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Abstract
Background  Malignant Pleural Mesothelioma (MPM) is a dreadful disease escaping the classical genetic model of 
cancer evolution and characterized by wide heterogeneity and transcriptional plasticity. Clinical evolution of MPM is 
marked by a progressive transdifferentiation that converts well differentiated epithelioid (E) cells into undifferentiated 
and pleomorphic sarcomatoid (S) phenotypes. Catching the way this transition takes place is necessary to understand 
how MPM develops and progresses and it is mandatory to improve patients’ management and life expectancy. Bulk 
transcriptomic approaches, while providing a significant overview, failed to resolve the timing of this evolution and to 
identify the hierarchy of molecular events through which this transition takes place.

Methods  We applied a spatially resolved, high-dimensional transcriptomic approach to study MPM morphological 
evolution. 139 regions across 8 biphasic MPMs (B-MPMs) were profiled using the GeoMx™Digital Spatial Profiler to 
reconstruct the positional context of transcriptional activities and the spatial topology of MPM cells interactions. 
Validation was conducted on an independent large cohort of 84 MPMs by targeted digital barcoding analysis.

Results  Our results demonstrated the existence of a complex circular ecosystem in which, within a strong asbestos-
driven inflammatory environment, MPM and immune cells affect each other to support S-transdifferentiation. We also 
showed that TGFB1 polarized M2-Tumor Associated Macrophages foster immune evasion and that TGFB1 expression 
correlates with reduced survival probability.

Conclusions  Besides providing crucial insights into the multidimensional interactions governing MPM clinical 
evolution, these results open new perspectives to improve the use of immunotherapy in this disease.

Keywords  Malignant pleural mesothelioma, Cancer heterogeneity, Tumor microenvironment, Inflammation, 
Epithelial mesenchymal transition, Tumor associated Macrophages
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Introduction
Malignant pleural mesothelioma (MPM) is a rare and 
incurable cancer, which incidence is increasing in many 
countries [1]. MPM escapes the classical genetic model of 
cancer evolution, lacking a distinctive genetic fingerprint 
[2]. Omics profiling revealed extensive tumor heteroge-
neity [3–7], failing to identify major vulnerabilities and 
restraining the development of MPM-oriented therapies.

Morphologically, the MPM heterogeneity is evidenced 
by the existence of three distinct phenotypes: epithelioid 
(E), sarcomatoid (S) and biphasic MPM (B) which con-
sists of a mix of epithelioid and sarcomatoid components 
[8, 9]. B-MPM is itself a highly heterogeneous entity in 
which the overall extension of the S-component affects 
features and clinical behavior of the lesion [1, 10].

Indeed, the degree of MPM cell differentiation reflects 
aggressiveness with sarcomatoid lesions being the most 
lethal form. For this reason, despite many limitations 
including lack of standardization and sampling biases, 
histology remains the most credited prognostic criteria 
and a tool for treatment choice [10].

However, MPMs remain difficult to manage, making 
urgent the development of more sophisticated and accu-
rate tools that catching the real degree of heterogeneity 
of the lesions can overcome these limitations and provide 
a more reliable and effective prognosis scoring system [6, 
8].

E-MPM and S-MPM do not represent separated enti-
ties but the two extreme conditions of a cell transdiffer-
entiation process that converts well-differentiated MPM 
cells into scarcely differentiated phenotypes promoting 
aggressiveness. B-MPMs represent this transition “while 
is taking place”, constituting the formal proof of this pro-
cess and the link between the two extreme histological 
conditions.

Deep transcriptional profiling also supports this 
hypothesis indicating the presence of E-like and S-like 
populations in each MPM and picturing MPM lesions as 
a continuous gradient of phenotypes in between the E- 
and S- condition [3].

Besides, unsupervised clustering analysis, based on 
transcriptional profiling revealed that over 60% of histo-
logically classified E-MPMs are transcriptionally identi-
fied as biphasic entities, suggesting that the transitional 
state is indeed much more diffuse than expected based 
on standard histological evaluation [5].

Epithelial-to-mesenchymal transition (EMT), the pro-
cess through which epithelial cells shed their structural 
organization to acquire mesenchymal features including 
motility and resistance to stress stimuli [2, 11], has been 
recognized as main driver of the E to S MPM transdif-
ferentiation [12, 13]. However, what ignites this transition 
and how this transition takes place remain far from being 
elucidated.

Transition is a matter of timing, but catching the tim-
ing in cancer is a quite complicated matter. The use of 
bulk transcriptomic approaches, while providing a use-
ful measurement of the overall extent of the transition 
does not allow to resolve timing nor to catch the conse-
quentiality of the molecular events during this process. 
Until then, we lack fundamental clues to correctly picture 
MPM heterogeneity and to fully understand this disease.

Here, we used for the first time a spatial transcriptomic 
approach in a retrospective series of B-MPMs to follow 
the E to S transition and to reconstruct the molecular 
events that trigger and support this process.

Besides, providing new insights into the mechanisms 
driving this process, we evidenced a functional associa-
tion between a pro-inflammatory immune-environment 
and the transcriptional rewiring that drives and supports 
this phenotypical transdifferentation.

Materials and methods
Patients cohorts and study design
A retrospective cohort of consecutive MPM patients 
was retrieved from the Pathology Unit of our Institution 
between 2010 and 2019. Inclusion criteria were age > 18 
years, availability of Formalin Fixed Paraffin Embedded 
(FFPE) tumor tissues and follow up information. Histo-
logical sections of all samples were revised by two differ-
ent pathologists. 8 B-MPM from surgical resection were 
employed for the spatial transcriptomic analysis (Traning 
Set). 84 MPMs were used for the validation analysis (Val-
idation Set),  all 84 yielded RNA of quality and quantity 
sufficient for the gene expression analysis. Clinical data, 
pathological features, and long-term follow-up infor-
mation were systematically reviewed and recorded in 
Table 1.

