
R E V I E W Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Wang et al. Molecular Cancer          (2023) 22:102 
https://doi.org/10.1186/s12943-023-01810-1

Background
Similar to DNA and proteins, RNA can undergo more 
than 170 post-transcriptional modifications [1]. In the 
1970s, adenosine, an RNA building block, was dem-
onstrated to be methylated at N6 nitrogen atom (i.e., 
N6-methyladenosine (m6A) formation) [2, 3]. Conse-
quently, m6A modification has been identified as the 
most abundant cellular modification in mammalian 
mRNA. A pioneer study demonstrated, for the first time, 
role of m6A in mRNA stability [4], followed by cloning 
and discovery (in 1997) of methyltransferase-like pro-
tein 3 (METTL3), which synthesizes nearly all m6A in 
the mRNA transcriptome (Fig. 1) [5]. In addition, other 
studies have shown that m6A is essential for regulation of 
many developmental processes [6, 7]. This has resulted in 
rapid development of detection and transcriptome-wide 
mapping technologies for m6A-containing transcripts, 
enabling detection in nearly all types of RNAs, includ-
ing mRNAs, small nuclear RNAs (snRNAs), ribosomal 
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Abstract
Divergent N6-methyladenosine (m6A) modifications are dynamic and reversible posttranscriptional RNA 
modifications that are mediated by m6A regulators or m6A RNA methylation regulators, i.e., methyltransferases 
(“writers”), demethylases (“erasers”), and m6A-binding proteins (“readers”). Aberrant m6A modifications are associated 
with cancer occurrence, development, progression, and prognosis. Numerous studies have established that 
aberrant m6A regulators function as either tumor suppressors or oncogenes in multiple tumor types. However, the 
functions and mechanisms of m6A regulators in cancer remain largely elusive and should be explored. Emerging 
studies suggest that m6A regulators can be modulated by epigenetic modifications, namely, ubiquitination, 
SUMOylation, acetylation, methylation, phosphorylation, O-GlcNAcylation, ISGylation, and lactylation or via 
noncoding RNA action, in cancer. This review summarizes the current roles of m6A regulators in cancer. The roles 
and mechanisms for epigenetic modification of m6A regulators in cancer genesis are segregated. The review will 
improve the understanding of the epigenetic regulatory mechanisms of m6A regulators.
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RNAs (rRNAs), and several species of regulatory RNAs 
[8]. Previous studies have largely focused on delineat-
ing the role of m6A methylation in mRNA metabolism 
and tumor progression; however, emerging evidence 
has revealed that m6A is involved in almost all RNA 
metabolic processes, such as mRNA maturation, tran-
scription, translation, degradation, and stability. Dys-
regulation of m6A results in pathogenesis of multiple 
human diseases, including cancer. Growing evidence sug-
gests m6A alteration is involved in tumorigenesis through 
many regulatory mechanisms in programmed cell death 
[9], metabolism [10], drug resistance [11], oncogene and/
or tumor suppressor expression [12], immunotherapy 
[13], and targeted therapy [14]. The m6A RNA modifi-
cation is dynamically and reversibly regulated by three 
enzymes, namely, m6A methyltransferases (“writers”), 
m6A demethylases (“erasers”), and m6A binding proteins 
(“readers”), that establish a complex interplay between 
m6A incorporation, degradation, and recognition [15, 
16]. Enzymes mediating m6A effects are defined as m6A 
regulators or m6A RNA methylation regulators (Fig.  2) 
[14, 16]. Methyltransferases install m6A, demethylases 
remove m6A, and m6A-binding proteins recognize and 
act upon m6A-modified RNA. While writers and eras-
ers determine the distribution and prevalence of m6A, 
readers mediate m6A-dependent functions [16]. Accu-
mulating evidence has revealed that writers, erasers, 
and readers are frequently disordered and are involved 

in cancer pathogenesis by regulating the expression of 
oncogenes and/or tumor suppressors, promoting cancer 
proliferation, development, metastasis, and tumorigen-
esis [10–12, 14, 17, 18]. While previous studies mostly 
focused on the role of m6A RNA methylation in tumori-
genesis, recent studies have explored m6A regulators in 
cancer genesis. Nevertheless, the functions and mecha-
nisms of m6A regulators are unknown and need to be elu-
cidated in cancer. Since 2015 [19], studies have revealed 
that m6A regulatory proteins are regulated by epigen-
etic modifications, such as ubiquitination, SUMOylation, 
acetylation, methylation, phosphorylation, and lacty-
lation, or via noncoding RNA action, in cancer. In this 
review, a concise overview of the current understand-
ing of the role of m6A regulators in cancer is provided. 
Additionally, the roles and mechanisms of epigenetic 
modifications of m6A regulators in cancer genesis are 
delineated. This review will enhance the understanding of 
the epigenetic regulatory mechanisms of m6A regulators.

m6A regulator proteins: m6A writers, erasers, and 
readers
The m6A writers, erasers, and readers constitute the 
molecular composition of m6A RNA methylation regu-
lator proteins [14]. These are proteins that insert (writ-
ers), remove (erasers), and recognize (readers) m6A on 
mRNAs or noncoding RNAs. Proteins that mediate the 
effects of m6A establish a complex interplay between the 

Fig. 1 Timeline diagram depicting essential discoveries in the field of m6A research
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above three m6A functions [15]. The effects of m6A on 
mRNA expression are mediated by an expanding list of 
m6A readers and m6A writer-complex components, as 
well as potential erasers. The mechanisms and effects of 
m6A-modifying regulatory proteins on RNA metabolism 
are summarized in Table 1.

Writers
The currently known m6A methyltransferases, or “m6A 
writers”, include methyltransferase-like 3 (METTL3), 
methyltransferase-like 14 (METTL14), wilms tumor 
1-associated protein (WTAP), RNA binding motif pro-
tein 15/15B (RBM15/RBM15B), vir-like m6A meth-
yltransferase associated (VIRMA or KIAA1429), zinc 
finger CCCH-type containing 13 (ZC3H13), methyl-
transferase-like 16 (METTL16), methyltransferase-like 4 
(METTL4), methyltransferase-like 5 (METTL5), and zinc 
finger CCHC-type containing 4 (ZCCHC4) (Table  1). 

The m6A, first reported om 1994, is a multicomponent 
methyltransferase complex [56]. Subsequently, METTL3, 
an S-adenosyl-methionine-binding protein with meth-
yltransferase activity, was identified [5]. Recent studies 
have identified additional components of the m6A meth-
yltransferase complex in mammals, namely, METTL14 
[22, 57] and WTAP [22, 23], which are known to form a 
complex with METTL3 and are anchored to the nucleus 
to catalyze m6A methyltransferases [22, 23]. While 
METTL3 functions as a key catalytic component of the 
m6A methyltransferase complex [5], METTL14 is the 
core subunit of m6A methyltransferase for m6A instal-
lation [22] and WTAP is the regulatory subunit of m6A 
methyltransferase facilitating m6A modification [22, 
23]. RBM15/15B is a subunit of the writer complex 
and facilitates the recruitment of the m6A writer com-
plex to RNA by interacting with METTL3 in a WTAP-
dependent manner [26, 58]. VIRMA (originally known 

