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Abstract 

The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell prolifera-
tion and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in 
eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix 
(ECM) plays an important role in tumor development through changes in macromolecule components, degradation 
enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant 
activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechani-
cal impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive 
microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer 
from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remod-
eling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malig-
nant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM 
remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, 
and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
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Background
Tumor cells and the tumor microenvironment (TME) 
constitute the main part of solid tumors. TME is com-
posed of multiple cellular components, including fibro-
blasts, endothelial cells (ECs), immunocytes, adipocytes, 
and acellular component: the extracellular matrix (ECM) 
[1]. The occurrence and the development of malignant 
tumors depend on the extracellular signals and is not a 
completely autonomous process of tumor cells [2, 3]. 
Besides of intercellular contact, signaling transductions 
are mostly dependent on acellular components, which 
contains not only bioactive agents but also mechano-
transductal properties. As an acellular component in the 
TME, the ECM attracts more attention from scientists as 
a key factor in cancer progression.

The ECM mainly consists of proteoglycans, glycopro-
teins, matricellular proteins (including secreted proteins 
acidic and rich in cysteine (SPARC/osteonectin), osteo-
pontin (OPN/SPP-1), thrombospondin (THBS/TSP)) and 
structural proteins such as tenascin, collagen and laminin 
[4–6]. The ECM remodeling, which featured by the 
changes on the content, activity and crosslinking of these 
proteins trigger the variations of signal transduction. In 
most tumor tissues, the ECM remodeling is characterized 
by increased collagen synthesis and deposition, usually 
accompanied by the expression of remodeling enzymes 
such as matrix metalloproteinases (MMPs), lysyl oxi-
dase (LOX), lysyl oxidase-like proteins (LOXLs), WNT1-
inducible signaling pathway proteins (WISPs) and others 
[7]. These enzymes can treat specific ECM components 
as substrates and catalyze them to control tissues stiff-
ness and cell–matrix interactions through their unique 
biochemical and physical properties [8]. Some enzymes 
process matrix components, such as collagen, resulting 
in the production and release of bioactive fragments [9, 
10]. Amount of changes in the expression level of MMPs 
in the tumor microenvironment represent the malignant 
degree of the tumor, reflecting the structural remodeling 
function of MMPs in the progression of many epithelial 
cancers, such as lung cancer, breast cancer, and pancre-
atic cancer [11, 12].

Meanwhile, cell-to-cell activity residing in the TME is 
constantly reshaping ECM, and these cells are affected by 
the signals provide by ECM itself [13]. Cytotoxic immune 
cells, which mainly conduct immune elimination, are 
incapable of stifling tumor cells in the remodeled ECM 
because of the formation of an immunosuppressive envi-
ronment. Thus, ECM acts as a rock-solid shield pro-
tecting tumor survival and progression. However, there 
is no shield that cannot be destroyed. ECM can be a 
double-edged sword; while it stimulates tumor progres-
sion, it can also be a sally port to antitumor therapy. In 
this paper, we discuss the key role of ECM remodeling 

in the TME and its interaction with tumor cells, includ-
ing the molecular composition of ECM and the impact of 
ECM remodeling on the occurrence and development of 
malignant tumors. We also highlight the impact of ECM 
remodeling on therapeutic resistance and potential ther-
apeutic targets.

Molecular composition of ECM
The ECM is described as a collection of exocrine mol-
ecules that provide structural and biochemical support 
for the surrounding cells [14]. Similar to the significance 
of soil composition to plants, the ECM is the basic con-
dition to provide adherable environment for cell prolif-
eration and survival. From the perspective of molecular 
composition, the ECM mainly includes structural pro-
teins (such as collagen and elastin), glycosaminoglycan, 
proteoglycan, and adhesion proteins (such as fibronec-
tin and laminin). At the structural level, the ECM con-
tains interstitial connective tissue matrix and basement 
membrane [15, 16]. The basic functions of the ECM 
include sustaining cell proliferation, differentiation and 
maintenance of tissue homeostasis [17]. Whereas, dif-
ferent kinds of organs or tissues have their own specific 
composition of ECMs. For example, loose connective 
tissue ECM is made up of reticular fibers and ground 
substances, and bone ECM contains collagen fibers and 
bone minerals, and the ECM for circulating blood cells is 
plasma. ECMs with different characteristics and compo-
sitions can play a role in many mechanisms. Various car-
bohydrate-rich polysaccharides and protein-rich fibers 
play an important role in maintaining tissue homeostasis 
and hydration [18]. The physical pressure on the ECM is 
controlled by the interspace composed of fibrils and the 
compression and buffering activities of polysaccharide 
gel [19, 20]. In normal tissues, the sequentially regu-
lated ECM acts as a signal library and provides anchor-
age points and architectural definitions for mechanical 
sensing [21]. Whereas in the TME, ECM structures are 
reconstituted and intercellular signals are disrupted [22]. 
Therefore, better understanding the composition and 
structural characteristics of ECM remodeling in cancer is 
critical for discovering therapeutic targets and diagnostic 
markers [23].

