cells can suppress the host immune system [217]. 
On this basis, various strategies targeting EMT have been 
employed to eliminate CSCs (Table 1, Fig. 4).

The role of TME in CSC formation
Cancer associated fibroblasts (CAFs) within the TME 
play an integral role in maintaining CSCs and promot-
ing drug resistance. Therapeutic agents have been devel-
oped to directly target surface markers on CAFs, such 
as PAF, S1004A, and TEM8, in order to control tumor 
growth [218]. Moreover, cytokines and growth factors 
secreted by CAFs, including TGF-β, IL-6, EGF, VEGF, 
and HGF, have been reported to facilitate tumor progres-
sion [219]. Within the TME, several types of immune 
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cells contribute to chronic inflammation and promote an 
immunosuppressive environment. These include regu-
latory T cells (Tregs), myeloid-derived suppressor cells 
(MDSCs), and inflammatory tumor-associated mac-
rophages (TAMs). Tregs are a subset of  CD4+ T cells 
characterized by the expression of FoxP3 in the nucleus 
and CD25 and CTLA-4 on the cell surface. They exert 
significant immunosuppressive effects by producing 
immune inhibitory cytokines such as TGF-β and IL-10 
as well as expressing immune checkpoint molecules like 
PD-1, CTLA4, LAG3, TIM3, and TIGIT [220]. TAMs 
are one of the most abundant infiltrating immune cells 
in TME [221]. Immunosuppressive factors from TAMs, 
such as TGF-β and IL-10, can stimulate the activity 
of Tregs and suppress the immune activity of T-cells, 
leading to immune escape. TAMs also secreted pro-
inflammatory cytokines, such as IL-6, which activate 
signaling pathways like STAT3, PI3K/Akt, cyclooxy-
genase 2 (COX2), prostaglandin E2 (PGE2), β-catenin, 
and Ras-MARK pathways. Activating of these pathways 

alters the expression patterns of genes associated with 
proliferation, survival, and cell cycle regulation, thereby 
promoting cancer cell invasion and drug resistance [222, 
223]. MDSCs support tumor progression through pro-
moting cancer cell survival, angiogenesis, invasion, and 
metastasis. Expansion and recruitment of MDSCs driven 
by TME and their secreted inflammatory factors (e.g., 
TGF-β, VEGF, IL-10, IL-12, IL-13, etc.) mediate chronic 
inflammatory and immunosuppressive activity [224]. 
Elevated TGF-β has been proved to suppress the effector 
function of nature killer (NK) cell, hinder dendritic cell 
(DCs) function, and prevent TH1 and TH2 cell differen-
tiation, while promoting TH17 and Treg cell programme 
[225]. Modulation of CAFs, Tregs, TAMs, and MDSCs 
may alleviate immunosuppressive and inflammatory 
TME, thus increase sensitivity of CSCs to treatment.

TME‑targeting strategies
Regulation of the secreted growth factors and cytokines 
is one of the main strategies to modulate TME. Among 

Fig. 4 TME-induced immunosuppressive environment for the maintenance of CSC properties. Cytokines and growth factors from CAFs, Tregs, 
MDSCs and TAMs activate cancer-related EMT and suppress DC cell maturation, NK cell function, and TH1/TH2 differentiation. Additionally, 
TME-derived factors activate cancer-associated pathways including PI3K/Akt, JAK/STAT, and RAS
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these growth factors, TGF-β is one of the most exten-
sively studied cytokines derived from TME. TGF-β sign-
aling in stromal cells contributes to cancer progression 
by suppressing T-cell responses and regulating immune 
escape [225]. In addition, Non-canonical TGF-β has 
been reported to activate non-Smad pathways, includ-
ing MAPK, YAP/TAZ, PI3K/Akt, and AMPK signaling, 
leading to fibrosis, immune evasion, and EMT, ultimately 
promoting cancer progression [226]. At present, TGF-β-
targeting agents have been designed and have achieved 
satisfactory clinical activity. Clinical trials of M7824 and 
galunisertib in cancer patients have shown encourag-
ing clinical efficacy by targeting TGF-β [152, 153]. EGF/
EGFR interact with the MEK-ERK and AKT-PI3K sign-
aling pathways, which leads to cancer cell proliferation 
[227]. Afatinib or olmutinib in combination with con-
ventional chemotherapeutic agents improve CSC eradi-
cating efficacy by inhibiting EGFR tyrosine kinase and 
ATP-binding cassette subfamily G member 2 (ABCG2) 
[228, 229]. VEGF/VEGFR interaction involves the activa-
tion of downstream pathways, including Ras-Raf-MAPK, 
AKT-mTOR, and Scr-FAK. Activation of these pathways 
promotes cell survival, proliferation, migration, and dif-
ferentiation [227]. A randomized clinical trial indicated 
that fruquintinib, a VEGFR inhibitor, increased over-
all survival (OS) in patients with metastatic CRC [155]. 
Ramucirumab increased the sensitivity of cancer cells to 
immune checkpoint inhibitors (ICIs) and improved OS 
by inhibiting VEGF/VEGFR [156]. HGF from TME has 
been shown to regulate the innate resistance of BRAF-
mutant cancer cells to RAF inhibitors by activating the 
MAPK and PI3K/Akt signaling pathways in cancer cells 
[230]. A phase I/II clinical trial evaluating rilotumumab, 
an anti-HGF antibody, in combination with erlotinib in 
patients with metastatic NSCLC showed that the combi-
nation of rilotumumab and erlotinib was more effective 
than erlotinib alone [157]. Suppressing TME-induced 
cytokines production can help restore antitumor immu-
nity and sensitize tumors to immunotherapy. IL-6 plays 
a critical role in inflammation and cancer development. 
It has been reported that high levels of IL-6 confer resist-
ance to cisplatin in patients with non-small-cell lung can-
cer (NSCLC) [231]. However, siltuximab, an anti-IL-6 
monoclonal antibody, showed limited efficacy in patients 
with advanced solid tumors [158].