Fig. 2 m6A regulator proteins and the underlying mechanisms of m6A modification. The m6A modification of mRNA is mainly catalyzed by the core 
methylase complex METTL3-WTAP-METTL14. RBM15/15B, VIRMA/KIAA1429, and ZC3H13 are newly identified mRNA modification writers; METTL4, and 
METTL16 are snRNA modification writhers; and METTL5 and ZCCHC4 are rRNA m6A writers. The m6A modification is removed by FTO, ALKBH5, and 
ALKBH3. Readers that include members of the YTH domain-containing family, the IGF2BP family, the HNRNP family, eIF3, PRRC2A, and FMRP, recognize 
modification and affect various functions of RNAs
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Types m6A Regulator Full names Cellular 
localization

Function Ref

Writers METTL3 Methyltransferase-like 3 Nucleus Catalyzes methylation reaction/Catalyzes m6A 
modifcation

[5, 20, 
21]

WTAP Wilms tumor 1- associated protein Nucleus Promotes METTL3-METTL14 heterodimer 
localization into nuclear speckles

[22, 23]

METTL14 Methyltransferase-like 14 Nucleus Assists METTL3 to recognize the subtract [20, 22]

VIRMA (KIAA1429) Vir-like m6A methyltransferase 
associated

Nucleus Recruits the m6A complex to the special RNA 
site and interacts with polyadenylation cleav-
age factors CPSF5 and CPSF6

[24, 25]

RBM15 RNA binding motif protein 15 Nucleus Directs METTL3-METTL14 heterodimer to 
specifc RNA sites

[24, 26]

RBM15B RNA binding motif protein 15B Nucleus Directs METTL3-METTL14 heterodimer to 
specifc RNA sites

METTL16 Methyltransferase-like 16 Nucleus Catalyzes m6 A modifcation; mediate the m6A 
methylation of U6 snRNA, noncoding RNAs, 
and precursor mRNAs (premRNAs)

[27–29]

ZC3H13 Zinc finger CCCH-type contain-
ing 13

Nucleus Bridges WTAP to the mRNA-binding factor 
Nito;Anchors WTAP in the nucleus to enhance 
m6A modifcation

[30, 31]

METTL5 Methyltransferase-like 5 Nucleus Induce the m6A methylation of 18 S rRNA [32]

ZCCHC4 Zinc finger CCHC-type contain-
ing 4

Nucleus An m6A methyltransferase of 28 S rRNA medi-
ating ribosomal RNA methylation

[33–35]

METTL4 Methyltransferase-like 4 Nucleus Mediates the m6A methylation of U2 snRNA 
to regulate pre-mRNA splicing

[36]

Erasers FTO Fat mass and obesity
-associated protein

Nucleus Acts as m6A demethylase to promote mRNA 
splicing and translation; removes m6A 
modification

[37]

ALKBH5 AlkB homologue 5 Nucleus Removes m6A modifcation to promote mRNA 
nuclear processing and mRNA export

[38]

ALKBH3 AlkB homologue 3 Nucleus Remove m6 A modifcation level [39]

Readers YTHDF2 YTH N6-methyladenosine RNA 
binding protein 2

Cytosol Promotes mRNA degradation [40, 41]

YTHDF1 YTH N6-methyladenosine RNA 
binding protein 1

Cytosol Promotes mRNA translation initiation [42]

eIF3 Eukaryotic translation initiation 
factor 3 subunit A

Cytosol Promotes mRNA translation [43]

HNRNPA2B1 Heterogeneous nuclear ribonu-
cleoprotein A2/B1

Nucleus Promotes primary miRNA processing and 
mRNA splicing; promotes primary mi-
croRNA processing and mediates nuclear 
accumulation

[44]

HNRNPC Heterogeneous nuclear ribonu-
cleoprotein C

Nucleus Mediates mRNA splicing and maturity
Interacts with m6A-modifed mRNA and af-
fects its enrichment and splicing, generating a 
phenomenon termed the “m6A switch”

[45, 46]

HNRNPG Heterogeneous nuclear ribonu-
cleoprotein G

Nucleus Mediates mRNA splicing and maturity [45, 46]

YTHDC1 YTH domain containing 1 Nucleus Promotes mRNA splicing and transcriptional 
silencing; regulates RNA
nuclear export and splicing

[47, 48]

YTHDF3 YTH N6-methyladenosine RNA 
binding protein 3

Cytosol Interacts with YTHDF1 to promote mRNA 
translation or
interacts with YTHDF2 to promote mRNA 
degradation

[49, 50]

YTHDC2 YTH domain containing 2 Nucleus; cytosol Improves the translation efciency of target 
mRNA

[51]

IGF2BP1 Insulin-like growth factor 2 mRNA 
binding protein 1

Nucleus; cytosol Promotes the stability and translation of 
mRNA

[52]

Table 1 The function of m6A modifcation regulators (m6A methylation enzymes) in RNA metabolism
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as KIAA1429) is a regulatory subunit of m6A methyl-
transferase that facilitates m6A installation and functions 
as a WTAP interactor to associate with the METTL3/
METTL14/WTAP complex, coordinatively modulating 
m6A modification [25, 58]. The ablation of VIRMA leads 
to a substantial loss of m6A in D. melanogaster [59] and 
mammalian cells [24]. VIRMA recruits the m6A com-
plex to specific RNA sites and interacts with the polyad-
enylation cleavage factors CPSF5 and CPSF6, resulting 
in prolonged 3ʹUTR selection [25]. ZC3H13 interacts 
with WTAP and anchors it in the nucleus to promote 
m6A modification [31, 58], facilitating m6A addition and 
stem cell renewal [31]. Deletion of ZC3H13 resulted in 
the loss of m6A in D. melanogaster [30, 60] and approxi-
mately 80% loss of cellular m6A in mammalian cells [30], 
suggesting that some m6A sites are formed indepen-
dent of ZC3H13. Similar to WTAP, ZC3H13 is impor-
tant for the nuclear localization of the writer complex 
[31] and is assumed to promote RBM15/15B interaction 
with WTAP to facilitate methylation [30]. METTL16 
mediates the insertion of m6A in small nuclear RNA 
(snRNAs) (e.g., the spliceosome component U6 snRNA) 
[27, 29]. METTL16 also functions as a methyltransfer-
ase and catalyzes m6A addition in U6-like sequences of 
MAT2A mRNA, the enzyme required for the biosynthe-
sis of S-adenosylmethionine (SAM) [27, 61]. In addition, 
METTL16 catalyzes the addition of m6A in a small num-
ber of noncoding RNAs and mRNAs [29]. ZCCHC4 is 
a ribosomal RNA (rRNA)-adenosine-methyltransferase 
responsible for the formation of a single m6A residue in 
the 28 S ribosomal RNA (rRNA) [32, 62]. The addition of 
m6A on unique, highly conserved sites in the 18 S rRNA 
of eukaryotes is mediated by METTL5-TRMT112 com-
plex, in which METTL5 functions as the catalytic subunit 
and TRMT112 as an allosteric adaptor [32]. METTL4 
mediates m6A methylation of U2 snRNAs to regulate 
pre-mRNA splicing [36, 63].

Erasers
The m6A incorporation and removal in mRNA is a 
dynamic and reversible process, confirmed in 2011 with 
the discovery of the fat mass and obesity-associated 
protein (FTO), which is the first m6A demethylase that 
removes the methyl group to restore the methylated base 
to the adenine base [37]. FTO displays m6A demethylase 
activity and demethylates m6A residues in mRNA indi-
cating the reversibility of this modification [37]. Mauer 
et al. characterized FTO as a m6A demethylase that 
regulates mRNA stability and suggested that m6A is a 
dynamic reversible modification, rekindling interest in 
the biological relevance of m6A [64]. Furthermore, Zheng 
et al. discovered the second mammalian m6A demethyl-
ase, namely, alkB homologue 5 (ALKBH5), that affects 
mouse spermatogenesis and demonstrated that m6A is a 
dynamic reversible modification of mRNA [38]. FTO and 
ALKBH5 facilitate the removal of m6A and potentially 
affect different subsets of target mRNAs because of their 
distinct subcellular and tissue distributions [37, 38]. The 
first evidence of reversible post-transcriptional modi-
fication was given when FTO and ALKBH5 removed 
addition of m6A in mRNA and certain noncoding RNAs 
transcribed by RNA polymerase II [37, 38]. By definition, 
ALKBH3 is an eraser responsible for the removal of the 
m6A modification on the tRNA [39].