Multiple factors mediate ECM remodeling
Hypoxia and CAFs
Hypoxia is a common feature of TME. Indeed, hypoxia 
is the result of unlimited expanding of tumor tissue and 
increasing requirement of nutrients including oxygen. 
It can weaken the function of cytotoxic T lymphocytes 
(CTLs) and attract regulatory T cells (Tregs), thereby 
reducing the immunogenicity of tumors and enhancing 
the invasive clonal expansion of heterogeneous tumor 
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cells [24]. With the advancing of tumor progression, the 
establishment of hypoxic microenvironment can promote 
hypoxia-inducible factor 1 (HIF-1) activation-dependent 
signal transduction and help tumor cells and stromal 
cells adapting to surrounding hypoxia conditions, thus 
supporting tumor progression [25]. Hypoxia-induced 
increased expression level of several ECM remodeling 
enzymes such as LOX and collagen prolyl 4-hydroxylase 
(C-P4H) has been reported to mediate modification on 
collagens and promote tumor progression [26–28].

Endogenous fibroblasts overexpressing HIF-1α can 
promote tumor growth both in  vivo and in  vitro [29]. 
Nevertheless, another research suggested that chronic 
hypoxia plays dual role on cancer-associated fibroblasts 
(CAFs) function in a HIF-1α dependent manner [30]. 
On the one hand, HIF-1α can promote the carcinogenic 
effects of CAFs, such as promoting tumor growth, while 
block other carcinogenic functions, such as tumor inva-
sion and metastasis [30]. Significantly, CAFs are main 
“architects” to mediate ECM remodeling and cause ECM 
stiffness and degradation [31]. Rising evidence emphasize 
different role of specific subtypes of CAFs in pancreatic 
cancer [32, 33]. Even a proinflammation role of hypoxia-
induced CAFs has been reported recently [34]. Therefore, 
the role of Hypoxia-mediated CAFs in the whole process 
of tumor development needs to be further revealed.

ECM remodeling enzymes
In the development of various organs, the LOX family 
of enzymes trigger extracellular collagen crosslinking, 
which also contributes to the formation of ECM stiffness 
in malignancy, in a hypoxic environment [35, 36]. During 
hypoxia, key target genes regulated by HIF transcription 
factors include LOX, LOXL2 and LOXL4. These tran-
scription factors are intricate in collagen crosslinking and 
are one of the key factors leading to tumor fibrosis [37]. 
In general, hypoxic signal transduction may be involved 
throughout tumor progression and contribute to ECM 
remodeling in the tumor microenvironment. Besides of 
LOX and LOXLs, WISPs can also mediate collagen I lin-
earization to control cancer metastasis. WISP1 fuels the 
linearization and metastasis and is overexpressed in can-
cer cells, while WISP2 against the process but its expres-
sion level is suppressed [38]. However, a recent report 
highlights that CAFs-derived WISP1 can hampers lung 
metastasis [39]. It is considered that the derivation of 
WISP1 may play the critical role.

MMPs are a group of zinc-dependent endopepti-
dases that bind to various ECM proteins and are one of 
the key enzymes for connective tissue remodeling [40, 
41]. A big family contains more than 30 kinds of MMP 
have been identified since the MMPs’ role as collagen 
hydrolase was unveiled [42, 43]. MMP-2, -3, -9 and -14 

are overexpressed and associated with ECM remodeling 
in a variety of malignant tumors [44, 45]. In the process 
of tumor progression, MMP-2 and MMP-9 can mediate 
the invasion of tumor cells into the basement membrane 
through the degradation of collagen IV, thus resulting in 
tumor metastasis and diffusion [46]. Besides, collagen 
degradation is an important mechanism for remodeling 
the biomechanical properties of ECM. Immunocytes 
recruited by LOX at the pre-transfer site degraded colla-
gen IV through high expression of MMP-2, then promote 
the formation of pre-transfer niche by MMPs [47]. Con-
versely, reduced activity of MMPs inhibits pulmonary 
vascular permeability and limits the infiltration of immu-
nocytes in the lung prior to metastasis [48]. Similarly, 
MMP-14-induced collagen dissolution around tumor 
cells is also one of the critical factors for cell invasion 
and migration [49]. MMP-14 produced by the tip cells of 
polarized multicellular masses degrades interstitial col-
lagen, resulting in a locus that is a key pathway for cell 
invasion [50, 51]. Besides of ECM degradation, the bind-
ing of MMP-9 to α4β1 integrin induces several intracel-
lular signaling to promote anti-apoptotic pathway and 
metastatic pathway in cancer cells, suggesting another 
pivotal mechanism of MMPs-induced tumor progression 
[52, 53].

Heparan sulfate proteoglycans (HSPGs) are one of 
major component of ECM and can regulate cell behav-
ior and maintain stromal structure stability by binding 
and releasing many signaling molecules, such as inter-
leukin-8 (IL-8), fibroblast growth factors (FGFs) and 
vascular endothelial growth factor (VEGF) [54, 55]. Hep-
arinase is an essentially endo-β-D-glucuronidase, which 
can degrade HSPGs to produce low molecular weight 
fragments [56]. High expression of heparinase has been 
detected in a variety of tumor patients and is significantly 
associated with poor prognosis in patients with head 
and neck squamous cell carcinoma [57], breast cancer 
[58], and gastric cancer [59]. Physiologically, heparinase 
is produced by keratinocytes, platelets, placental troph-
oblast cells, and white blood cells (including mast cells) 
[60]. In the tumor microenvironment, heparinase drives 
the cleavage of HSPGs to enhance the availability of vari-
ous secretory factors, leading to tumor angiogenesis, and 
promoting cell invasion and migration [61–63]. Hepari-
nase can also degrade perlecan and syndecan-1 (Sdc-1/
CD138) to mediate tumor cell growth and invasion [64]. 
Interestingly, heparinase plays a crucial role in the inva-
sion of natural killer (NK) cells into dense tumor ECM, 
thereby resisting tumor progression and metastasis, 
emphasizing that the ECM is a barrier for both tumor 
cells and immunocytes [65].