Spatial transcriptomics
Spatial Transcriptomics was performed by GeoMx DSP® 
(Nanostring technologies, USA) [14] starting from slides 
of 5  μm FFPE tumor tissue. One slide for each sample 
was analyzed and a mean of 23 circular area of interest 
(AOIs) (range 15–32) was collected for each sample. The 
slides were hybridized with the GeoMx® Cancer Tran-
scriptome Atlas panel according to manufacturer proto-
col. This panel includes RNA probes for 1834 genes for 
comprehensive profiling of tumor biology and tumor 
microenvironment, covering canonical cancer pathways, 
immune cell types and checkpoint molecules. In order 
to perform spatial selection, slides were stained with 
GeoMx Solid Tumor TME Morphology Kit including 
antibodies against Cytokeratins (Pan-CK) and nuclear 
stain SYTO-13.

For each slide AOIs were selected by two patholo-
gists (SP, RV) as representative of the tumor hetero-
geneity, based on morphology and expression of the 
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Pan-CK marker. Three types of regions were selected: 
pure E-AOIs corresponding to area including only epi-
thelioid cells, pure S-AOIs (pS-AOIs) corresponding to 
area including only sarcomatoid cells and transitional 
regions containing both mixed epithelioid and sarco-
matoids cells. These transitional regions were further 
segmented to separate the E (tE-AOIs) and S compo-
nent (tS-AOIs). Hybridized RNA-probes were collected 
from each of the selected AOIs, and libraries for NGS 
sequencing were constructed by GeoMx® Seq Code Pack 
(Nanostring technologies). Libraries were pooled accord-
ing to AOIs dimension, purified by AMPure XP beads 
(Beckman Coulter, Brea, California, USA) clean up and 
finally resuspended in a volume proportional to the num-
ber of pooled AOIs. The quality and quantity of library 
pools were evaluated by Agilent Bioanalyzer. Libraries 
were diluted to 1.6pM and sequenced by Illumina Next-
Seq500 (paired-end 2 × 27), expecting for each library/
AOI a coverage of at least 30 reads for µm2 of collected 
region. After demultiplexing, FastQ files were converted 

into DCC files by GeoMx® Next-generation sequenc-
ing (NGS) Pipeline App available in BaseSpace Illumina 
Sequence Hub and then uploaded on the GeoMx DSP 
platform to be associated with the corresponding AOIs.

GeoMx DSP data analysis
First, quality control tests (QC) were performed on AOIs 
to evaluate sequencing, number of nuclei collected and 
background effect. The thresholds used for AOIs selec-
tion were as follow: raw reads = 1000, aligned reads = 80, 
sequencing saturation parameter = 40%, negative probe 
count mean = 4.5, minimum nuclei count = 100, no tem-
plate control count = 100.  AOIs displaying value below 
these thresholds in any of the selecting criteria were 
excluded. Then, QC on probes was conducted accord-
ing to the following parameters: ratio across all seg-
ment = 0.1, percentage AOIs threshold (Grubbs test) = 20, 
standard deviation amount for the LOQ = 2. Successively, 
segments that expressed less than 20% of genes and genes 
expressed in less than 10% of the AOIs were filtered out 
and raw gene counts were normalized on geometric 
mean of all target genes.

Differential analysis
All spatial transcriptomics analyses were performed on 
GeoMx DSP platform. After completion of the normal-
ization process, we compared the expression profiles of 
E-AOIs and S-AOIs or pE-AOIs vs. pS-AOIs and tE-
AOIs vs. tS-AOIs. For each comparison, significantly 
deregulated genes were selected by considering an 
adjusted p-value < 0.05 and an absolute log2 of the Fold 
Change (log2FC) > 0.1.

Gene ontology
Gene ontology (GO) enrichment analysis was performed 
on Biological Process subontology by EnrichR online 
software. Protein-protein interactions were represented 
by STRING (v11.5) online software. Significance thresh-
old was set at adjusted p-value < 0.05 (Benjamini-Hoch-
berg correction).

Cellular deconvolution
Cellular deconvolution was conducted on the basis of 
normalized gene expression profiles applying “SpatialDe-
con” pipeline, downloaded from GeoScript Hub (https://
nanostring.com/products/geomx-digital-spatial-profiler/
geoscript-hub/), on GeoMx DSP platform. Scaled abun-
dance score of each cell type was compared between 
E-AOIs and S-AOIs and p-value was calculated by two-
tailed Student’s t test.