Readers
m6A can recruit m6A-binding proteins or m6A read-
ers that mediate m6A-dependent functions to regulate 
the fate of mRNAs [16, 65]. The m6A readers regulate 
mRNA nuclear export, splicing, degradation, transla-
tion, and stability. The first discovered m6A reader fam-
ily, providing a mechanistic basis for understanding the 
effects of m6A on mRNA, was the YT521-B homology 
(YTH) domain family of proteins [66]. The YTH domain 
family includes YTHDF1, YTHDF2, YTHDF3, YTHDC1, 
and YTHDC2. The nuclear m6A readers are YTHDC1, 
HNRNPC11, HNRNPA2B1, and HNRNPG, whereas 

Types m6A Regulator Full names Cellular 
localization

Function Ref

IGF2BP2 Insulin-like growth factor 2 mRNA 
binding protein 2

Nucleus; cytosol Promotes the stability and translation of 
mRNA

[52]

IGF2BP3 Insulin-like growth factor 2 mRNA 
binding protein 3

Nucleus; cytosol Promotes the stability and translation of 
mRNA

[52]

FMRP Fragile X mental retardation 
protein

Nucleus; cytosol Promote the nuclear export and stability of 
m6A-modifed RNAs

[53, 54]

PRRC2A Proline rich coiled-coil 2 A Cytosol Bind to a consensus GGACU motif in the Olig2 
coding sequence to stabilize Olig2 mRNA

[46]

RBM33 RNA-binding motif protein 33 Nucleus Forms a complex with ALKBH5 and mediates 
m6 A demethylation of selected transcripts 
by regulating ALKBH5 substrate accessibility 
and activity

[55]

Table 1 (continued) 
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m6A readers in the cytosol are YTHDC2, YTHDF1/2/3, 
and IGF2BP1/2/3. Different readers have different m6A 
positioning functions [67]. YTHDF2, the first discovered 
m6A-binding protein, regulates mRNA degradation by 
mediating the lifetime of target transcripts [41, 66]. Simi-
larly, YTHDF1 promotes translation of m6A-modified 
mRNAs in the cytosol [42], while YTHDF3 cooperates 
with YTHDF1 and YTHDF2 to modulate the translation 
and degradation of m6A-labelled mRNA and inversely 
regulates their functions [50]. The insulin-like growth fac-
tor 2 mRNA-binding proteins (IGF2BP1/2/3) promote 
mRNA stability and translation [52]. FMRP enhances 
the nuclear export and stability of m6A-decorated RNAs 
[53, 54]. Furthermore, YTHDC1 modulates nuclear 
export and splicing of m6A-modified RNAs [47, 48], 
while YTHDC2 regulates the translation and abundance 
of target genes [51]. As a multiprotein complex that 
recruits small ribosomal subunits to mRNAs, Eukary-
otic initiation factor 3 (eIF3) preferentially binds to 
m6A-decorated mRNA and is involved in mRNA transla-
tion [42, 68]. YTHDF1 recruits eIF3 to the 5’ end of the 
transcripts, resulting in YTHDF1 looping that modu-
lates initiation of translation [42]. The heterogeneous 
nuclear ribonucleoprotein (HNRNP) proteins include 
HNRNPA2B1, HNRNPC, and HNRNPG. HNRNPA2B1 
[44] and HNRNPC[45] are active splicing regulators that 
can selectively bind m6A-decorated mRNAs [45, 69, 70]. 
HNRNPA2B1 recognizes m6A-labelled primary miR-
NAs (pri-miRNAs) and regulates alternative splicing 
events [44] and miRNA biogenesis [44, 71]. HNRNPC 
recognizes m6A-induced changes in secondary mRNA 
structures [45], and HNRNPG is an RNA-binding pro-
tein involved in the splicing of m6A-labelled mRNA[72]. 
Proline-rich coiled-coil 2  A (PRRC2A) was later iden-
tified as a novel m6A reader that binds to a consensus 
GGACU motif in the Olig2 coding sequence to stabilize 
Olig2 mRNA [46].

m6A regulator proteins and cancer
Previous studies have shown that m6A is associated with 
numerous human diseases, including cancer. Pioneering 
studies have provided molecular evidence of the direct 
regulatory roles of m6A in cancer [73, 74]. The ablation of 
METTL3 caused apoptosis and reduced the invasiveness 
of lung adenocarcinoma cells [73], whereas hypoxia-acti-
vated m6A demethylase ALKBH5 induces the accumula-
tion of breast cancer stem cells through HIF-dependent 
and ALKBH5-mediated m6A demethylation of NANOG 
mRNA [74]. Recent evidence has indicated that m6A 
regulatory proteins, i.e., writers, erasers, and readers, 
play a role in various types of human cancers by contrib-
uting to malignancy. This includes cancer cell prolifera-
tion, self-renewal of cancer stem cells, and resistance to 
radiotherapy or chemotherapy. Comprehensive reviews 

for detailed discussions on the role of m6A regulatory 
proteins in cancer are already available in literature [11, 
12, 14, 17, 18, 67, 75–79]. However, the functions and 
mechanisms of m6A regulators in cancer remain largely 
unestablished and need future investigations.

Epigenetic modification of m6A regulators and 
tumorigenesis
Epigenetics is a reversible and dynamic process that reg-
ulates gene expression without altering DNA. There are 
four major mechanisms of epigenetic regulation: DNA 
methylation, histone modification, chromatin structure 
regulation, and noncoding RNA regulation [80, 81]. All 
mechanisms, except chromatin structure regulation, have 
been studied extensively [82]. The histone subunit in the 
nucleosome possesses a characteristic tail containing 
specific amino acids for covalent posttranslational modi-
fications (PTMs), such as acetylation, methylation, ubiq-
uitylation, phosphorylation, glycosylation, sumoylation, 
acylation, glycation, hydroxylation, serotonylation, and 
ADP-ribosylation [83–86]. Recent studies have sug-
gested that m6A regulators in cancer can be modulated 
by epigenetic modifications, including ubiquitination, 
SUMOylation, acetylation, lactylation, O-GlcNAcylation, 
methylation, phosphorylation, ISGylation, and noncod-
ing RNA. Hence, this section focuses on the roles and 
mechanisms of the epigenetic modification of m6A regu-
lators in cancer genesis. The effects and mechanisms of 
epigenetic modification of m6A regulatory proteins in 
tumorigenesis are summarized in Table 2.

Ubiquitination/deubiquitination
Ubiquitination, a highly conserved and key protein PTM, 
plays an important role in controlling substrate degrada-
tion of various proteins [121, 122]. The deubiquitinases 
(DUBs) can reverse ubiquitination by removing ubiquitin 
chains, resulting in the termination of ubiquitination and 
preservation of substrate protein expression levels [122]. 
The interaction between ubiquitination and deubiquiti-
nation plays an essential role in controlling all aspects of 
biological activity, including cancer. Recent studies have 
shown that ubiquitination/deubiquitination is involved 
in the regulation of m6A regulatory proteins in cancer 
(Fig. 3).