Besides of enzymes discussed above, more tumor-asso-
ciated ECM remodeling enzymes have been unveiled. 
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These enzymes show significant role in boosting tumor 
progression and can be considered as potential candi-
dates for anticancer therapy.

Myeloid cells
Myeloid cells are the main hematopoietic cells in the 
human body, which are differentiated from hematopoi-
etic stem cells [66]. Myeloid cells are involved in ECM 
remodeling in varying degrees, and produce both ECM 
remodeling enzymes/mediators and ECM molecules 
directly. In the tumor microenvironment, MMPs are 
primarily derived from myeloid cells and are involved 
in ECM collagen remodeling [67]. Stromal cell protein 
SPARC is a matrix regulator and collagen chaperone [68]. 
SPARC-deficient microenvironment in breast cancer 
reduced primary tumor growth and lung metastasis, pos-
sibly due to the macrophages with SPARC-deficiency and 
unable to support stroma formation and collagen depo-
sition [69, 70]. These studies suggest that macrophages 
may be the source of ECM-related proteins. Transcrip-
tomic and proteomic analyses of these cells have dem-
onstrated that tumor-associated macrophages (TAMs) 
are one of the sources of ECM molecules and process 
collagen synthesis, stability, assembly and cross-linking 
[71, 72]. Abnormal collagen fiber deposition was found 
in colorectal cancer grown in macrophage-deficient mice 
[73]. Precisely, TAMs can regulate collagen production 
by stimulating CAFs [73, 74]. In pancreatic cancer, TAM-
derived C-X-C motif chemokine ligand 3 (CXCL3) tar-
gets CAFs’ C-X-C motif chemokine receptor 2 (CCR2) to 
mediate CAF-myofibroblasts (myCAF) transition, subse-
quent type III collagen generation and tumor metastasis 
[75]. Intriguingly, single cell analysis uncovered a specific 
TAM-CAFs transition in lung cancer, highlights the con-
sistent interaction between TAMs and CAFs [76]. The 
precise introduction of TAMs in ECM remodeling will be 
discussed later.

Microbiome
With the in-depth study of tumor microenvironment, 
the role of microbiome in tumor ECM remodeling can-
not be ignored [77, 78]. There are several sets of evidence 
that the microbiome is actively involved in creating the 
tumor microenvironment and interacting with multi-
ple elements [79, 80]. Representative research found 
out that subcutaneous injection of M. hyorhinis in mice 
can develop resistance of pancreatic ductal adenocar-
cinoma (PDAC) to gemcitabine, and further inves-
tigation unveiled microbiome prevalence (especially 
γ-proteobacteria) in approximately 75% of human PDAC 
clinical samples [81]. Similarly, other researchers have 
reported the presence of different types of microbiotas 
in samples from multiple malignancies [82, 83]. Clinical 

trials about chemotherapeutic agents, cyclophosphamide 
and oxaliplatin, have shown that reactive oxygen spe-
cies (ROS) produced by the microbiome in the tumor 
microenvironment contributes to better chemotherapeu-
tic efficacy [84]. The efficacy of these drugs was signifi-
cantly reduced in immunocompetent mice compared to 
germ-free mice, along with significantly reduced tumor 
clearance and immune activation, highlighting the criti-
cal role of symbiotic bacteria in the regulation of the host 
immune system [85].

Positive interactions between tumor cells and the 
microbiome increase the likelihood of ECM remodeling 
leading to cancer niche formation, tumor progression, 
and drug resistance. A variety of bacterial enzymes (such 
as collagenase, elastase and hyaluronidase) are known to 
degrade host ECM [86, 87]. Studies have shown that in 
bladder cancer, the interaction between the host bacte-
rial population and ECM components regulates the main 
composition of the microenvironment, thus determin-
ing tumor growth and metastasis [88]. In addition, the 
microbiome can induce intestinal fibrosis by triggering 
host immune cells [89]. Taken together, all these results 
suggest that the microbiome can influence host ECM and 
its homeostasis, but the details of these interactions have 
not been elucidated and extensive further studies are 
needed to accurately elucidate the molecular and signal 
cascades involved.

ECM remodeling and cancer proliferation
Unlimited expanding of tumor tissues results in increas-
ing risk of heterogeneity and severe local vicinity which 
abrogates the infiltration of anti-tumor agent and cells 
in TME. It’s worth noting that the sum of bulk acellu-
lar and cellular components in TME, specifically cells 
with accelerated cell cycle and/or suppressed cell death 
regulated by ECM, leads to the uncontrolled expand-
ing of cancer. However, different composition of ECM 
determines various fates of cell proliferation. Phenom-
ena from the radiation-induced ECM regulation on cell 
cycle arrest/progression of both malignancy [90, 91] 
and fibroblasts [92] underpins the opinion. Neverthe-
less, most studies indicated that acellular components 
secreted by depositional cells show the potential to par-
ticipate in oncogenic progression, or suppress cancer 
growth to transform tumor cells into a quiescent state, 
which endowing cells with stem-like characteristics and 
proliferative potential, for against stresses during growth 
and metastasis. For instance, the role of type III collagen 
in maintaining tumor dormancy to form a metastatic 
niche has been unveiled [93]. Therefore, ECM seems 
like a specific reaction pool filled with signals of mech-
ano-transduction and bioactive molecules transduced 
from cancer and stromal cells to regulate tumor tissue 
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proliferation, and it is emergency to unveil the program 
of ECM remodeling and identify specific therapeutic tar-
get for cancer elimination [94].