CSCs and immunoevasion
Tumor immunosurveillance is orchestrated by tumor 
immunogenicity and immunoevasion, immune cell 
infiltration, and T cell checkpoints [232]. Stromal 
cells and recruited immune cells in TME collectively 
formed an immunosuppressive niche that facilitates the 
maintenance and proliferation of CSCs. Furthermore, 

dysregulated cellular antigen processing and presenta-
tion machinery, as well as upregulated expression of 
immune checkpoint molecules allow CSCs to escape 
from immune surveillance (Fig. 5).

CD8+ T lymphocytes play an indispensable role in 
regulating adaptive immune responses. They detect 
antigenic peptides bound to MHC-I perceptively and 
efficiently eliminate abnormal cells, thereby prevent-
ing cancer cell colonization. Stimulation with inter-
feron-gamma (IFN-γ) can upregulate the expression of 
MHC-I antigen presentation components [233]. While 
these compositions (TAP, ERAPs, IFN-γ) are not strictly 
required for cell proliferation, their loss results in a 
reduction of pathway function and decreased cell sur-
face levels of MHC-I molecules [234]. The presentation 
of cancer-associated peptide antigen by MHC-I is an 
important step for antitumor CD8 + T cell responses. 
However, CSCs have mapped out strategies to reduce 
antigen presentation thus to escape immune recogni-
tion, including inhibition of DC function and downregu-
lation of MHC-I expression [235]. A growing number of 
studies demonstrated that CSCs alter DC phenotypes 
and impair their recruitment to limit them to activate T 
cells [236, 237]. On the other hand, activation of immune 
checkpoint pathways in the TME, including CTLA-4 
and PD1/PDL1, reprograms immune homeostasis and 
enables cancer cells to evade immune attack [238]. ICIs 
that block CTLA-4 and PD1/PDL1 have demonstrated 
promising therapeutic efficacy in various human cancers. 
However, the effective antitumor responses of ICIs often 
require the secretion of IL-12 by DCs [239]. Additionally, 
ICIs induce, instead of relieve, T cell dysfunction in situ-
ation of low MHC-I levels [240]. In this basis, enhance-
ment of antigen processing and presentation machinery 
and/or combination with ICIs may be an attractive strat-
egy for CSCs eradication.

Type 1 conventional DCs (cDC1s) are a major subset 
of DCs that respond to invasive pathogens and anti-
tumor immunity via antigen presentation to cytotoxic 
 CD8+ T cells [241]. The cDC1s facilitate the differentia-
tion and recruitment of tissue-resident memory  CD8+ T 
cells within the TME by producing CXCL9 and CXCL10 
to activate STING pathway. In addition, cDC1s-derived 
IL-12 increases the sensitivity of cancer cells to ICIs by 
augmenting  CD8+ T cell activation. Adequate  CD8+ 
T cell activation, in turn, induces the maturation and 
migration of cDC1s to the draining lymph nodes [235]. 
Therefore, DCs serve as a potent tool for motivating anti-
tumor responses to eradicate CSCs effectively. DC vac-
cines are currently under clinical investigation and have 
shown promising therapeutic modality. DC vaccines, 
including Neo-DCVac, autologous DCs in combination 
with doxorubicin and cyclophosphamide (NAC-AC) 
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or toll-like receptor agonist have demonstrated efficacy 
in restraining tumor progression by promoting T cell 
mediated immunity and sensitizing cancer cells to ICIs 
(Table 1) [159–162].