Data validation by nanostring nCounter
nCounter analysis was performed as previously described 
[15, 16]. Total RNA was extracted using Maxwell® RSC 

Table 1  Clinical information of MPMs included in both training 
and validation cohorts

Training set Validation set
Overall (N = 8) Overall (N = 84)

Sex
F 2 (25.0%) 17 (20.2%)

M 6 (75.0%) 67 (79.8%)

Age
Mean (SD) 73.5 (8.8) 70.6 (8.6)

Side
Left 2 (25.0%) 29 (35.8%)

Right 6 (75.0%) 52 (64.2%)

N-Miss 3

Surgery
Biopsy 5 (62.5%) 49 (59.0%)

Pleurectomy 3 (37.5%) 34 (41.0%)

N-Miss 1

Histology
Epithelioid 0 (0%) 34 (40.5%)

Biphasic 8 (100.0%) 32 (38.1%)

Sarcomatoid 0 (0%) 18 (21.4%)

Stage
I 4 (50%) 38 (47.6%)

II 0 (0%) 4 (5.0%)

III 0 (0%) 7 (8.7%)

IV 4 (50%) 31 (38.8%)

N-Miss 4

Death
No 2 (25%) 8 (9.6%)

Yes 6 (75%) 75 (90.4%)

N-Miss 1

Overall survival (months)
Mean (SD) 11.9 (8.1) 20.3 (20.6)

N-Miss 3

https://nanostring.com/products/geomx-digital-spatial-profiler/geoscript-hub/
https://nanostring.com/products/geomx-digital-spatial-profiler/geoscript-hub/
https://nanostring.com/products/geomx-digital-spatial-profiler/geoscript-hub/
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RNA FFPE kit (Promega) from five 5  μm FFPE slides. 
RNA was assessed by NanoDrop 2000 (Thermo Fisher 
Scientific). 27 MPM samples yielded RNAs that didn’t 
reach the required standard for the analysis (A260/
A280 ≥ 1.7 and A260/A230 ≥ 1.8) and were excluded. In 
the remaining 84 samples the expression of a specifi-
cally designed custom panel including 217 target and 
15 housekeeping genes was evaluated by nCounter 
(NanoString Technologies) following manufacturers’ 
protocol. Data from nCounter were analyzed by nSolver 
Analysis Software 4.0 (NanoString Technologies). After 
imaging quality control, raw gene counts were normal-
ized on technical controls and three housekeeping genes 
as previously described [15, 16]. Fold changes were cal-
culated as the ratio between B-MPMs and E-MPMs and 
between S-MPMs and E-MPMs, p-value was calculated 
by two-tailed Student’s t test and adjusted by Benjamini–
Hochberg method.

Statistical analysis
Bioinformatic and statistical analyses on gene expression 
profiles were conducted by R Software v4.2.2. Single gene 
expression comparisons between the four AOIs groups 
were performed by Wilcoxon test. Correlation analy-
ses were performed by Spearman test. All correlation 
plots, boxplots and histograms were performed using 
“ggplot2”  (v3.4.2) and “ggpubr” R packages(v0.4.0). R 
packages “fmsb” (v0.7.5) and “circlize” (v0.4.15) were used 
for radarplot and chordplot representation,respectively.

Heatmaps were produced using “Pheatmap” R package 
(v1.0.12).

For survival analyses patients were dichotomized on 
the basis of first and fourth quartile of TGFB1 expression 
and p-value was calculated by Log-rank test. Survival plot 
was created using “Survival” (v3.2-11) and “Survminer” 
R (v 0.4.9) packages and multivariate analysis was per-
formed applying Cox Proportional-Hazards model.

Tests were considered statistically significant with a 
p-values < 0.05. Adjusted p-values were calculated apply-
ing “Benjamini-Hochberg” method.

Results
Gene expression spatial resolution recapitulates the timing 
of transition identifying early and late stages
Study design is summarized in Fig. 1A-B. Three types of 
area were selected: pure E-AOIs (pE-AOIs) correspond-
ing to area including only epithelioid cells, pure S-AOIs 
(pS-AOI) corresponding to area including only sarco-
matoid cells and transitional AOIs (t-AOIs) containing 
both mixed epithelioid and sarcomatoid cells. Overall  8 
pE-AOIs, 11 pS-AOIs, and 60 t-AOIs were selected start-
ing from 8 surgically resected B-MPMs. The t-AOIs were 
further segmented to separate the E (tE-AOIs, N = 60) 

and S component (tS-AOIs, N = 60) resulting in a total of 
120 AOIs.

Transcriptional profiling for each of these regions was 
performed (Fig.  1C and Supplementary Fig.  1A). PCA 
analysis showed that gene expression profile efficiently 
segregated the overall E- and S-AOIs confirming the 
accuracy of the spatial selection (Fig. 1D).

We assumed that pE-AOIs represented the initial stage 
and pS-AOIs the final stage, while t-AOIs were interme-
diate stages. PCA (Fig. 1E) and correlation analysis (Sup-
plementary Fig. 1B) of the gene expression profile of the 4 
groups showed high heterogeneity. As expected pE-AOIs 
and pS-AOIs tended to segregate at the widest distance 
(Supplementary Fig. 1C), confirming the profound tran-
scriptional differences between these two groups. tE-
AOIs aggregated in close proximity with pE-AOIs while 
tS-AOIs displayed the highest degree of heterogeneity 
among the 4 groups spreading from E to S. Collectively 
these data indicate that tumor cells localized at the tran-
sition borders represent early stages of the transition and 
precursors of the fully transdifferentiated sarcomatoid 
cells.