Receptors and signaling pathways: eyes blinded by mirage
The activation of cell cycle signals is critical for tumor 
proliferation. ECM can activate or inhibit intracellular 
signal transduction process, thus regulating cell biologi-
cal behavior. The most prominent transduction path-
way downstream of ECM signals is direct transduction, 
which occurs via classical transmembrane gated proteins 
such as integrins [95]. Dimerization of integrin subunits 
(including α chain and β chain) triggers phosphorylation 
of the focal adhesion kinase (FAK)/Src pathway, leading 
to increased cell adhesion and migration [96]. Substantial 
transformation of cell behavior occurs due to activation 
of intermediary pathways downstream of FAK/Src acti-
vation, such as the extracellular signal-regulated kinase 
2 (ERK2)/mitogen-activated protein kinase (MAPK) cas-
cade, and small guanosine triphosphatase (GTPase) (such 
as β-catenin pathway, Rac and Rho) (Fig.  1) [97–99]. 
Attentionally, specific integrin β subunits are critical for 
cancer cell proliferation in different aspects. For instance, 

β1 integrin alteration physiologically maintains mam-
mary gland proliferation and is associated with acceler-
ated cell cycle and temsirolimus resistance in bladder 
cancer [100, 101]. By contrast, β3 integrin is necessary 
for stem-like tumor-repopulating cell (TRC) dormancy 
[102], and CD90-inhibited anchorage-independent 
growth in cancer stem cells (CSCs) [103]. Thus, β1 inte-
grin inclines to accelerate cell cycle, whereas β3 integrin 
prefer to stemness.

Hyaluronan/hyaluronic acid (HA) is a member of 
glycosaminoglycans and prevalently overproduced by 
cancer and stromal cells. The interaction of HA and 
membrane receptor CD44 or Toll-like receptor 4 (TLR-
4) sustains proliferation of cancer and the formation 
of fibrosis [104–106]. HA/CD44 stimulates epidermal 
growth factor receptor (EGFR) singling pathway [107], 
whereas HA/TLR4 is associated with the activation 
of nuclear factor-kappaB (NF-κB) pathway [106, 108]. 
Receptor for hyaluronan-mediated motility (RHAMM, 
or CD168) is another HA-specific receptor that medi-
ates inflammation and tumor progression [109]. Physi-
ologically, hyaluronan synthase 2 (HAS2)-dependent 
HA/CD44/RHAMM pathway is critical for mammary 

Fig. 1  Receptors for cell-ECM interaction. Matrix changes modulate intracellular signaling in cancer, changes in the extracellular matrix regulate 
many intracellular signaling pathways. However, the illustration only summarizes familiar receptors in cell-ECM interaction, such as integrins, DDRs, 
CD44 and syndecans. Other receptors and regulatory networks are precisely introduced in the context
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gland morphogenesis [110]. In glioblastoma, the nega-
tive association between the concentration of extracellu-
lar HA and the efficacy of EGFR inhibitor indicates that 
HA is a main signal factor to stimulate cell proliferation 
[111]. Rho-GTPase is the primary downstream pathway 
to response HA/CD44 activation, and inhibition of Rho-
associated coiled-coil containing kinase (ROCK) results 
in elevated CD44 expression and maintaining of CSCs 
[112, 113]. Both Rho-GTPase and EGFR could stimulate 
phosphoinositide 3-kinase (PI3K)/Akt pathway to sustain 
proliferation in cancer cells [114]. Attentionally, the func-
tion of HA in pro- or anti-oncogenesis is determined by 
its’ molecular mass [115–117]. Thus, the identification of 
HA molecular mass in cancer is critical.

Syndecans are cell-surface heparan sulfate proteogly-
cans known to play a role in cell adhesion, migration, and 
binding of growth factors. A canonical signaling about 
syndecans in cancer is heparinase/syndecan-1 path-
way [118]. Heparinase stimulates syndecan-1 expres-
sion, cleavage and shedding to promote fibrillar collagen 
deposition and tumor growth [119–121]. Shedding syn-
decan-1 could combine with VEGF and adhere to ECM, 
then induce invasion and angiogenesis in melanoma 
[121]. While depletion of syndecan-1 in colon cancer cell 
line in turn stimulates heparinase expression and retain 
cells into a stem-like state [122]. Furthermore, previ-
ous explorations have identified that tenascin-C (TNC) 
interacts with syndecan-4 and blocks integrin/syndecan 
complex to mediates cell-fibronectin adhesion, which 
sustains proliferation and induces angiogenesis in cancer 
[123–125]. After that, more subtypes of syndecans have 
been identified to be associated with progression of can-
cer [126, 127].

Stromal cells in ECM such as CAFs play a significant 
role in supporting cancer cell proliferation. A colorectal 
patient-derived organoid (PDO) model shows that solely 
CAFs are sufficient to support cell proliferation with the 
absence of conventional PDO-associated growth factor, 
highlight the CAFs’ pro-oncogenic role in cancer culture 
maintenance [128]. In a 3D model of PDAC, pancreatic 
stellate cells (PSCs) could play the same role [129]. A 
3D-bioprinting culture of glioblastoma which contains 
cancer cells, endothelial cells, and hyaluronic acid deriva-
tives has proved the significance of ECM stiffness on the 
variation of gene transcription program and interac-
tion between cancer and endothelial cells [130]. Moreo-
ver, high expression of syndecan-1 in CAFs correlated 
with tumor progression in specific cancer types from 
breast, colon, prostate, ovary and lung [131–134]. Matrix 
enzymes and ECM components secreted from stromal 
cell are critical for cancer cell proliferation, while cancer 
secrets soluble growth factors sustaining stromal cells 

survival and ECM generation in turn [135, 136]. There-
fore, the interaction between cancer cells and stromal 
cells controls ECM remodeling leading to the prolifera-
tion of cancer, whereas the expanding tumor tissue will 
face some troubles, especially under the overseeing of 
pathways controlling organ size.