Ubiquitination/deubiquitination of writers
USP38 mediates METTL14 protein deubiquitination; 
therefore, METTL14 overexpression inhibits blad-
der cancer cell (BCa) malignancy. METTL14 stabilizes 
USP38 mRNA through m6A modification in a YTHDF2-
dependent manner, demonstrating that METTL14 sup-
presses BCa progression and forms a feedback loop with 
USP38 [96]. Similarly, USP29 upregulation mediates 
KIAA1429 deubiquitination, thereby stabilizing SOX8 



Page 7 of 19Wang et al. Molecular Cancer          (2023) 22:102 

Modification m6A 
Regulator

Cancer Involved mechanism Ref

Ubiquitination FTO CRC GSK3β mediated ubiquitination of demethylase FTO to reduce FTO expression. GSK3β 
suppresses the progression of CRC through FTO-regulated MZF1/c-Myc axis

[87]

Ubiquitination FTO CRC Downregulated FTO protein levels was correlated with a high recurrence rate and poor 
prognosis. Hypoxia restrained FTO protein expression through E3 ligase STRAP-med-
itaed degradation. FTO exerted a tumor suppressive role by inhibiting MTA1 expres-
sion in an m6A-dependent manner. Methylated MTA1 transcripts were recognized by 
IGF2BP2, which then stabilized its mRNA

[88]

Ubiquitination FTO Bladder cancer USP18 up-regulates FTO protein, which decreased m6A level in PYCR1 thereby stabiliz-
ing PYCR1 transcript to promote bladder cancer initiation and progression

[89]

Ubiquitination ALKBH5 GBM USP36 stabilize and regulate ALKBH5. The depletion of USP36 drastically decreased the 
in vivo tumor growth and impaired cell proliferation, deteriorated the self-renewal of 
GSCs and sensitized GSCs to temozolomide (TMZ) treatment

[90]

Ubiquitination IGF2BP1 HCC FBXO45 promoted IGF2BP1 ubiquitination and subsequent activation, leading to the 
upregulation of PLK1 expression and liver tumorigenesis

[91]

Ubiquitination IGF2BP3 GBC TEAD4 transcriptionally activated LncRNA MNX1-AS1 suppresses IGF2BP3 degradation 
by recruiting USP16. MNX1-AS1/IGF2BP3 axis inhibits the Hippo signaling pathway and 
subsequently activates TEAD4. MNX1-AS1 facilitates tumorigenesis, progression and 
metastasis of GBC through a MNX1-AS1/IGF2BP3/Hippo pathway positive feedback 
loop

[92]

Ubiquitination IGF2BP3 CRC Upregulated USP11 protected IGF2BP3 from degradation via deubiquitination thereby 
promoting tumorigenesis in CRC

[93]

Ubiquitination HNRNPA2B1 Pancreatic 
cancer

Upregulated Linc01232 by suppressing the ubiquitin-mediated degradation of HNRN-
PA2B1 and activating the A-Raf-induced MAPK/ERK signaling pathway promoted the 
migration and invasion of PC cells

[94]

Ubiquitination KIAA1429 CRC Upregulated USP29 mediated deubiquitination to stabilize the protein levels of 
KIAA1429, thereby promoting the stability of SOX8 mRNA through m6A modification 
to facilitate the malignant proliferation

[95]

Ubiquitination METTL14 Bladder cancer METTL14 overexpression inhibits BCa cell malignancy through USP38. METTL14 stabi-
lizes USP38 mRNA by inducing m6A modification and enhances USP38 mRNA stability 
in YTHDF2-dependent manner. USP38 mediates the deubiquitination of METTL14 
protein

[96]

Ubiquitination METTL3 Breast cancer PIN1 interacted with METTL3 and prevented its ubiquitin-dependent proteasomal 
and lysosomal degradation, thereby increasing the m6A modification of TAZ and EGFR 
mRNA, resulting in their efficient translation, eventually promoting tumorigenesis in 
breast cancer

[97]

SUMOylation METTL3 HCC SUMOylation of METTL3 by SUMO1 was increased high metastatic potential and 
progression via controlling Snail mRNA homeostasis in an m6A methyltransferase 
activity-dependent manner

[98]

SUMOylation METTL3 CRC METTL3, circ_0000677, and ABCC1 were upregulated in CRC. SUMOylation of METTL3 
facilitates CRC progression by promoting circ_0000677 in an m6A-dependent manner, 
thereby upregulating ABCC1 expression

[99]

SUMOylation METTL3 NSCLC SUMOylation of METTL3 by SUMO1 promotes tumorigenesis. SUMOylation of METTL3, 
which can be reduced by an SUMO1-specific protease SENP1, significantly represses its 
m6A methytransferase activity resulting in the decrease of m6A levels in mRNAs

[100]

SUMOylation FTO HCC SIRT1 exerts an oncogenic role by down-regulating FTO through RANBP2-mediated 
FTO SUMOylation and degradation

[101]

SUMOylation HNRNPA2B1 Breast cancer PIAS2-mediated SUMOylated HNRNPA2B1 associates with replication protein A1 
(RPA1). HNRNPA2B1 expression may function as an independent predictor of good 
prognosis. HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA 
availability, thus conferring sensitivity to PARP inhibitors

[102]

SUMOylation HNRNPA2B1 Glioblastoma Hypoxia promotes the transfer of hnRNP A2/B1 to the cytoplasm by upregulating SU-
MOylation of hnRNP A2/B1 to eliminate miR-204-3p. Exosomal miR-204-3p promoted 
tube formation of vascular endothelial cells through the ATXN1/STAT3 pathway. The 
SUMOylation inhibitor TAK-981 can inhibit the exosome-sorting process of miR-204-3p 
to inhibit tumor growth and angiogenesis

[103]

Table 2 Epigenetic modification of m6A Regulator proteins in tumorigenesis
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Modification m6A 
Regulator

Cancer Involved mechanism Ref

SUMOylation IGF2BP2 Glioma SUMOylation of IGF2BP2 by SUMO1 increased IGF2BP2 protein expression through 
blocking its ubiquitin-proteasome pathway-dependant degradation. Up-regulated 
IGF2BP2 enhances the stability of OIP5-AS1, thereby increasing the binding of OIP5-
AS1 to miR-495-3p, weakening the binding of miR-495-3p to the 3’UTR of HIF1A and 
MMP14 mRNA, and ultimately promoting the formation of VM in glioma

[104]

SUMOylation YTHDF2 NSCLC SUMOylation of YTHDF2 increases its binding affinity of m6A-modified mRNAs leading 
to cancer progression

[105]

Acetylation RBM15 ccRCC Histone 3 acetylation modification by EP300/CBP upregulated RBM15 and pro-
motes ccRCC progression. RBM15 enhanced the stability of CXCL11 mRNA in an 
m6A-dependent manner and promote macrophage infiltration and M2 polarization by 
promoting the secretion of CXCL11

[106]

Acetylation METTL3 ESCC Upregulated METTL3 increased m6A in EGR1 mRNA and enhanced its stability in a 
YTHDF3-dependent manner, activating EGR1/Snail signaling. KAT2A mediated H3K27 
acetylation transcriptionly activate METTL3, whereas SIRT2 exerted the opposite ef-
fects. Elvitegravir suppressed metastasis by directly targeting METTL3 and enhancing 
its STUB1-mediated proteasomal degradation

[107]