Transcriptional rewiring underlines extracellular matrix 
(ECM) remodeling and supports massive structural 
reorganization during the E to S transition
We performed a differential analysis between the overall 
E- and S-AOIs. 618 genes resulted significantly deregu-
lated (Fig.  2A) (Supplementary Table  1). Of these 355 
were upregulated in E-AOIs as compared to S-AOIs 
while 263 genes were more expressed in the S-AOIs as 
compared to the E counterpart (Fig. 2B). We performed 
a GO analysis to connect these genes to specific biologi-
cal processes (Fig. 2C). We observed that E-AOIs genes 
were enriched in processes involved in epithelial differ-
entiation, cell-cell junction, cell death and mitosis. We 
also observed a relevant node of genes involved in mito-
chondrial homeostasis and oxidative cell metabolism 
indicating a potential metabolic rewiring (Fig.  2C and 
Supplementary Fig. 2A). By contrast, S-AOIs genes were 
enriched in extracellular matrix organization and interac-
tion, cell motility, locomotion and angiogenesis (Fig. 2C 
and Supplementary Fig.  2B). Of note, transcription and 
gene expression regulation were among the top scoring 
categories in this analysis with several transcription fac-
tors and chromatin regulators upregulated in S-AOIs. 
Noticeably, SNAI2, ZEB1, ZEB2 and TWIST master 
transcriptional drivers of EMT were all found upregu-
lated in S-AOIs (Supplementary Tables 1, Supplementary 
Fig. 2C-D). A similar analysis was performed to compare 
pE-AOIs vs. pS-AOIs and tE-AOIs vs. tS-AOIs (Supple-
mentary Fig. 3 and Supplementary Tables 3–6).

The overall picture emerging by this analysis evoked a 
massive structural reorganization of MPM cells during 
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Fig. 1  Morphology guided spatial transcriptomics on B-MPM tissues
(A) Representative H&E staining of B-MPMs included in the training set. Magnification 100X. (B) Experimental design of the spatial transcriptomic analy-
sis. Three types of regions were selected based on cell morphology and expression of Pan-CK marker. pE-AOIs, pS-AOIs corresponded to area of pure 
epithelioid and sarcomatoid component respectively. Transitional regions (t-AOIs) containing both mixed epithelioid and sarcomatoid cells were further 
segmented in tE-AOIs and tS-AOIs. Collected AOIs were sequenced and transcriptional profiles analysed. (C) GeoMx DSP scan showing AOIs from a 
representative B-MPM collected from a surgical biopsy. Large circles indicate segmented transitional AOIs while small circles circle indicate pure AOIs. 
Insight displays the enlargement of representative transitional areas. (D) Principal component analysis (PCA) distribution of total E-AOIs and S-AOIs, based 
on differentially expressed genes (adjusted p-value < 0.05). (E) Principal component analysis distribution of the indicated AOIs, based on differentially 
expressed genes (adjusted p-value < 0.05)
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Fig. 2  Principal biological processes involved in E to S transition
(A) Volcano plot showing differentially expressed genes between E-AOIs and S-AOIs. Black dots represent significantly deregulated genes (adjusted p-val-
ue < 0.05). Red lines represent fold change threshold (FC) |0.1| (B) Pie chart showing the number and relative percentage of differentially expressed genes 
upregulated in E-AOIs and S-AOIs. (C) Circular histograms representing principal biological processes upregulated in Epithelioid (right) and Sarcomatoid 
(left) regions of interests. Color legend expresses the level of significance of each enriched category. The graduated axis represents the fraction of genes 
involved in each biological process and deregulated in our setting. (D) Heatmap representing expression of all deregulated EMT-TFs and markers in the 4 
AOI groups. Color gradient expresses the z-score of each gene in each sample. (E) Box plots representing the expression level of EMT markers (green) and 
upstream regulators (pink) across the different AOIs. In this figure p-values are represented as follow: *<0.05, **<0.01 ***<0.001
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the E to S transition supported by a deep rewiring of 
the gene expression program, primed by the activation 
of EMT-associated transcription factors (TFs). Indeed, 
graphical representation of EMT genes expression reca-
pitulates the different AOIs along the entire transdiffer-
entiation process (Fig. 2D).

We also explored the expression trend of a represen-
tative set of EMT-associated genes in the four groups of 
AOIs focusing on both upstream regulators (pink) and 
phenotypical markers of this process (green) (Fig. 2E).

We observed that the expression of epithelial pheno-
typical markers decreased significantly moving from 
tE-AOIs to tS-AOIs and further to pS-AOIs, but not 
between pE and tE-AOIs. By contrast, upstream regu-
lators tend to increase consistently across all passages, 
confirming that their activation anticipate the structural 
changes associated with EMT and evidenced at the level 
of morphology. Differently from what expected, CDH2 
known to be a mesenchymal marker during EMT, fol-
lowed the expression of CDH1 and CDH3 epithelial 
markers, decreasing during the transition instead of 
being associated with the S-phenotype.

E to S transition is associated with inflammation and 
increased immune infiltration
We noticed that a significant proportion (55%) of genes 
upregulated in the S-AOIs were involved in inflamma-
tion and immune cells modulation (Fig. 3A and Supple-
mentary Fig. 4). Specifically, these genes were engaged in 
innate and adaptive immunity (33.9% and 18.8%, respec-
tively), inflammation (32.3%) or antigen presentation 
(15%) (Fig.  3A-B). In particular, several cytokines, che-
mokines and interleukins and their associated receptors 
were highly represented in the list of genes upregulated 
in S-AOIs (Fig. 3B, Supplementary Table 7).

During inflammation these molecules are known to be 
produced by tumor and stroma cells but also by granu-
locytes [17]. Indeed, macrophages and neutrophils spe-
cific genes governing granulocytes activation, including 
de-granulation and release of pro-inflammatory signals, 
were found in the list of genes upregulated in S-AOIs 
(Fig. 3C).

All these elements are known to create a hot microen-
vironment that primes the recruitment and activation of 
other immune effector cells. Surface markers expressed 
by lymphocytes, including both CD4+/CD8 + T-cells 
and B-Cells, were found to be associated with the S 
component.