Escape from tissue size surveillance
Hippo signaling pathway is a key regulator of tissue 
growth and organ size control when facing mecha-
nosensory pressure and increasing cell adhesion. 
Though crowded space caused by tumor prolifera-
tion and desmoplasia may result in enhanced mech-
ano-transduction and intercellular contact, cancer 
cells present the tenacity to adapt the pressure from 
ECM and maintain proliferation. Abnormal activa-
tion of Hippo core factors Yes1 associated transcrip-
tional regulator (YAP) and WW domain containing 
transcription regulator (TAZ, or WWTR1) sustain 
cell proliferation and is prevalently detected in vari-
ous cancers, implying the success adaption of can-
cer to crowed environment [137, 138]. Integrins and 
downstream pathways are main signal traducers for 
YAP/TAZ activation [139]. Among them, canonical 
Rho GTPases senses signals from ECM and regulates 
YAP/TAZ activation, while dual role of Rho GTPases 
in tumor progression is dependent on their expression 
and mutation states [140].

Other receptors identified recently such as CXCR4 
in hepatoma also senses stiffness of ECM and activates 
YAP/TAZ activation [141]. Moreover, dysregulation 
of YAP/TAZ co-transcriptional function triggers and 
impairs autophagy sensitivity to contact inhibition via 
absent F-actin expression [142], while ECM stiffness 
stimulates YAP/TAZ activation and exosome secre-
tion to enhance cell mobility [143]. Besides mancha-
notransduction, Wnt ligand-linked collagen culture is 
sufficient to induce YAP/TAZ activation and support 
cellular reprogramming [144], in accord with previous 
discovery of Wnt-YAP/TAZ pathway [145, 146]. It’s 
worth noting that roles of YAP and TAZ in cell cycle 
regulation are considered different. In non-small cell 
lung cancer (NSCLC), YAP favors cell cycle progres-
sion while TAZ is preferentially associated with ECM 
organization [147]. Role of TAZ in ECM remodeling 
has been described in fibroblasts and adipocytes [148, 
149]. Moreover, YAP increases nucleic accumulation of 
P27, a cell cycle suppressor by acetylating and nucleic-
exporting S-phase kinase associated protein 2 (SKP2) 
via Akt activation to sustain cytoplasm retention of 
SKP2 and to inhibit mitosis of cancer cells, which 
causes polyploidy formation [150]. While accumulation 
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of cytoplasmic SKP2 then triggers ubiquitination of 
forkhead box protein O1 (FOXO1) and then stimulates 
cell proliferation [150]. Nevertheless, another research 
found out that nuclear YAP inhibits P27 expression in 
a transcriptional pattern [151]. These results indicate 
that YAP activation is a primary factor to induce cell 
proliferation under the surveillance of Hippo pathway 

(Fig. 2A). Compared with malignant cells, YAP activa-
tion in PSCs triggers the secretion of SPARC, an ECM 
protein, to suppress tumor growth [152]. Importantly, 
ECM is essential for reprogramming of normal cells 
into premalignancy, and YAP/TAZ is responsible for 
the transformation induced by ECM [153]. The cross-
talk of YAP/TAZ pathway between cancer cells and 

Fig. 2  ECM role in proliferation, cell cycle arrest and anoikis resistance. The changes in ECM proteins, especially the crosslink of collagen, enhance 
the stiffness of ECM. Receptors sense the mechanic signal form ECM and activates downstream pathways including FAK and YAP/TAZ to induce cell 
cycle progression and cell-ECM adhesion (A). Moreover, ECM support detachment cell survival, even induce cell cycle arrest in a quiescent state 
to decrease energy consumption and resist to anoikis (B). Several components support the acquirement of anoikis resistance such as tenascin-C, 
collagen, HA and PDGFB (C)
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stromal cells also provides novel view in ECM-induced 
tumor progression [154]. Thus, it’s critical to unveil 
the precise function of YAP and TAZ in ECM-induced 
tumor progression.

Cell cycle progression and quiescent: the golden mean
With tumor progression, epithelial-mesenchymal tran-
sition (EMT) transforms cells into heterogeneity which 
favors invasion and metastasis. Some cells lose their 
intercellular adhesion and detached from tumor tissue 
in a timepoint. However, cell adhesion is still necessary 
for survival, especially for detached cancer cells with 
insufficient preparation. Intracellular contact provides 
basal signal for cell survival and loss of cell adhesion 
triggers cells death. Physiological tissue stiffness, which 
causes decreased cell adhesion, suppresses cell cycle via 
inhibiting FAK signal responding and downstream Rac-
dependent Cyclin D1 expression [155, 156]. However, 
high matrix density caused by cancer provides com-
ponents for cell adhesion and stimulates vital survival 
signaling against detachment. Pathologic ECM induces 
FAK and ERK signaling pathway activation to promote 
cell proliferation in breast cancer [157] and gastric can-
cer [158]. Within ECM, collagen I sustains CSCs renewal 
and tumor initiation via the activation of FAK in pan-
creatic cancer [159]. Moreover, epithelial cell transform-
ing sequence 2 (ECT2)/FAK and collagen type X alpha 
1(COL10A1)/discoid protein domain receptor 2 (DDR2)/
FAK pathways contribute to the proliferation and adhe-
sion on ECM of lung adenocarcinoma cells [160, 161]. 
Thus, ECM components provide signals to activate FAK 
pathway and sustain cell proliferation under the situation 
of detachment, which is critical for pre-metastasis state 
formation of cancer (Fig. 2B).