Acetylation METTL3 Breast cancer Acetylation of METTL3 by EP300/CBP disrupts migration and invasion potential of 
breast cancer cells

[108]

Acetylation METTL3 HCC METTL3 acetylation mediated reduced N6-Methyladenosine to promotes MTF1 
expression and cancer progression

[109]

Lactylation METTL3 CRC Lactylation of METTL3 by acetyltransferase p300 induce Mettl3 expression through 
H3K18la. The lactylation METTL3-JAK1-STAT3 regulatory axis potently induces the 
immunosuppressive functions of tumor-infiltrating myeloid cells to promote tumor 
immune escape

[110]

Lactylation YTHDF2 Ocular 
melanoma

Lactylation of YTHDF2 by EP300 at H3K18la. YTHDF2 recognizes the m6A modified 
PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigen-
esis of ocular melanoma

[111]

O-GlcNAcylation YTHDF2 HCC O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of YTHDF2 promote its 
protein stability and oncogenic activity by inhibiting its ubiquitination. Mechanisti-
cally, YTHDF2 stabilized MCM2 and MCM5 transcripts in an m6A-dependent manner, 
thus promoting cell cycle progression and HBV-related HCC tumorigenesis. OGT 
inhibitor OSMI-1 significantly suppressed HCC progression through targeting YTHDF2 
O-GlcNAcylation

[112]

Methylation RBM15 Leukemia RBM15 is methylated by PRMT1, leading to its degradation via ubiquitylation by an 
E3 ligase (CNOT4), which in turn interferes with the differentiation process, and can 
contribute to the development of cancers. RBM15 binds to pre-messenger RNA 
intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, 
TAL1 and c-MPL. PRMT1 regulates alternative RNA splicing via reducing RBM15 protein 
concentration

[19]

Phosphorylation METTL3 CRC ERK Interacts and Phosphorylates METTL3 and WTAP. ERK-dependent METTL3 stabiliza-
tion affects cellular mRNA m6A methylation, which could contribute to tumorigenesis

[113]

ISGylation hnRNPA2B1 Ovarian cancer ISG15 suppresses translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances 
drug sensitivity in cisplatin resistant ovarian cancer cells

[114]

CircEZH2 IGF2BP2 CRC circEZH2 works as sponge of miR-133b to upregulate IGF2BP2 and blocks its ubiquiti-
nation-dependent degradation, thereby facilitating the proliferation and migration of 
CRC cells

[115]

LncRNA LINRIS IGF2BP2 CRC Upregulated LINRIS promote malignancy. Knockdown of LINRIS resulted in a decreased 
level of IGF2BP2 through ubiquitination of IGF2BP2 and attenuated MYC-mediated 
glycolysis in CRC cells

[116]

Hsa_circ_0026134 IGF2BP3 HCC Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated proliferation 
and invasion through sponging miR-127-5p

[117]

miR503HG HNRNPA2B1 HCC Decreased miR503HG exists in HCC. Enhanced expression of miR503HG inhibit HCC 
invasion and metastasis.miR503HG interact with HNRNPA2B1 and promoted its degra-
dation via the ubiquitin-proteasome pathway, which reduced the stability of p52 and 
p65 mRNA, and simultaneously suppressed the NF-κB signaling pathway in HCC cells

[118]

Table 2 (continued) 
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mRNA and protein levels through m6A modification to 
facilitate malignant proliferation in colorectal carcinoma 
(CRC) [95]. In addition, METTL3 expression has been 
shown to significantly increase with tumor progression 
and positively correlate with peptidyl-prolyl cis-trans 

isomerase NIMA-interacting 1 (PIN1) expression in 
breast cancer tissues. PIN1 interacts with and stabilizes 
METTL3 by preventing its ubiquitin-dependent pro-
teasomal and lysosomal degradation, thereby increasing 
the m6A modification of transcriptional coactivator with 

Fig. 3 Epigenetic modification of m6A regulator proteins by ubiquitination and SUMOylation in cancer. BC, Breast cancer; CRC, colorectal cancer; GBC, 
gallbladder cancer; GBM, glioblastoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung carcinoma; PC, Pancreatic cancer

 

Modification m6A 
Regulator

Cancer Involved mechanism Ref

lncRNA CYTOR HNRNPC OSCC Upregulated lncRNA CYTOR promote both migration and invasion as well as the EMT. 
lncRNA CYTOR interacts with HNRNPC, resulting in stabilization of ZEB1 mRNAs by 
inhibiting the nondegradative ubiquitination of HNRNPC

[119]

circNEIL3 IGF2BP3 Glioma Upregulated circNEIL3 stabilizes IGF2BP3 by preventing HECTD4-mediated ubiquitina-
tion and promotes tumorigenesis and progression

[120]

ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition; ESCC, esophageal 
squamous cell carcinoma; GBC, gallbladder cancer; GBM, glioblastoma; HCC, hepatocellular carcinoma; HNRNPA2B1, heterogeneous nuclear ribonucleoprotein 
A2/B1; IGF2BP3, insulin-like growing factor 2 mRNA-binding protein 3; ISG15, ubiquitin-like protein interferon-stimulated gene 15; MCM2, minichromosome 
maintenance protein 2; MTA1, metastasis-associated protein 1; NSCLC, non-small cell lung carcinoma; OSCC, oral squamous cell carcinoma; PIN1, peptidyl-prolyl 
cis-trans isomerase NIMA-interacting 1; RANBP2, small ubiquitin-related modifiers (SUMOs) E3 ligase; PRMT1, protein arginine methyltransferase 1; STRAP, serine/
threonine kinase receptor associated protein;TAZ, transcriptional coactivator with PDZ-binding motif; TEAD4, TEA domain family member 4; USP, ubiquitin specific 
peptidase

Table 2 (continued) 
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PDZ-binding motif (TAZ) and epidermal growth factor 
receptor (EGFR) mRNA, resulting in their efficient trans-
lation [97]. This suggests that PIN1 regulates METTL3 
through ubiquitination in breast cancer [97].

Ubiquitination/deubiquitination of erasers
Downregulation of GSK3β inhibits the ubiquitination of 
FTO, in turn, stabilizing FTO levels. In succession, FTO 
increases MZF1 expression by mediating the FTO-regu-
lated m6A modification of MZF1 and consequently, pro-
motes c-Myc expression and cell proliferation [87]. The 
former study suggests that GSK3β acts as a suppressor 
in CRC. This observation was later confirmed by other 
studies, wherein FTO was shown to act as a tumor sup-
pressor in CRC by reducing the expression of metasta-
sis-associated protein 1 (MTA1) in an m6A-dependent 
manner using IGF2BP2 [88]. The hypoxic tumor micro-
environment reduces FTO protein expression by increas-
ing serine/threonine kinase receptor-associated protein 
(STRAP)-mediated ubiquitination and facilitates CRC 
metastasis [88]. Ubiquitin-specific peptidase 18 (USP18) 
upregulates FTO levels through post-translational deu-
biquitination while decreasing m6A levels in PYCR1, 
thereby stabilizing the PYCR1 transcript and promoting 
bladder cancer initiation and progression [89]. Collec-
tively, the above findings define the crucial role played 
by ubiquitination/deubiquitination in the modulation of 
FTO in cancer and reveal a novel epigenetic modification 
of FTO. In addition, USP36 deubiquitinates and stabilizes 
ALKBH5. The depletion of USP36 drastically decreases 
glioma tumorigenesis, impairs cell proliferation, deterio-
rates the self-renewal of GSCs, and increases the sensitiv-
ity of GSCs to temozolomide (TMZ) [90].