The binding of MHC-I with specific peptides and their 
presentation on the cell surface is an indispensable step in 
antitumor immunity. Loss expression of MHC-I renders 
CSCs invisible to the immune system. Clinical evidence 
has confirmed that advanced melanoma patients with 
low levels of MHC-I on the cancer cell surface derived 
limited benefit from ICIs therapy [242]. The expression 
level of MHC-I is dependent on NOD-like receptor fam-
ily CARD domain containing 5 (NLRC5), which is regu-
lated by IFNγ-activated STAT1 signaling [243]. Yet no 
clinical trial records regarding the regulation of MHC-I 
by NLRC5 in the PubMed database. The downregulated 
expression of MHC-I is associated with repressive his-
tone modifications of Lys-27 in histone 3 (H3K27m3), 
including hypermethylation, histone deacetylation and 

trimethylation. These modifications are partly regulated 
by enhancer of zeste homolog 2 (EZH2). Accordingly, 
inhibition of DNA Methyltransferases (DNMTi), His-
tone deacetylases (HDACi), and EZH2 (EZH2i) theo-
retically has the potential to increase the expression 
of MHC-I [244]. The efficacy of these drugs, either as 
monotherapy or in combination with other treatments, 
has been evaluated in clinical trials. Some of these trials 
have demonstrated improved sensitivity of cancer cells 
to drug administration (Table 1) [163–169]. For instance, 
SHR2554, an EZH2 inhibitor, has shown promising 
antitumor activity in patients with relapsed or refrac-
tory follicular lymphoma, peripheral T-cell lymphoma, 
and classical Hodgkin lymphoma [171]. EZH2 inhibitor 
tazemetostat showed encouraging efficacy in patients 
with R/R EZH2 mutation-positive follicular lymphoma 
with a manageable safety profile in the overall popula-
tion [169]. HDAC inhibitors including abexinostat, pan-
obinostat, and entinostat have shown antitumor efficacy 

Fig. 5 DC and T cell mediated tumor immunology and immunotherapy. In MHC-I antigen presentation pathway, oligopeptides degraded 
from cytosolic and nuclear protein are taken up and translocated into ER by TAP and further trimmed by ERAPs. The modified peptides bind 
to MHC-I and are transported to the cell surface for exposure to CD8 + T cells [233]. DC produce CXCL9, CXCL10 and IL-2 to recruit effective T 
cells therefore increase immune response. Activation of CTLA-4 and PD1/PDL1 reprogrammed immune homeostasis and induced cancer cells 
to eliminate T cell function. Immunotherapies that inhibit CTLA-4 and PD1/PDL1 and enhance MHC-I expression can effectively modulate DC 
function and improve cancer immunotherapy
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in clinical trials [166–168]. However, DNMT inhibi-
tors, such as decitabine, azacitidine, and guadecitabine, 
have shown limited clinical activities on tested cancers 
[163–165].

T cells are activated through a complex interplay 
involving antigen specific T cell receptor recognition 
of peptides presented by MHC molecules and interac-
tions between membrane proteins on antigen-presenting 
cells (APCs, including CD80 and CD86) and CD28 on T 
cells [245]. CTLA-4 inhibits the activation of T cells by 
competing with CD28 for binding to CD80 and CD86 
on APCs, thereby attenuating  CD8+ T cell responses. 
Another important immune checkpoint pathway involves 
the PD-1 and its ligand PD-L1. The expression of PD-1 on 
T cells and PD-L1 on tumor cells or other immune cells 
is considered a hallmark of T cell dysfunction and pro-
motes T cell exhaustion [246]. Blockade of the expression 
of CTLA-4 and the interaction between PD-1 and PD-L1, 
has been shown to restore T cell function and enhance 
antitumor responses during chronic infections and in the 
TME [247]. ICIs specifically target these immune check-
point molecules and modify the immune environment, 
have demonstrated the effectiveness of ICIs in various 
cancers (Table  1) [172–179]. Nivolumab and pembroli-
zumab, the PD1 inhibitors, have shown longer OS/FPS 
in multiple cancers compared to chemotherapy in clini-
cal trials [172, 173]. Balstilimab (PD-1 inhibitor) and 
zalifrelimab (CTLA-4 inhibitor) are checkpoint inhibi-
tors emerging as promising investigational agents for the 
treatment of advanced cervical cancer. A phase II clini-
cal trial indicated that the combination of balstilimab and 
zalifrelimab had a high proportion of complete responses 
and efficacy in patients with recurrent and/or metastatic 
cervical cancer [174]. Tremelimumab is a fully mono-
clonal antibody that binds to CTLA-4 on the surface of 
activated T cells, which triggered the accumulation of 
intratumoral CD8 + cells in patients with advanced HCC 
[175]. PD-L1 inhibitors, such as atezolizumab, pembroli-
zumab, tiragolumab, improve objective response rates 
and are associated with significantly longer PFS and OS 
[177–179]. However, LY3415244, a TIM-3/PD-L1 inhibi-
tor designed to overcome primary and acquired anti-PD-
(L)1 resistance, was terminated early due to unexpected 
immunogenicity [176].