Some therapies are introduced to target ECM-induced 
proliferation which may hamper cancer cell transforma-
tion into pre-metastasis state. Homologous esophageal 
ECM treatment hinders malignant proliferation and sug-
gests a suppression of cell cycle in neoplastic esophageal 
cells [162]. Moreover, synthetic materials are considered 
to mimic the variation of ECM and observe changes in 
cell cycle, such as C60 nanofilm [163]. Identification of 
critical cell cycle factors may also contribute to the dis-
covery of ECM-based anti-tumor treatment. Cyclin-
dependent kinases 4 and 6 (CDK4/6) inhibitor, which 
targets the combination of cyclin D1 and CDK4/6 to sup-
press cell cycle, shows extensive influence in inhibiting 
ECM deposition and oncogenic properties [164]. Besides 
Cyclin D1, CDK1 recently has been recognized as a piv-
otal cell cycle regulator which response to cell adhesion 
and has a profound association with cancer progression 
[165–167]. However, the precise mechanism of CDK1 in 
responding to pro-oncogenic ECM is still unclear.

By the way, cell cycle arrest doesn’t present a low risk 
of tumor progression. The state of quiescence featured 
by reversible proliferative arrest reserves the capac-
ity to reenter the cell cycle upon receiving an appropri-
ate stimulus [168]. When facing therapeutic treatment 
or disseminated from the primary tumor tissue during 
metastasis, cancer cells with quiescent state are able to 
survival under these pressures. Before obvious formation 
of distant metastasis, systemic dissemination of quies-
cent tumor cells has been existed depending on normal 
ECM-cell adhesion-induced syndecan-1 activation [169]. 
Quiescent cancer cells with the potential of recurrence 
form a comfortable environment of fibrillar fibronectin 
matrix via integrin, ROCK and transforming growth fac-
tor β2 (TGF-β2) pathways, whereas an outgrowth would 
be started by MMP-2-mediated ECM degradation in 
breast cancer [170]. In melanoma, ECM stiffness triggers 
translocation of Cdc42, a transcription factor belongs to 
Rho-GTPase, then upregulating ten-eleven translocation 
2 (Tet2) expression which resulting in induction of qui-
escent via decreasing expression of p21 and p27 [102]. 
A gene signature analysis based on glioblastoma PDO 
model supports the correlation between quiescent state 
and hypoxia/TGF-β-dependent ECM [171]. Hydrogel 
models cultured by cancer cell lines from different organ 
demonstrate various quiescent dynamic, which implying 
a significant of organ specific ECM in the maintenance of 
quiescent state [172]. Changes in chemical and mechani-
cal properties in hydrogel culture determines balance 
between quiescence and reactivation [173]. These phe-
nomena highlight that stiffness and biomolecules in 
ECM are both critical for quiescent state sustaining. 
Herein, tumor with enhanced proliferation and neces-
sary quiescence triggered by ECM becomes invasive and 
dangerous.

Anoikis resistance: survival from detachment
Anoikis is a property of programmed cell death respond-
ing to the detachment between cell and ECM. Anoikis is 
pivotal in normal development and tissue homeostasis, 
whereas anoikis resistance is essential in cancer inva-
siveness and metastasis [174]. As described previously, 
the activation of FAK signaling pathway plays the pivotal 
role in sustaining cancer cell proliferation from detach-
ment. Signal receptors such as integrins are critical for 
FAK activation. While inhibition of integrin can mimic 
the situation of cell-ECM detachment and blocking inte-
grin suggests a reasonable treatment to trigger anoikis 
and tumor suppression. Arg-Gly-Asp (RGD) peptide 
is designed to specific target and block integrins, and 
shows the stimulation of anoikis in glioma cancer stem 
cells [175]. Expressing β3 integrin in cancer cells is essen-
tial for distant metastasis in breast cancer [176]. Specific 
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RGD targeting β3 integrin could inhibit adhesion and 
tumor-derived small extracellular vesicles absorption in 
normal breast cells [177], it also favors anti-apoptosis and 
autophagy in breast cancer cells [178]. Whereas in esoph-
ageal squamous cell carcinoma, indomethacin driving β3 
integrin blocking results in reduced tumor growth and 
the potential of metastasis [179]. The paradoxical phe-
nomenon may due to the anti-tumor immune response 
triggered by indomethacin.

EGFR pathway is strong associated with detachment 
induced anoikis. Targeting EGFR is effective for anoikis 
suppression [180]. For instance, α2β1/α5β1 integrin/
EGFR pathway supports cell survival and stimulates 
anoikis resistance in colon carcinoma [181]. Pre-mRNA 
splicing factor 4 kinase (PRP4K), a pre-mRNA splicing 
enzyme, decreases degradation of EGFR during detach-
ment and induces anoikis resistance [182]. Moreover, 
when PDAC treated with ECM depletion agent FAK 
inhibitor, the abnormal expression of signal transducer 
and activator of transcription 3 (STAT3), downstream of 
EGFR, hampers the function of FAK inhibitor and leads 
to drug resistance [183]. Furthermore, syndecan bind-
ing protein melanoma differentiation associated gene-9 
(MDA-9, or syntenin), sustains EGFR signal and pro-
tective autophagy against anoikis in glioma CSCs [184]. 
Lung fibroblast expressed syndecan-1 promotes breast 
cancer lung metastasis, implying the pro-oncogenic role 
of this glycoprotein in ECM [185]. Syndecan-4 also par-
ticipates in the progression of anoikis resistance [186, 
187]. Intriguingly. inhibition of EGFR triggers suppres-
sion of EMT, Notch pathway and syndecan-1 expression 
via ERβ pathway, suggests the pivotal role of EGFR in 
anoikis resistance [188].

