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Abstract 

The reintegration of excised signal joints resulting from human V(D)J recombination was described as a potent 
source of genomic instability in human lymphoid cancers. However, such molecular events have not been recurrently 
reported in clinical patient lymphoma/leukemia samples. Using a specifically designed NGS‑capture pipeline, we here 
demonstrated the reintegration of T‑cell receptor excision circles (TRECs) in 20/1533 (1.3%) patients with T‑cell acute 
lymphoblastic leukemia (T‑ALL) and T‑cell lymphoblastic lymphoma (T‑LBL). Remarkably, the reintegration of TREC 
recurrently targeted the tumor suppressor gene, ZFP36L2, in 17/20 samples. Thus, our data identified a new and hardly 
detectable mechanism of gene deregulation in lymphoid cancers providing new insights in human oncogenesis.
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Background
Adaptative immunity depends on V(D)J recombination 
to assemble antigen receptor genes from their compo-
nent gene segments in T and B cells. During this pro-
cess, the variable (V) diversity (D) and joining (J) gene 
segments present within the immunoglobulin (IG) and 
T-cell receptor (TCR) loci are assembled to form a com-
plete V(D)J exon encoding the variable region of the IG/
TCR. Recombination-activating gene (RAG) protein 
complexes consisting of heterotetrameric RAG1 and 
RAG2 proteins, recognize, capture and bind recombina-
tion signal sequences (RSSs) that flank V, (D) and J genes. 
Each RSS comprises a heptamer and a nonamer sequence 
separated by either 12 or 23 nucleotide spacer, which 
recombine according to the 12/23 rule. Following the 
capture of an RSS, the RAG protein complex generates a 
single strand break followed by 3’OH transesterification, 
forming a hairpin on coding ends (CE) and releasing a 
double strand DNA break (DSB) precisely at the junction 
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between the RSS heptamer and the gene segment. Hair-
pin coding ends are nicked and processed to generate a 
coding joint by the non-homologous endjoining (NHEJ) 
pathway while blunt signal ends (SE) are fused into sig-
nal joints [1, 2]. Signal joints produced during V(D)J 
recombination are excised as episomal circles which are 
non-replicative but stable structures diluted through cell 
divisions [3].

Besides its essential role to provide a large antigen 
receptor repertoire in T and B cells, the V(D)J recombina-
tion machinery is also a threat to genomic stability, given 
its ability to induce DSB followed by erroneous repair of 
breaks in non-antigen receptor loci during the recom-
bination process [4, 5]. Such aberrant recombination is 
involved in lymphoid oncogenesis, giving rise to translo-
cations inducing activation of oncogenes as t(14;18)/IGH-
BCL2 in follicular lymphoma and t(11;14)/IGH-CCND1 
in mantle cell lymphoma or deletion of tumor suppres-
sor genes such as IKZF1 and CDKN2A/B in B and T-cell 
acute lymphoblastic leukemia (T-ALL) [6, 7].

In addition, it has been shown that in the presence of 
RAG, the excised episomal circles resulting from V(D)J 
recombination, previously considered inert, may be rein-
tegrated into the genome through recombination occur-
ring between the episomal signal joints and an IG/TCR 
target as well as into cryptic RSSs [3, 8–10]. The reintegra-
tion of such episomal circles in close proximity of onco-
genes has been suggested as a mechanism of lymphoid 
oncogenesis by deregulation of target genes. However, 
this source of genomic instability has not been identified 
as a recurrent mechanism of oncogene deregulation in 
human lymphoid neoplasia. To investigate the reintegra-
tion of T-cell receptor excision circles (TREC) in clinical 
samples, we used a large T-ALL/T-cell lymphoblastic lym-
phoma (T-LBL) collection (n = 1533), to which we applied 
an NGS-capture pipeline designed to detect TRD (D and 
J gene segments) and partner gene translocations (Fig. 
S1). A specific bioinformatics pipeline was created to this 
aim as described schematically in the methods. For more 
details, the structural variant caller algorithm is available 
online https:// github. com/ Dr- TStei mle/ sv- finder.

Results and discussion
To evaluate the performance of our NGS pipeline, we 
took advantage of our previously published cohort of 
264  T-ALL samples annotated for TRD translocations 

[4] which had been explored by fluorescence in  situ 
hybridization (FISH) using a TRD dual-color probe. Con-
cordant results were observed in 259/264 cases. NGS 
detected TRD translocations in 4 cases negative by FISH, 
all of which were confirmed by sequence specific PCR. 
Detailed sequence analysis revealed that two of them 
were not translocations but TREC insertion, as described 
below. The resulting sensitivity and specificity of the NGS 
pipeline compared to FISH were 98.1% [95% CI 96–99] 
and 97.7% respectively. The positive predictive value was 
99.5% and the negative predictive value was 91.5%.