Ubiquitination/deubiquitination of readers
The IGF2BP family of m6A regulatory proteins is also 
modified by ubiquitination or deubiquitination in cancer. 
The elevation of E3 ubiquitin ligase F-box/SPRY domain-
containing protein 1 (FBXO45) promotes hepatocellular 
carcinoma (HCC) tumorigenesis through IGF2BP1 ubiq-
uitination and activation, resulting in the upregulation 
of polo-like kinase (PLK1) expression, suggesting pos-
sibility of a new therapeutic regimen for HCC that tar-
gets the FBXO45/IGF2BP1/PLK1 axis [91]. TEA domain 
family member 4 (TEAD4)-transcriptionally activated 
lncRNA MNX1-AS1 suppresses IGF2BP3 degradation 
by recruiting USP16. The MNX1-AS1/IGF2BP3 axis 
inhibits the Hippo signaling pathway, thereby activating 
TEAD4. Consequently, MNX1-AS1 promotes tumori-
genesis, progression, and metastasis of gallbladder cancer 
(GBC) through an MNX1-AS1/IGF2BP3/Hippo path-
way positive feedback mechanism [92]. Similarly, USP11 
upregulation protects IGF2BP3 from degradation via 
deubiquitination and promotes CRC tumorigenesis [93]. 

Another study has shown that upregulated Linc01232 
suppresses the ubiquitin-induced degradation of HNRN-
PA2B1 and activates A-Raf-induced MAPK/ERK, in 
turn, promoting the metastasis of pancreatic cancer (PC) 
[94].

SUMOylation
SUMOylation is defined as a post-translational pro-
tein modification by conjugation of small ubiquitin-like 
modifier (SUMO) proteins to substrate proteins. As it is a 
dynamic as well as reversible process, it has been associ-
ated with various cellular processes and is a vital mecha-
nism in cellular stress responses [123]. SUMOylation 
occurs via an enzymatic cascade involving a dimeric 
SUMO-activating enzyme E1 (SAE1 and SAE2/UBA2), a 
single E2 (ubiquitin-conjugating enzyme 9, UBC9), and a 
limited set of E3 ligases [124]. SUMO-specific proteases 
(SENPs) cooperate with SUMO molecules to regulate 
the SUMOylation state of substrate proteins by specifi-
cally de-SUMOylating them. SUMOylation is aberrantly 
upregulated in many cancer stages, including tumorigen-
esis, epithelial-mesenchymal transition (EMT), metasta-
sis, drug resistance, and antitumor immunity [123, 125].

SUMOylation of writers
SUMO1-mediated SUMOylation of METTL3 promotes 
tumor progression by regulating Snail mRNA homeosta-
sis in an m6A methyltransferase activity-dependent man-
ner in HCC (Fig. 3) [98]. The upregulated expression of 
METTL3, circ_0000677, and ABCC1 has been observed 
in CRC. SUMO1-mediated METTL3 SUMOylation facil-
itates CRC progression and drug resistance by stabiliz-
ing circ_0000677 in an m6A-dependent manner, thereby 
upregulating ABCC1 expression [99]. SUMOylation of 
METTL3 by SUMO1 promotes tumorigenesis in human 
non-small cell lung carcinoma (NSCLC). SUMOylation 
of METTL3, usually reversed by SENP1, significantly 
inhibits its m6A methyltransferase activity, leading to 
decreased m6A mRNA levels [100].

SUMOylation of erasers
A recent study demonstrated that SIRT1 functions as 
an oncogene by downregulating FTO via RANBP2-
mediated FTO SUMOylation and degradation. SIRT1 
activates RANBP2, a critical component of the E3 ligase 
SUMOs and essential for SUMOylation of FTO at the 
lysine (K-216) site that promotes FTO degradation. As 
a tumor suppressor in HCC, the guanine nucleotide-
binding protein G(o) subunit alpha (GNAO1) is a m6A 
downstream target of FTO, and SIRT1-mediated abla-
tion of FTO downregulates GNAO1 mRNA expression 
through increasing m6A modification [101]. This study 
suggests that SIRT1 destabilizes FTO, steering GNAO1 
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as an m6A-modified downstream molecule in HCC 
tumorigenesis.

SUMOylation of readers
HNRNPA2B1 expression is an independent predic-
tor of good prognosis in patients with breast cancer. 
SUMOylation of HNRNPA2 mediated by a protein 
inhibitor of activated STAT 2 (PIAS2) functions as an 
endogenous inhibitor of replication protein A1 (RPA1). 
HNRNPA2B1 hinders homologous recombination (HR) 
repair by limiting RPA availability and increasing sensi-
tivity to PARP inhibitors [102]. A recent study demon-
strated that hypoxia upregulates UBC9 expression and 
increases SUMOylation of hnRNP A2/B1, promoting 
its nuclear export to eliminate miR-204-3p in glioma. 
As exosomal miR-204-3p is known to promote tube 
formation in vascular endothelial cells via the ATXN1/
STAT3 pathway, TAK-981, a SUMOylation inhibitor, can 
inhibit miR-204-3p sorting into exosomes and inhibits 
tumor growth and angiogenesis. This suggests that TAK-
981 could be a potential therapeutic target for gliomas 
[103]. SUMOylation of IGF2BP2 by SUMO1 increases 
IGF2BP2 expression by blocking its ubiquitin-protea-
some pathway-dependent degradation. This upregula-
tion stabilizes lncRNA OIP5-AS1, which in turn, binds 
to miR-495-3p and decreases the association of miR-
495-3p, hypoxia-inducible factor 1 alpha (HIF1A), and 
matrix metalloproteinase 14 (MMP14) mRNA, ultimately 
promoting the formation of vasculogenic mimicry in gli-
oma [104]. SUMOylation of YTHDF2 at the major site, 
K571, can be increased by hypoxia and reduced by oxi-
dative stress and SUMOylation inhibitors. The binding 
affinity of SUMOylated YTHDF2 to m6A-labelled mRNA 
is significantly increased and resultant deregulated gene 
expression causes cancer progression in NSCLC [105]. 
The above study uncovered a new regulatory mechanism 
for YTHDF2 recognition by m6A-RNA, highlighting the 
important role of YTHDF2 SUMOylation in the post-
transcriptional regulation of gene expression in NSCLC 
progression [105].

Acetylation
Protein acylation plays a vital role in key cellular pro-
cesses involved in physiology and disease, such as 
enzyme activity, protein stability, subcellular localization, 
protein-protein interactions, transcriptional activity, and 
protein-DNA interactions [126]. Histone acetylation 
was first identified as a mechanism of gene transcription 
regulation in the early 1960s [127]. After the first finding, 
acetylation of the non-histone protein, p53, was discov-
ered in the 1980s, followed by identification of multiple 
non-histone proteins as targets for acylation [126]. A 
recent study demonstrated that acetylation plays a role 
in regulating METTL3 localization and tumorigenic 