Components within ECM sustain cell survival against 
detachment induced anoikis. Collagens such as colla-
gen I/β1 integrin in gastric cancer [189], collagen XIII/
β1 integrin in breast cancer [190], COL11A1/Akt/
Cyclic AMP response-element binding protein (CREB) 
in PDAC [191], collagen IV/integrin in hepatoma [192], 
support anoikis resistance via B-cell lymphoma (BCL) 
family proteins and downstream pathways. Attention-
ally, acid stress in local environment is associated with 
the function of collagens on tumor cells [193]. Sup-
pression of phosphatases also contributes to the inhibi-
tion of collagen generation, highlights the critical role 
of posttranslational modification of collagen [194]. HA/
CD44 also contributes to the activation of Akt pathway, 
which is responsible to collagen-induced anoikis resist-
ance [195, 196]. Compared to the activation of AMP-
activated protein kinase (AMPK) pathway in circulating 
cancer cells, Akt activation is prevalently detected in pri-
mary and distant metastatic cancer cells, and the nega-
tive feedback loop between AMPK and Akt implying 

the ability of adaptation of cancer cells to ECM [197]. 
Besides, platelet-derived growth factor-BB (PDGFB) 
secretion from anoikis resistant gastric cancer cells con-
structs a C/EBPβ-PDGFB-PDGFRβ-MAPK feedback 
loop with vascular ECs, which supports angiogenesis and 
metastasis in gastric cancer [198]. Tumor-secreted PDGF 
also stimulates CAFs to facilitate ECM stiffness [199]. 
Additionally, α11 integrin/PDGFRβ+ CAFs respond to 
the stimulation and promotes invasion and metastasis 
via c-Jun N-terminal kinase (JNK)/TNC in breast cancer 
[200]. Under the chemotherapy, JNK pathway activation 
triggers osteopotin (or SPP-1) and TNC secretion, then 
induces chemoresistance and metastasis in breast cancer 
[201]. Intriguingly, TNC-derived peptide TNIIIA2 con-
fers anoikis resistance and PDGFRβ activation in an α5β1 
integrin-dependent manner, suggests a possible positive 
feedback loop between cancer and CAFs [202, 203]. With 
the stimulating of ECM components, cancer cells are 
advantaged to survival against anoikis (Fig. 2C).

Indeed, intercellular and intracellular elements take 
together trigger anoikis resistance. P53 is a pivotal fac-
tor to mediate cell apoptosis, and the existence of gene 
mutation of P53 is prevalent in most cancer cells [204]. 
Physiologically, losing of cell adhesion would trigger 
P53-mediated apoptosis to sustain tissue homeosta-
sis. ECM components provide the loci for cell adhesion 
and overcome the P53 mediated apoptosis in glioblas-
toma [205]. While the treatment of FAK inhibitor, which 
results in ECM depletion, in overcoming chemoresist-
ance depends on the activation of P53 signaling pathway 
[206]. Nevertheless, P53 mutation plays a pivotal role in 
anoikis resistance against losing adhesion signals [207]. 
When β1 integrin is blocked, mutation of P53 in can-
cer fails to response to the absence of β1 integrin signal 
therefore bypasses apoptosis [208]. Moreover, P53 muta-
tion itself links to ECM remodeling and mediates cancer 
progression. For example, P53 mutation is necessary for 
HIF-1 constructed ECM [209]. It also increases podo-
calyxin sorting into exosomes and induce ECM deposi-
tion [210]. Mechanically, mut-p53/HIF1α/miR-30d axis 
triggers tubulo-vesiculation of the Golgi apparatus and 
promotes ECM deposition and remodeling [211]. Thus, 
adequate preparation for the distant metastasis of malig-
nancy has been prepared under the circumstances of 
ECM remodeling (Fig.  2). These variations link anoikis 
with metastasis of cancer cells, suggest that anoikis is 
prerequisite to cancer invasion.

ECM remodeling and metastasis in cancer
ECM remodeling constructs the architectural and bioac-
tive environment to support cancer invasion and metas-
tasis. Tumor surrounded by collagen-rich circumstances 
not only faces the pressure from ECM stiffness, but also 
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receives stimulators from other components within 
ECM. When tumor cells overcome the detachment-
induced anoikis, further variations on the phenotypes 
of cancer are needed for distant metastasis. These char-
acterizations including EMT for basic ability to induce 
invasion, collagen orientation for metastatic architec-
tural construction, matrix-related enzymes to facilitates 
ECM remodeling, metabolism preparation to support 
cell metastasis, secretion of ECM components to provide 
cell-ECM adhesion and drivers mediates metastasis from 
primary loci to intravasation. All features are essential for 
ECM-mediated tumor invasion and metastasis, and the 
understanding of this profound network may contribute 

to the anti-tumor therapy targeting ECM. Some ECM 
components promote cancer progression doesn’t men-
tioned below are listed in Table 1.