Agent‑induced CSC differentiation
CSC-induced poorly differentiated cancers are more 
malignant, differentiation therapy is therefore a strat-
egy to inhibit tumorigenesis by inducing the con-
version of highly malignant undifferentiated cancer 
cells into benign differentiated cells. Several agents, 
including retinoic acid (RA), cAMP, sodium butyrate 
and cytokines, have been proved to induce cell 

differentiation in specific types of cancer. ATRA induces 
terminal differentiation and exhibits significant antican-
cer effect in patients with AML and acute promyelocytic 
leukemia (APL) [248]. Ongoing research is exploring the 
potential of ATRA and its derivatives for differentiation 
therapy in non-AML/APL [180, 181, 183]. New differ-
entiation-inducing drugs that inhibit mutant isocitrate 
dehydrogenase (IDH) 1 and IDH2 have shown differen-
tiating potential clinically, which have been approved 
for AML therapy. Mutations in IDH1 and IDH2 render 
their functional activity in differentiation regulation, 
particularly by increasing histone and DNA methylation 
[249]. Furthermore, epigenetic regulatory inhibitors 
such as DNMTi and HDACi, which promote MHC-I 
expression, have also demonstrated their involvement 
in cell differentiation. IDH1/2 mutations have been 
observed in solid tumors, and clinical trials are under-
way to evaluate the effectiveness of IDH1/2 inhibitors 
in inducing CSC differentiation in solid tumors. Con-
tinued research in differentiation therapy holds prom-
ise for expanding its application across various cancer 
types (Table  1) [184–189]. IDH1-Vaccine or IDH1-
targeting agents including ivosidenib and olutasidenib 
showed clinical benefit in cancer patients in terms of 
reduced tumor burden and increased PFS [184–186]. 
Vorasidenib, a dual IDH1/2 inhibitor, showed prelimi-
nary antitumor efficacy in patients with recurrent or 
progressive nonenhancing mIDH lower grade gliomas 
[187].

Other strategies of target CSCs
Cancer is a complex disease that affects the health of 
people around the world. Chemotherapy remains an 
important treatment for cancer, despite advances in sur-
gery and radiotherapy. Current treatments are expensive 
and are associated with many adverse events. In addition, 
cancer cells become resistant to chemotherapy as treat-
ment progresses, making it difficult for patients to ben-
efit from unmodified chemotherapy. The development of 
new drugs remains a top priority, but with the financial 
burden of drug research, drug repurposing is an inno-
vative way to update the chemotherapy arsenal [250]. 
Metformin is the first choice for treating type 2 diabetes 
because of its robust glucose-lowering effects, well-estab-
lished safety profile and relatively low cost [251]. How-
ever, metformin is repurposed as an anti-cancer agent. A 
clinical trial indicated that metformin has showed anti-
cancer efficacy by inhibiting CD133 [252]. In addition, a 
phase II clinical trial showed that metformin treatment 
resulted in a significant reduction in the CSC population 
and alteration of DNA methylation of chemoresistance 
carcinoma-associated mesenchymal stem cells (CA-
MSCs), which eliminated CA-MSC–driven increases in 
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chemoresistance [253]. The drug repurposing strategy 
provides an alternative for cancer treatment.

Conclusion and future perspectives
Despite ongoing debates regarding the origin and spe-
cific characteristics of CSCs, it is widely acknowledged 
that these cells have exhibited stemness properties 
such as self-renewal, proliferation, differentiation, and 
therapy resistance. Therefore, targeting CSCs with dif-
ferent therapeutic agents holds great promise for future 
antitumor treatments. Currently, most cancer thera-
pies only control the growth and proliferation of CSCs 
instead of completely eradicating the tumor bulk. In this 
context, researchers are exploring the modulation of 
abnormal signaling pathways, inhibition of CSC specific 
proteins, and regulation of the immune environment 
to gain new insights into cancer treatment strategies. 
However, several challenges remain a significant hurdle, 
as it is crucial to specifically target CSCs while mini-
mizing damage to normal cells. Based on the plasticity 
and heterogeneity of CSCs, precision oncology will be 
the future trend of tumor therapy. Selecting the right 
combination of drugs for each patient and using them 
at the right stage of the disease require a comprehensive 
understanding of the biomarkers, stemness-associated 
pathways, TME, and immune mechanisms in CSCs. 
Additionally, efforts are ongoing to mitigate adverse 
effects associated with treatment, and explore innova-
tive approaches for delivering therapeutic agents and 
maintaining effective drug concentrations. Contin-
ued research and development in these areas hold the 
potential to revolutionize cancer treatment by specifi-
cally targeting CSCs, overcoming therapy resistance, 
and achieving more comprehensive and durable thera-
peutic outcomes.
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