To support these observations, we applied a deconvo-
lution analysis to our dataset to reconstruct, based on 
gene expression, the functional map of the immune cells 
during the E to S transition (Fig. 3D). This analysis con-
firmed a deep reorganization of the immune landscape 
during transition. Granulocytes populations including 

macrophages, neutrophils and monocytes were all sig-
nificantly more represented in the S-AOIs as compared 
to the E-AOIs. Accordingly, main effector immune cells 
including CD4 + and CD8 + T cells, B cells and Natural 
Killers (NKs) were also more represented in the S-com-
partment than in the E counterpart. In line with the 
enrichment of genes involved in the antigen presentation, 
plasmacytoid dendritic cells (pDCs) were enriched in the 
S-AOIs as compared with E-AOIs. By contrast, T regu-
latory cells (T-regs) and mast cells were more frequently 
detected within the E-AOIs. We also observed a signifi-
cant increase in the percentage of fibroblasts and endo-
thelial cells in the S-AOIs (Fig. 3E) which is coherent with 
the strong ECM remodeling and boosted angiogenetic 
process that we observed (Fig. 2C). Radar plot in Fig. 3F 
summarizes these data showing how the pro-inflamma-
tory signature overrepresented in the S-compartment 
segregates with the expression of EMT drivers but it 
appeared complementary to the expression of phenotypi-
cal epithelial markers.

In light of these data, we investigated the activation 
state of immune cells in the S compartment looking for 
potential immune evasion signals (Fig.  3G and Supple-
mentary Fig. 5). Noticeably, several immune checkpoints 
were significantly overexpressed in the S-AOIs as com-
pared to E-AOIs, such as the T-cell-specific inhibitory 
receptor HAVCR2 and its corresponding tumor ligand 
LGALS9, or the inhibitory CD86 that interacts with 
CTLA4 on T-cells (Fig. 3G). Distribution of their expres-
sion across the four phenotypical stages, showed that all 
these molecules ramped moving from tE- to tS-AOIs at 
the early stages of progression within the transitional 
regions. Their expression remained high at the end of 
the process in the pS-AOIs. These observations indicated 
that the widespread immune infiltrate associated with 
the S-component likely resides in a dysfunctional state 
of exhaustion, driven by the chronic persistence of tumor 
antigens and the immune tolerance-related mechanisms 
induced by cancer cells.

Tumor associated macrophages (TAM) EMT and immune 
evasion in B-MPM
Tumor associated macrophages (TAM) are known to 
contribute substantially to inflammation and immune 
modulation [18–20]. Mounting evidence is reporting a 
supportive role of these cells in driving aggressiveness 
and metastatic spreading of several cancers including 
MPM, by influencing tissue architecture and promoting 
among the others cell motility, matrix reorganization, 
epithelial and mesenchymal cell phenotype and position-
ing. Coherently, in our analysis, several TAM associated-
genes were robustly upregulated in S-AOIs as compared 
with E-AOIs confirming a potential contribution of these 
cells to the E to S transition (Fig. 4A).
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Fig. 3  Inflammation primes immune cell infiltration during E-to S transition
(A) Graphical representation the distribution of genes upregulated in S-AOIs as compared to E- AOIs in our analysis. Pie Chart displays the percentage 
of immune-related genes in this list on the total. Histogram represents the percentage distribution of immune related genes in the four main immune 
related processes. Some of the genes were included in more than one category, according to their multiple functions. (B) Chord plot represents the con-
nections between immune related genes upregulated in S-AOIs and the four main immune related processes. (C) Histograms representing the relative 
expression of selected markers of immune populations. Data are expressed as fold change between the average expression in the S-AOIs as compared 
to the average expression in the E-AOIs. (D) Deconvolution results, obtained from gene expression data, showing scaled abundance percentage of each 
immune cell population in E- and S-AOIs. (E) Deconvolution results, obtained from gene expression data, showing scaled abundance percentage of 
fibroblasts and endothelial cells in E- and S-AOIs. (F) Radar plot showing the average expression level of principal pro-inflammatory and EMT genes in S- 
and E-AOIs. (G) Box plots representing the expression levels of LGALS9, HAVRCR2 and CD86 in the four types of AOIs during E to S transition. In this figure 
p-values are represented as follow: *<0.05, **<0.01 ***<0.001
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Fig. 4  M2 type TAMs are associated to EMT and expression of T-cells associated immune checkpoints
(A) Histograms representing the relative expression of TAM associated markers. Data are expressed as fold change between the average expression in 
the S-AOIs as compared to the average expression in the E-AOIs. (B) Correlation matrix showing expression correlations between EMT- markers and TAM-
associated genes. Asterisks mark significantly associated correlations. The color intensity and the size of the circles are proportional to the correlation 
coefficients. (C-D) Box plots representing the expression level of pan-macrophages markers (C) and M2 selective markers (D) in the four types of AOIs 
during E to S transition. (E) Correlation distribution across all AOIs between EMT drivers (TGF1B1, SNAI2) and the epithelial marker CDH1 with both pan-
macrophages and M2 selective markers. For each gene comparison, the correlation plot is represented on the right and the correlation coefficient with 
relative p-value is reported on the left. Axes values refer to normalized counts. (F) Scatter plots showing the direct correlation of pan-macrophages and 
M2 selective markers with HAVCR2 expression across all AOIs. G) Area chart summarizing the relative expression of EMT-associated genes, TAM markers 
and immune checkpoints in tE-, tS- and pS- AOIs as compared to pE-AOIs
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Correlation matrix highlights how TAM genes were 
strongly associated with EMT drivers and inversely cor-
related with epithelial markers confirming the positive 
link between these cells and the EMT process that occurs 
during MPM progression (Fig. 4B).