progression in breast cancer (Fig.  4) [108]. METTL3 
acetylation is a key PTM for determining its cellular 
translocation. Li et al. demonstrated that METTL3 acety-
lation by EP300/CBP hinders the migration and inva-
sion potential of breast cancer cells. It is known that 
physiological stimuli modulate METTL3 nuclear entry. 
IL-6-induced deacetylation promotes the nuclear shift 
of METTL3 via the AMPK/SIRT1 axis, whereas ASP/
NAM-mediated acetylation decreases its nucleus import 
[108]. The METTL3-mediated m6A modification of IL-6 
mRNA enhances METTL3 deacetylation and nuclear 
translocation, whereas SIRT1 inhibition counterbalances 
this deacetylation-mediated nuclear shift of METTL3. 
Intriguingly, reconstitution of acetylation-mimetic 
METTL3 mutant resulted in enhanced translation and 
compromised metastatic potential, revealing an acetyla-
tion-mediated regulatory mechanism that determines the 
subcellular localization of METTL3 [108]. Additionally, 
lysine acetyltransferase 2  A (KAT2A)-mediated H3K27 
acetylation activates METTL3, promoting cancer metas-
tasis by activating early growth response-1 (EGR1)/Snail 
signaling in a YTHDF3-dependent manner and reveal-
ing a susceptibility to METTL3 blockade in esophageal 
squamous cell carcinoma. The anti-HIV drug elvitegravir 
inhibited metastasis by directly targeting METTL3 and 
enhancing stress-inducible phosphoprotein 1 homol-
ogy and U-box containing protein 1 (STUB1)-mediated 
proteasomal degradation in esophageal squamous cell 
carcinoma (ESCC) [107]. METTL3 acetylation mediated 
reduced N6-Methyladenosine to promote the expression 
of metal regulatory transcription factor 1(MTF1) and 
HCC progression [109]. EP300/CBP-mediated histone 3 
acetylation upregulates RBM15 and promotes clear cell 
renal cell carcinoma (ccRCC) progression by stabilizing 
CXCL11 mRNA in an m6A-dependent manner [106].

Phosphorylation
Phosphorylation is an important epigenetic PTM that 
strongly correlates with the occurrence and develop-
ment of multiple diseases, including cancer [128]. Sun 
et al. demonstrated that activated ERK phosphorylates 
METTL3 and WTAP. This phosphorylation of METTL3 
facilitates its interaction with USP5, thereby stabilizing 
the m6A METTL3-METTL14-WTAP methyltransferase 
complex by deubiquitination as shown in Fig.  4 [113]. 
The loss of METTL3/WTAP phosphorylation reduces 
the degradation of m6A-labelled pluripotent factor tran-
scripts and traps mouse embryonic stem cells (mESC) in 
a pluripotent state. METTL3 phosphorylation in ERK-
activated tumor cells contributes to CRC tumorigenesis, 
suggesting that a new function of ERK in regulating m6A 
methylation exists and that the activation of the ERK-
METTL3/WTAP axis promotes tumorigenesis [113].
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Lactylation
Lactylation is a novel PTM that was initially reported 
by Zhao et al. (2019) as an indicator of lactate levels and 
glycolysis [129]. Lactylation has intrinsic connections 
with cell lactate metabolism which is linked to meta-
bolic rewiring and epigenetic remodeling. Therefore, it 
represents a novel epigenetic code that affects cellular 
dysfunction and carcinogenesis [130]. Recent studies 
have identified lactate-derived lactylation of lysine (Kla) 
residues on histones as an epigenetic modification that 
directly stimulates gene transcription from chromatin 
[129]. Increasing experimental evidence suggests that 
lactylation plays a role in tumorigenesis. A recent study 
provides insight into the lactylome profile of hepatitis B 
virus (HBV)-related HCC, demonstrating an important 
role for non-histone Kla in HCC progression, prefer-
entially affecting metabolic proteins as shown in Fig.  4 
[131]. Hypoxia-induced glycolysis promotes lactylation, 
thereby stabilizing catenin and aggravating the malig-
nant behavior of CRC cells [132]. Proprotein convertase 
subtilisin/kexin type 9 (PCSK9) is involved in the pro-
gression and metastasis of CRC by regulating EMT and 

PI3K/AKT signaling and polarization of macrophages. 
It acts by mediating migration inhibitory factor (MIF), 
lactate levels, and protein lactylation [133]. In addition, 
lactate acts as an essential molecule that boosts regula-
tory T cells (Treg cells) in the tumor microenvironment 
by lactylating MOESIN at Lys72. This results in enhanced 
interaction of MOESIN with transforming growth factor 
β (TGF-β) receptor I and downstream SMAD3 signal-
ing [134]. Another study showed that HIF1α lactylation 
enhances transcription of hyaluronic acid (HA) binding 
protein, KIAA1199, to promote angiogenesis and vascu-
logenic mimicry in prostate cancer [135]. Therefore, the 
inhibition of lactylation is a therapeutic target for can-
cer [136]. Novel studies suggest that lactylation regulates 
m6A regulator proteins in cancer [110, 111]. Lactylation 
of METTL3 by acetyltransferase p300 induces Mettl3 
expression via H3K18la. Lactylation of the METTL3-
JAK1-STAT3 regulatory axis induces immunosuppres-
sive functions in tumor-infiltrating myeloid cells in CRC 
[110]. Additionally, lactylation drives oncogenesis by 
facilitating YTHDF2 expression in ocular melanomas 
[111]. Here, lactylation of YTHDF2 was mediated by 

Fig. 4 Epigenetic modification of m6A regulator proteins by acetylation, methylation, O-GlcNAcylation, ISGylation, phosphorylation, and lactylation, or 
noncoding RNA in cancer. ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; ESCC, esophageal squamous cell carcinoma; GBC, gallbladder 
cancer; GBM, glioblastoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung carcinoma; OC, ovarian cancer; OM, ocular melanoma; OSCC, oral 
squamous cell carcinoma
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EP300 at H3K18la. As YTHDF2 recognizes m6A-labelled 
PER1 and TP53 mRNAs and promotes their degradation, 
it accelerates tumorigenesis in ocular melanoma [111].

O-GlcNAcylation
The attachment of O-linked N-acetylglucosamine 
(O-GlcNAc) moieties to serine or threonine residues of 
nuclear, cytoplasmic, and mitochondrial proteins is an 
important PTM that links nutrient flux to gene tran-
scription during virus replication and tumorigenesis 
[137, 138]. O-GlcNAcylation is dynamically regulated 
by O-GlcNAc Transferase (OGT) and O-GlcNAcase 
(OGA). Recently, aberrant O-GlcNAcylation is emerg-
ing as a common feature of cancer, owing to deregulated 
cellular nutrient flux [139, 140]. A recent study, for the 
first time, showed that O-GlcNAcylation plays a role 
in the regulation of m6A regulatory proteins in HCC. 
O-GlcNAcylation of YTHDF2 promotes HBV-associ-
ated HCC progression in an m6A-dependent manner, as 
shown in Fig. 4 [112]. OGT-mediated O-GlcNAcylation 
of YTHDF2 promotes protein stability and oncogenic 
activity by inhibiting ubiquitination. YTHDF2 stabilizes 
minichromosome maintenance protein 2 (MCM2) and 
MCM5 transcripts in an m6A-dependent manner, pro-
moting cell cycle progression and HBV-related HCC 
tumorigenesis. OSMI-1, an OGT inhibitor, significantly 
suppresses HCC progression by targeting YTHDF2 
O-GlcNAcylation [112]. Collectively, these findings 
demonstrate a new regulatory mechanism for YTHDF2 
through O-GlcNAcylation and highlight the vital role of 
YTHDF2 O-GlcNAcylation in m6A RNA methylation 
and HCC progression.