Next, we applied our NGS-capture pipeline to an addi-
tional discovery cohort of 1269 patients, leading to analysis 
of a total of 1533 T-ALL/T-LBL patients. Overall, 216 TRD 
translocations were detected in 209/1533 (13.6%) T-ALL/
T-LBL patients (Fig. S1). While most patients (97%) exhib-
ited one TRD translocation, a minority of cases (3%) had 
two TRD translocations involving two partner genes. No 
differences were observed in terms of incidence of TRD 
translocation comparing T-ALL and T-LBL. TRD partner 
genes were identified by NGS in all except one case, due 
to BLAST sequence failure. NGS identified the following 
recurrent TRD partner genes (i.e. observed in at least two 
patients): TLX1 (n = 95, 44%), LMO2 (n = 52, 24%), TAL1 
(n = 23, 11%), ZFP36L2 (n = 11, 5%), LMO1 (n = 4, 2%), 
TLX3 (n = 4, 2%), mitochondrial DNA (mtDNA) (n = 3, 
1%), NOTCH1 (n = 3, 1%) and NKX2-4 (n = 2, 1%) (Fig. 1A, 
Table S1). Additionally, trans-rearrangements involving 
TRD and TRG  loci were observed in 3 cases, TRB locus in 
1 case, and IGH locus in 1 case, all in T-ALL.

NGS enabled the identification of novel TRD partner 
genes such as RPP30, ROCK1, CLX1/SNAI2, SORCS1, 
HOTAIR, MORN3, LAMA4, and mitochondrial DNA 
(mtDNA). All were confirmed using specific genomic 
PCR designed for each translocation (data not shown). 
From the newly identified TRD-translocated oncogenes, 
only the mtDNA was recurrent (in 3 cases of T-ALL). A 
recent publication reported the insertion of mtDNA into 
the nuclear genome with an occurrence of 1/103 can-
cers mainly affecting various tumor genes such as FHIT, 
CTNNA2, DDIT3, WIF1, BCL11B, KDM5A, and AKT2 
[11]. Here, the inserted fragment from mtDNA origi-
nated from various areas of mtDNA. Schematic repre-
sentations of TRD translocations and genomic position 
of breakpoints in partner gene are shown in Figs. S2, S3 
and S4.

(See figure on next page.)
Fig. 1 TRD translocations and TREC insertions from TRD and TRB loci in T‑ALL/T‑LBL patients. A Distribution frequency of the TRD partner genes 
among the 1533 T‑ALL/T‑LBL patients. ZFP36L2, the new recurrent partner gene, is indicated in light blue. B Schematic representation of insertion 
of TREC from TRD gene into the ZFP36L2 gene. C Junction sequences of TREC insertion from TRD and TRB loci in ZFP36L2, MORN3, LAMA4, RPP30 
and TRG  genes. D Fine mapping of chromosome 2 using optical genome mapping indicating an insertion sizing 10 Kb located in ZFP36L2 on 2p21 
in UPNs 1044, 1402, 1061, and 1007 and an insertion sizing 1.2 Kb located in ZFP36L2 in UPNS 1309 and LLT‑245

https://github.com/Dr-TSteimle/sv-finder
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Fig. 1 (See legend on previous page.)
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Among TRD partner genes, ZFP36L2 was identified 
as a new recurrent partner gene, detected in a signifi-
cant number of patients (n = 11, ~ 1% in T-ALL/T-LBL) 
(Fig. 1A, Table S1). To our knowledge only one publica-
tion using RNAseq reported TRA/D-ZFP36L2 fusion 
transcripts in 2 cases of T-ALL [12]. Importantly, 
sequence analysis of the TRD-ZFP36L2 breakpoint dem-
onstrated that the genomic abnormalities detected by 
NGS in all 11 cases were in fact the reinsertion of TREC 
generated during Dδ2-Dδ3 rearrangements (Fig.  1B-C). 
TREC insertion sites in the ZFP36L2 gene were not asso-
ciated with cryptic RSS sequences suggesting that breaks 
in this gene were not RAG-induced. As first reported for 
chromosomal translocations, illegitimate V(D)J recom-
bination has been reported to occur either through the 
targeting of a cryptic RSS (referred to as type 1 transloca-
tions), or through repair of V(D)J-initiated CE/SE with a 
chromosomal break devoid of such cryptic site (referred 
to as type 2 translocations) [13]. For type 2, although 
some non-RAG initiated breaks may occur in fragile sites 
(e.g. chromosome 18 breaks in t(14;18) translocations in 
follicular lymphoma [14]), the precise mechanisms pro-
ducing the breaks are mostly unknown and may actually 
be quite diverse. Of note, we have previously reported 
than TRB- and TRD-oncogenes translocations in T-ALL 
are mostly of type 2 mechanism [4].

Regarding TREC reinsertion, both “type 1-like” and 
“type 2-like” mechanisms have also been recapitulated 
in vitro and in mouse models. In type 1-like reinsertions 
[3, 9, 10], all breaks are initiated by RAGs, and generate 
one signal joint and one pseudo-hybrid joint. In type 2-like 
reinsertions [10], breaks at the TCR loci are initiated by 
RAG variants (RAGcore) and breaks at the non-RSS locus 
are initiated enzymatically through the I-SceI endonucle-
ase targeting an engineered I-SceI site. Broken ends are 
illegitimately repaired with SE, resulting in the generation 
of two pseudo-hybrid joints.