Following the distribution of these genes in the four 
types of AOIs, we observed that the expression of CD68 
and ITGAM (CD11b) considered pan-macrophages 
markers increases at the very early stages of transition 
and continues to grow throughout the entire process 
(Fig. 4C). By contrast M2 selective markers, CD163 and 
MRC1 (CD206) expression increases later during this 
process coherently with a progressive polarization of 
the macrophage population toward the M2 phenotype 
(M2-TAM) [21] during transition (Fig. 4D).

TGFB1 is known to partake in TAM homeostasis and 
to promote their polarization toward the pro-tumori-
genic M2 phenotype [22]. To investigate this potential 
link in our setting, we explored the specific association of 
TGFB1 and TAM markers in our dataset (Fig.  4E, Sup-
plementary Fig. 6). We observed a striking positive cor-
relation between TAM genes and TGFB1. Also, TAM 
markers showed a positive correlation with SNAI2 down-
stream effector of the TGFB1 signal but a negative corre-
lation with the expression of the epithelial marker CDH1. 
The highest correlation was observed between TGFB1 
and CD68 (R = 0.7, p = 2.2e-16). Also, CD163 (R = 0.47, 
p = 4.04e-09) and MRC1 (R = 0.39, p = 2.08e-06) showed a 
positive correlation with TGFB1, coherently with the role 
of TGFB1 in driving the M2-TAM polarization.

M2-TAM are known to partake in cancer immune eva-
sion strategies by modulating the expression of T-cell 
specific checkpoints. Noticeably, we observed a strong 
positive correlation between M2-TAM genes and the 
expression of the immune checkpoint gene HAVCR2 
(Fig. 4F). Similar results were obtained for LGASL9 and 
CD86, remarking a potentially crucial role of these cells 
in silencing the immune system during cancer progres-
sion (Supplementary Fig. 7). Figure 4G summarizes these 
data, showing the trend of the reported genes in the 3 
AOIs types indicated relatively to their level of expression 
on pE-AOIs.

Validation analysis in a separate cohort of MPM
We confirmed these data in an independent cohort of 
MPMs by analyzing the expression of a target panel of 
217 genes using a digital analytic procedure (Fig.  5A). 
84 samples yielded RNA of quality and quantity compat-
ible with the analysis of which 34 E-MPMs, 32 B-MPM 
and 18 S-MPM. Clinical features of this cohort are sum-
marized in Table 1. Genes included in this analysis were 
selected among those differentially expressed in the 
spatial transcriptional profiling, in order to represent 
the most relevant pathways emerged from our analysis 

including EMT and cell structure, inflammation and 
immunity, transcription regulation, angiogenesis and 
oxidative cell metabolism (Supplementary Table  2). 
Figure  5B shows the overall rate of genes per each cat-
egory that were confirmed in this analysis. This analysis 
confirmed that during transition, loss of epithelial fea-
tures in S-MPMs was associated with gain of mesenchy-
mal markers and in particular with the over expression 
of TGFB1 and EMT-drivers TFs (including ZEB2 and 
SNAI2) (Fig.  5C). Genes associated with EMT showed 
an intermediate expression in B-MPMs as compared to 
E- and S-MPMs (Supplementary Fig.  8A), coherently 
with their transitional state, and displayed a trend of 
association with the percentage of sarcomatoid tissue in 
the samples (Supplementary Fig.  8B). Of note, CDH2, 
FLNA and FLNB mesenchymal markers observed upreg-
ulated in the E-AOIs in spatial transcriptomic analysis 
of B-MPMs were in this analysis more expressed in the 
S-MPM lesions. We also validated the observation that 
S-MPMs are associated with increased inflammation and 
immune infiltration as indicated by the increased expres-
sion of immune cell markers including CD4 and CD8 
and TAM-associated genes in S-MPMs (Supplementary 
Fig.  5). Noticeably, the greatest increase was observed 
for MRC1, strengthening the hypothesis of a relevant 
polarization of M2-TAM during the E to S transition. 
Coherently with the spatial transcriptomic profiling, 
correlation analysis between TGFB1 and TAM markers 
across all samples confirmed a significant positive asso-
ciation (Fig. 5D). TGFB1 was significantly correlated with 
both pan and M2-specific TAM markers, strengthening 
the functional link between this growth factor and this 
immune cell population and further highlighting the rel-
evance of this balance during MPM progression. Taken 
together our data, point to TGFB1 as pivotal player dur-
ing MPM progression. Kaplan Meier curve (Fig.  5E) 
showed that TGFB1 expression significantly correlated 
with reduced survival probability in the entire cohort of 
MPMs, confirming the central role of this growth factor 
in the definition of MPM clinical progression and aggres-
siveness. Noticeably, TGFB1 remained associated with 
worse prognosis even in a multivariate analysis including 
histotypes, supporting the role of this factor in dictating 
MPM aggressiveness (Fig. 5F).

These results confirm that TGFB1 contributes to this 
process playing a dual function: modelling cell archi-
tecture by inducing EMT and shaping MPM immune 
microenvironment by influencing TAM polarization and 
their immune suppressive activity (Fig. 5G).