Methylation
Protein methylation, first discovered in 1959 [141], is a 
crucial PTM that regulates the functions of both histone 
and non-histone proteins [142]. Since the discovery of 
histone methylation in 1964 [143], numerous studies have 
unveiled the biology behind protein methylation [144]. 
Protein methylation occurs mainly at the side chains of 
lysine (Lys) and arginine (Arg) residues [145]. While 
lysine residues can be mono-, di-, or trimethylated (me1, 
me2, and me3, respectively) in a SAM-dependent manner 
[146], arginine residues can be mono- or demethylated 
at the respective side-chain by protein arginine meth-
yltransferases (PRMTs) with SAM as the methyl donor 
[145, 147]. Ample evidence exists that shows involve-
ment of dysregulation of protein methylation in the can-
cer development and progression [148, 149]. A recent 
study, for the first time, showed that the arginine meth-
ylation plays a role in regulating m6A regulatory pro-
teins in leukemia (Fig. 4) [19]. The RNA-binding protein, 
RBM15, is methylated at residue R578 by PRMT1, lead-
ing to its degradation via E3 ligase (CNOT4)-mediated 

ubiquitylation. RBM15 binds to the pre-messenger RNA 
intronic regions of RUNX1, GATA1, TAL1, and c-MPL, a 
mechanism considered important for megakaryopoiesis. 
Furthermore, PRMT1 regulates alternative RNA splicing 
by reducing RBM15 protein concentration [19].

ISGylation
Ubiquitin, covalently conjugated to other protein sub-
strates, was first discovered in 1975 [150]. This discovery 
prompted the finding of ubiquitin-like proteins (UBLs) 
that are structurally and evolutionarily related to ubiq-
uitin [e.g., interferon-stimulated gene 15 (ISG15), small 
ubiquitin-like modifier (SUMO), and NEDD8] [151]. The 
first UBL, ISG15, was discovered in 1979 and can medi-
ate ISGylation or ubiquitin-like covalent modification 
of other proteins [152]. Two studies suggest a role for 
ISG15 and ISGylation in cancer progression [151, 153]. A 
recent study showed that ISG15 suppresses the transla-
tion of multidrug resistance-associated protein 2 (MRP2/
ABCC2) via ISGylation of hnRNPA2B1 and enhances 
drug sensitivity in cisplatin-resistant ovarian cancer cells 
(Fig. 4) [114]. While ISG15 expression is downregulated 
in cisplatin-resistant ovarian cancer cells, overexpression 
of wild-type ISG15 increases cisplatin-sensitivity of ovar-
ian cancer cells through ISGylated hnRNPA2B1 blockage 
of its recruitment, and consequently, decreases MRP2/
ABCC2 translation and expression [114].

Noncoding RNA
Noncoding RNA, or ncRNAs, are functional RNA with 
limited or no protein-coding abilities but are one of the 
most common epigenetic regulation mechanisms [154, 
155]. NcRNAs interact with target molecules and partici-
pate in the regulation of disease development, including 
cancer [156]. Recent evidence indicates a regulatory role 
for ncRNAs in the control of m6A regulatory proteins 
in cancer (Fig.  4). It has been shown that upregulated 
circNEIL3 stabilizes IGF2BP3 by preventing HECTD4-
mediated ubiquitination, in turn, promoting tumori-
genesis and progression of gliomas [120]. Another study 
has demonstrated that circEZH2 works as a sponge for 
miR-133b to upregulate IGF2BP2 and blocks its ubiq-
uitination-dependent degradation, thereby facilitating 
the proliferation and migration of CRC cells [115]. Hsa_
circ_0026134 promotes TRIM25- and IGF2BP3-medi-
ated proliferation and invasion by sponging miR-127-5p 
[117]. Upregulated lncRNA CYTOR promotes migration, 
invasion, and EMT. CYTOR inhibits HNRNPC ubiq-
uitination and stabilizes ZEB1 mRNA [119]. Similarly, 
upregulated LINRIS is demonstrated to promote malig-
nancy. Knockdown of LINRIS decreases IGF2BP2 levels 
through IGF2BP2 ubiquitination and attenuates MYC-
mediated glycolysis in CRC cells [116]. Another study 
has shown that decreased miR503HG is present in HCC. 
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Enhanced expression of miR503HG significantly inhibits 
the invasion and metastasis of HCC. miR503HG interacts 
with HNRNPA2B1 and promotes its degradation via the 
ubiquitin-proteasome pathway, resulting in decreased 
stability of p52 and p65 mRNA while suppressing NF-κB 
signaling in HCC cells [118].

Conclusion and perspectives
While previous studies mainly focused on the role of 
m6A RNA methylation in tumorigenesis, recent studies 
provide insight into m6A regulators in cancer genesis. 
Nevertheless, the functions and mechanisms of m6A 
regulators are not completely understood and need to be 
elucidated in cancer. Emerging evidence since 2015 has 
shown that m6A can be regulated by epigenetic modifica-
tions in cancers [19]. In this review, we have discussed the 
roles and mechanisms of the epigenetic modifications of 
m6A regulators in cancer genesis and highlighted the cru-
cial role of the epigenetic modification of m6A regulators 
in tumorigenesis, explaining the regulatory interaction 
between the epigenetic modification of m6A regulators 
and m6A modification of RNA in cancer pathogenesis. 
However, the understanding of epigenetic modification 
of m6A regulators in cancer is still in its infancy.

Crosstalk between histone modifications occurs when 
one or more histone modifications modulate the recog-
nition, addition, or removal of another modification, or 
synergistically function to repress or promote the gene 
transcription [157, 158]. There is exists an interplay 
between m6A RNA methylation and other epigenetic reg-
ulators [159]. The listed epigenetic modifications on m6A 
regulators are complete, however most of these studies 
maybe have some disadvantages for their focus on one 
epigenetic modifications mechanism on m6A regulators. 
Nevertheless, continuous progress in this field is taking 
place, and whether these epigenetic regulatory mecha-
nisms are specific to other types of cancer remains to be 
explored. Little is known about the interplay between 
two different epigenetic modifications on the same m6A 
regulators. In addition to ubiquitination, SUMOylation, 
acetylation, methylation, phosphorylation, O-GlcNAcyl-
ation, ISGylation, and lactylation or via noncoding RNA 
action, whether other epigenetic modification including 
malonylation, succinylation, and glutarylation, et al. are 
involved in regulating m6A regulatory proteins remains 
unclear. Thus, additional studies of the roles of other 
potential epigenetic modification on m6A regulatory pro-
teins are warranted.

Growing evidence suggests targeting m6A regulatory 
proteins maybe work as a novel therapeutic opportuni-
ties for immunotherapy or drug resistance in cancer, 
and m6A regulatory proteins can be feasibly targeted by 
small-molecules targeting m6A regulators [160]. Reveal-
ing epigenetic regulation mechanism of m6A regulatory 

proteins in cancer will accelerate the development of 
promising combination therapeutic regimes containing 
epigenetic agents and targeting m6A regulatory proteins 
to overcome chemotherapy resistance, and highlights 
some promising therapeutic avenues that may be used to 
surmount chemotherapy drug resistance. Whether the 
epigenetic modification affect multiple m6A regulatory 
proteins and how these different epigenetic modification 
corporate with diverse signaling pathways to determine 
the role of epigenetic modification in cancer. A profound 
study on the epigenetic modification network of m6A 
regulatory proteins process requires extensive investiga-
tion. We believe that identifying the effects of epigenetic 
regulation on m6A regulatory proteins will lead to a bet-
ter understanding of cancer genesis and provide better 
therapeutic targets.

As concluded, studies about epigenetic modification of 
m6A regulator proteins is an emerging research field in 
cancer, and bring a new frontier to cancer research. This 
implies an additional layer of complexity for the interpre-
tation of m6A modification. The role of epigenetic regu-
lation on m6A regulatory proteins in cancer remains an 
open conundrum for future investigate on.
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