Mechanisms of type 1 and type 2 are theoretically simi-
lar for translocation and reintegration and experimental 
models predicted that both type 1-like and type 2-like 
TREC/B-cell receptor excision circles (BREC) reintegra-
tion should occur in humans. Indeed, our results validate 
the occurrence in humans of the “type 2-like” TREC rein-
sertions predicted by the engineered mouse models set 
up by Rommel et  al. [10]. We further provide the proof 
of principle that such type 2-like TREC reinsertions, up 
to now observed as epiphenomena [10, 15], are actually 
recurrent events occurring at the vicinity of oncogenes, 
and potentially linked to their deregulation in T-ALL 
development.

From the 11 cases with TRD TREC insertion in 
ZFP36L2 gene, for 6 cases, both RSS from Dδ2 and 
Dδ3 were identified using PCR-based sequencing. This 

suggests that the entire Dδ2-Dδ3 TREC has been rein-
serted. Of note, optical genome mapping (OGM) con-
firmed the presence of an insertion of ~ 10 kb in ZFP36L2 
at 2p21 (Fig.  1D) consistent with the entire Dδ2-Dδ3 
TREC insertion in 4 cases (Table S3). Nevertheless, in 
several cases, the second RSS from either Dδ2 or Dδ3 
has not been identified (Fig. 1C). This could be related to 
(i) PCR-based sequencing failure, (ii) junction sequence 
modifications induced by RAG/terminal deoxynucleoti-
dyl transferase (TDT) activity including deletion/inser-
tion, and (iii) we can not exclude that in some cases the 
TREC has been partially inserted. Further investigation, 
including Whole-Genome Sequencing or Oxford Nano-
pore long-read sequencing, would need to be performed 
to address these questions. Similar insertion in ZFP36L2 
was not detected using OGM on screening 141 hema-
tological myeloid malignancies (acute myeloid leukemia 
n = 51, myelodysplastic neoplasm n = 44, chronic mye-
lomonocytic leukemia n = 26, myeloproliferative neo-
plasm n = 20) or in NGS screening of 351 mature T-cell 
leukemia/lymphoma (acute T-cell leukemia/lymphoma 
n = 168, anaplastic large cell lymphoma n = 118, enter-
opathy associated T-cell lymphoma n = 25, other T-cell 
lymphoma n = 40). ZFP36L2, Zinc Finger Protein 36-like 
2, which codes for an RNA-binding protein, is considered 
as a tumor suppressor gene in various cancers, includ-
ing hematological malignancies [16]. In mice, lack of 
ZFP36L1 and ZFP36L2 in lymphocytes during thymo-
poiesis induces T-ALL transformation with dependence 
on the oncogenic transcription factor NOTCH1 [17]. 
ZFP36L2 has also been reported as a putative driver gene 
affected by mutations in T-ALL [18]. We further investi-
gated the presence of TREC insertion from the TRB locus 
using an NGS pipeline designed to detect TRB rearrange-
ments. Remarkably, we detected insertions of TREC from 
TRB in 6 patients in our cohort, all located in ZFP36L2 
(Fig.  1C, Table S2). In 2 cases with available material, 
OGM confirmed the presence of an insertion of ~ 1.2 kb 
located in ZFP36L2 at 2p21 (Fig. 1D) consistent with the 
insertion of Dβ2-Jβ2–3 TREC (Table S3).

Patients with insertion of TREC from TRD and TRB 
loci were negative for known major oncogenes drivers 
(i.e. TLX1, TLX3, HOXA9, TAL1) in 11/13 patients, sug-
gesting a potential role of TREC insertion on oncogenesis 
(Table S2). Moreover, immunophenotypic characteriza-
tion demonstrated an early T-cell precursor (ETP) phe-
notype and/or immunogenotypic immaturity (IM) in 
9/11 patients consistent with the fact that insertion of 
TREC into target genes occurs in an early progenitor.

Molecular mapping of other TCR breakpoints also 
revealed the insertion of TREC in 4 other partner genes: 
MORN3, RPP30, LAMA4, and TRG  (Table S2) which 
have not been specifically explored within the context 
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of the present manuscript but which demonstrate that 
TREC reintegration is not limited to the ZFP36L2 gene.

Conclusions
Using NGS-capture based analysis and a specific bioin-
formatics pipeline, our data demonstrated the proof of 
concept that D-J TREC reintegration is a recurrent and 
elusive mechanism of gene deregulation in T-ALL. This 
paves the way for further investigations, including the 
NGS panel designed to identify B-cell receptor excision 
circles (BREC) reinsertion in B-cell lymphoma/leukemia, 
and opens exciting novel perspectives in understanding 
of molecular mechanisms of human oncogenesis.
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