Discussion
MPM is a heterogeneous disease, characterized by a high 
morphological plasticity [3–5, 7]. Resolving this het-
erogeneity is crucial to understand what drives clinical 
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aggressiveness and to develop new and more effective 
targeting strategies for MPM patients. Indeed, manage-
ment of B-MPMs remains controversial, with different 
guidelines recommending distinct approaches. One of 
the main causes of this uncertainty lies in the difficulty 

of performing a correct evaluation of the tumor histotype 
at diagnosis. It is estimated that over 50% of B-MPMs are 
erroneously classified as E-MPMs or S-MPMs by pleural 
biopsy [10, 23, 24], leading to biases in the clinical choices 
for the management of these patients [25]. Multiple 

Fig. 5  Validation analysis in an independent cohort of MPMs
(A) Pipeline of samples analysis by nCounter Nanostring technology. (B) Bar chart representing the number of deregulated genes involved in each func-
tional category. Percentages represent the fraction of validated genes in each category. X-axes report the total number of genes included in the panel 
for each category as reported in Supplementary Table 8. (C) Histograms representing the relative expression of EMT associated genes in S-MPM samples 
as compared to E-MPMs. (D) Correlation plots showing the direct correlation of CD68, ITGAM and MRC1 with TGFB1 expression. Axes values refer to 
normalized counts. (E) Kaplan Meier curves representing the significantly different overall survival of patients with low (I quartile) and high (IV quartile) 
expression of TGFB1. In this figure p-values are represented as follow: *<0.05, **<0.01 ***<0.001. (F) Multivariate Cox analysis including TGFB1 expression 
quartile and histotype in the validation cohort. (G) Schematic representation model of the results emerged from the analysis
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biopsies allowing a wider representation of the hetero-
geneity of the disease may help a more accurate evalua-
tion of the histological phenotype. As well, improving the 
current knowledge about the mechanisms governing this 
heterogeneity may help find stratification biomarkers to 
support diagnosis.

Omics profiling dramatically improved the resolution 
of MPM heterogeneity showing that this disease cannot 
be categorized into precise entities but should be consid-
ered as a continuum between the two extreme morpho-
logical phenotypes. MPM, as other tumors, is a complex 
community in which the tissue topography and cell-cell 
communications govern the intimate interplay between 
cancer cells and their own microenvironment. Bulk tran-
scriptomics or single cells approaches, by destroying tis-
sue integrity, miss this level of information and produce 
a partial representation of the regulatory networks that 
control the progression of this disease [26].

In this work we used for the first time a morphology-
guided spatial transcriptomic approach on a selected 
series of B-MPMs with the aim of resolving this transi-
tion at the transcriptional level and gaining information 
on how this transition takes place. This approach, by gar-
nering gene expression information in a spatial context, 
allowed us to provide additional pieces of information on 
how MPM progression occurs [14].

Our data rendered the picture of a complex circular 
ecosystem in which MPM and immune cells affect each 
other altering the local microenvironment to support 
progression (Fig. 5G).

We showed that a strong inflammatory environment 
characterizes the appearance of the S morphology from 
the earliest stages of the cellular transdifferentiation.

An increased expression of inflammatory cytokines and 
high recruitment of inflammatory cells were observed 
to be associated with the S components already in the 
transitional regions. These signals foster the activation 
of both innate and adaptive immunity driving the hom-
ing to the tumor sites of numerous effector cells and in 
particular CD8 + T-cells. However, the chronic stimula-
tion by tumor antigens and the persistence of the inflam-
matory stimuli drive these S-associated immune cells to 
exhaustion, as suggested by the increased expression lev-
els of immune checkpoints including the T-cell receptor 
HAVCR2 and its specific ligand LGASL9.

On the other side, MPM cells undergo a profound tran-
scriptionally-driven structural reorganization. Primed by 
the expression of EMT associated TFs, E-MPM cells lose 
their epithelial features modifying deeply their ability to 
interact with the surrounding environment. Cell-to-cell 
adhesion structures are lost and replaced by matrix inter-
acting protein and remodeling factors.

ECM is a relevant part of the cancer ecosystem, and its 
dynamic changes are important during the pathogenesis 

and progression of this disease [27]. Stiffness and adhe-
sive cues of ECM provide cancer cells with mechanical 
signals that are transduced within the cells primarily by 
cytoskeleton anchored proteins and affect gene expres-
sion by supporting programs that serve cells to respond 
to such stimuli, by altering cell architecture, foster-
ing motility and overcoming stresses induced by the 
mechanical pressure [28]. Aberrant ECM remodeling 
is initiated by different types of stress stimuli, including 
oxidative stress [29].Deposition of asbestos fibers to the 
lungs causes the chronic release of reactive species and 
the production of free radicals. These highly dynamics 
elements may cause massive molecular instability and 
concur to reshape ECM during MPM progression [30]. 
Besides, these unstable molecules are known to mediate 
genotoxic signals leading to cell death. Supporting the 
central role of these processes during MPM evolution, 
our analysis indicates that the ability to handle stress 
induced to oxygen reactive species is central in the tran-
sition from E to S phenotype. Also, the evidence that 
genes upregulated in E-AOIs are enriched in mitochon-
drial related pathways and oxidative respiration (Supple-
mentary Fig. 9), seems to indicate a potential metabolic 
switch during transition that, coherently with other set-
ting, may serve to MPM to sustain energetic and stress 
adaptation [31].

Recent data reported a relevant immune-modulatory 
function of ECM in cancer, via the creation of niches 
that control the migration, localization, phenotype and 
function of tumor-infiltrating immune cells, ultimately 
contributing to the escape of immune surveillance [32]. 
Besides, in a recent pan cancer study, ECM-associated 
transcriptional program has been shown to correlate 
with TGFB signaling and is potentially linked to immune 
evasion and or adaptation [33].

Our data are in line with these observations and indi-
cate that these dynamics are central during the mor-
phological evolution of B-MPM and impact on clinical 
behavior of this disease. Using gene expression data from 
our internal cohort of MPMs, we demonstrated that 
TGFB1 is a marker of clinical aggressiveness in MPM, 
being associated with reduced survival probability. This 
can have important implications for patients’ manage-
ment. Indeed, it has been observed that TGFB1 levels in 
pleural effusion are higher in S-MPMs as compared with 
E-MPMs and have strong prognostic values [34].

Our data, also identified TAMs as primary targets of 
TGFB1 in MPM. Macrophages are capable of display-
ing different and even opposing phenotypes depend-
ing on the context [22]. In cancer, TAMs in particular 
the M2 subtype are linked to cancer promoting func-
tion [18]. TGFB1 is known as driver of M2 polarization 
on TAMs in many settings and our results indicates 
that this also occurs in MPM. Besides inflammation and 
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tissue remodeling, M2-TAMs have been reported to cre-
ate an immune suppressive microenvironment trigger-
ing inhibitory immune checkpoints in T-cells [35–37].
Coherently, our analysis highlights a predominance of 
M2-TAMs within immune microenvironment of B-MPM 
and a significant correlation between M2-TAM markers 
and T-cell specific immune checkpoints. Several recent 
works, by using widely different approaches, are raising 
the attention about the role of M2-TAM in MPMs [38, 
39]. Ollila et al. using multiplexed fluorescence immu-
nohistochemistry, observed that M2-TAMs are indepen-
dently associated with shorter survival in a retrospective 
cohort of E-MPMs [40]. Creaney et al. using a compre-
hensive genomic immune profiling showed that MPM 
immune environment contained high levels of M2-TAMs 
associated with metalloproteinases (MMP2 and MMP14) 
and TGFB1 expression [41]. Lievense et al. showed that 
macrophages from pleural effusion of MPM patients 
hamper antitumor T cell immune response [42] while 
pharmacologically depletion of M2-TAM (with a CSF-1R 
Kinase Inhibitor) enhances the effectiveness of dendritic 
cells vaccination therapy priming antitumor immunity 
[43]. Our data in line with these reports further empha-
sizes the role of this population in MPM and pose the 
attention on the potential of targeting macrophages in 
this setting.

We are aware that our study has major limitations, first 
the fact that is a descriptive transcriptomic study limited 
to the investigation of gene transcripts. However, to the 
best of our knowledge this is the first report that applies 
a spatial transcriptomic approach to the study of B-MPM 
and that fitting coherently within the current literature 
produces a model that places many scattered pieces 
of evidence within a consistent framework developing 
new insights into the bases of this disease. The strength 
of this model is certified by our validation analysis that 
confirmed in an independent and large cohort of MPMs 
the obtained data, using an independent analytical proce-
dure. Finally, even if still exploratory, these data may hold 
relevant clinical implications, not limited to the indica-
tion of TGFB1 as a putative prognostic marker. Recently, 
the introduction of immune checkpoint inhibitors (ICIs) 
marked a sensible improvement in the management of 
MPMs leading to advances in terms of survival [44–47].
Of note, response to ICIs was reported to be higher in 
S-MPM than in E-MPM. Our data seems to provide new 
clues in explaining these observations laying the basis for 
possible strategies to optimize the employment of these 
drugs in this setting.

In the framework of this very aggressive and therapy 
orphan disease, the introduction of immune checkpoint 
inhibitors (ICIs) promises to mark a potential improve-
ment in the management of MPMs leading to advances 
in terms of survival [47], in particular for patients with 

S-MPMs [48]. The reason of this discrepancy between 
E-MPMs and S-MPMs remains unknown and at the cen-
ter of an intense debate [49–51]. While it is likely that the 
increased rate of response observed in S-MPM patients 
is determined, at least in part, by their complete refrac-
toriness to standard chemotherapy, this cannot fully 
account for the sensibility to ICIs that these lesions dis-
played. Unraveling this knot is fundamental to maximize 
the effectiveness of these drugs in a setting like MPMs in 
which the availability of target therapies is so poor. Still, 
the overall impact on patients’ survival and quality of life 
remains arguable and highly debated, also in light of the 
high costs and side effects associated with these thera-
pies [52–56]. Resolving this controversy and improving 
the effectiveness of these therapies for MPM patients 
requires a multidisciplinary and integrated effort. On 
one side, the implementation of rigorous methodology 
for the assessment of clinical benefits of these therapies 
in MPM patients. On the other side, a better definition 
of the molecular mechanisms underlining their action to 
provide clues to improve their use in patients.

In this framework our work offers new relevant 
perspectives:

1.	 it defines, for the first time, the functional relevance 
of the immune system and of the inflammatory 
context in the mechanisms that drive MPM 
evolution and identifies new details on the 
communication circuits between tumor and immune 
cells and on their topography within the lesion, 
therefore providing new potential candidates to 
exploit as predictive biomarkers of ICIs response.

2.	 it indicates M2-TAM polarization as an important 
event in the establishment of immune evasion 
signals, defining new potential targets.

3.	 it defines that these signals are not driven by 
“canonical” immune checkpoints.

The latest point seems of particular relevance since it 
offers a potential explanation to the observation that 
expression of PD1 and PDL1 do not predict response to 
ICIs in MPM. Additional studies specifically are neces-
sary to define strategies that will improve the use of these 
drugs in MPMs. Our work defines for the first time a ref-
erence frame for the design of these studies.
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