ECM‑induced EMT: ready for invasion
For epithelial cells, EMT is a critical process for tumor 
progression and metastasis [237]. EMT is featured 
by decreased expression of epithelial markers such as 
E-cadherin, and the upregulation of mesenchymal fac-
tors including N-cadherin, snail family transcriptional 
repressor (SNAIL), twist family basic helix-loop-helix 
transcription factor (TWIST), and other factors. These 
variations trigger mobility and invasion of cancer cells. 

Table 1  Role of other ECM proteins in tumor progression

Cancer Proteins Results References

Pancreatic cancer Fibronectin Fibronectin determines SPARC function to control proliferation and anti-apoptosis [212]

Prostate cancer Plectin Plectin Knock-down impairs cell growth and metastasis [213]

Breast cancer FGF2 FGF2 promotes ER/Cyclin D1 signaling and endocrinotherapy resistance [214]

Fibulins Estradiol indued fibulin-1 inhibits fibronectin induced motility of cancer [215]

Glioblastoma Collagen 
I and 
fibronectin

3D culture model stimulates tumor progression via PI3K and CDC42 pathway [216]

Fibulin-3 Inhibition of fibulin-3 suppresses activation of ADAM17/Notch/NK-κB pathway and 
tumor progression

[217]

Hepatoma Periostin Autocrine loop of periostin/integin/FAK/STAT3/perison in hepatic stellate cell promotes 
hepatoma cell proliferation via paracrine stimuli

[218]

Epimorphin Cancer secretes epimorphin promotes malignant invasion and metastasis [219]

Laminin-332 Laminin 332 antibody targeting matrix binding domain suppress tumor progression [220]

Laminin 332 sustains stem state and chemoresistance via phosphorylating mTOR [221]

Colorectal cancer MGP MGP expression favors oxaliplatin resistance [222]

Periostin Interaction loop between fibroblast secreted periostin and cancer derived IL-6 contrib-
utes to the progression of colitis-associated colorectal cancer

[223]

Fibulins Fibulin-5 inhibits TRPV1 to induce cell apoptosis via ROS/MAPK and Akt pathways [224]

Fibrinogen Fibrinogen actives FAK to suppress P53 and sustain cell proliferation and anti-apoptosis [225]

HAPLN1 HAPLN1 against TGF-β-induced COL1A1 expression and ECM remodeling [226]

Gastric cancer ECM1 ECM1 stimulate ITGB4/FAK/SOX2/HIF-1α to promote metastasis and glucose metabo-
lism

[227]

Lumican CAFs derived Lumican induces tumor progression via β1-FAK pathway [228]

Non-small cell lung cancer Fibulins Methylated FBLN2 inhibits tumor proliferation and cell adhesion via MAPK/ERK and 
AKT/mTOR pathways

[229]

Hyaluronan Hyaluronan-CD44/RHAMM mediates cell proliferation and anti-apoptosis [104]

Laminin Laminin 5/integrin/FAK stimulates EGFR activation to promote anoikis resistance and 
invasion

[230]

Myeloma Reelin Reelin promotes cell proliferation and glycolysis via FAK/Syk/Akt/mTOR and STAT3 
pathways

[231]

Fibronectin In vitro Coculture of cancer cell and fibronectin enhances MMP9 expression and MMP2 
activation

[232]

Ovarian cancer COL11A1 COL11A1-DDR2 stimulates Src-PI3K/Akt/NF-κB signaling to induce cisplatin resistance [233]

Chondrosarcoma OPN Osteopontin stimulates MMP-9 expression via β3 integrin/FAK pathway to induce 
migration

[234]

Cutaneous squamous carcinoma Fibulins Fibulin-3 inhibits Akt signaling pathway and suppresses tumor progression [235]

Cervical cancer MFAP5 MFAP5 inhibition triggers cell cycle arrest and apoptosis [236]
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Increasing number of researches focus on the function of 
ECM components on EMT in cancer cells. For instance, 
co-culture of high-metastatic breast cancer-derived 
ECM stimulates EMT in breast cancer [238]. When cel-
lular components are eliminated, acellular scaffolds are 
sufficient to promote EMT and invasion of breast can-
cer [239, 240]. Specific chondroitin sulfate scaffold also 
stimulates EMT in prostate cancer [241]. A logical anal-
ysis based on EMT cellular regulatory network unveils 
ECM stiffness is a prerequisite for FAK/Src activation 
to stimulate SNAIL expression and intracellular adhe-
sion via stimulating receptor-type tyrosine-protein phos-
phatases kappa (PTPRK) expression [242]. YAP may also 
play a significant role in mechano-regulated EMT. Wilms 
Tumor-1/YAP pathway suppresses E-cadherin expres-
sion and mediates cell–cell detachment, while YAP/Trio 
Rho guanine nucleotide exchange factor (TRIO)/Merlin 
mediated regulation of Rho GTPases, which promotes 
cell migration in renal cancer [243]. Gene-deficiency also 
confers cancer cells with EMT and metastasis via ECM 
generation, such as SET domain containing 2 (Setd2) in 
pancreatic cancer [244].

TGF-β is a primary inducer of EMT in cells whereas 
TGF-β signaling pathway plays dual function to promote 
tumor progression, or inhibits oncogenesis [245]. TGF-β 
promotes SRY-Box transcription factor 4 (SOX4) expres-
sion to mediate the cooperation between SOX4 and 
Kruppel-like factor 5 (KLF5) and induce subsequent pro-
oncogenic EMT [246]. By contrast, small mothers against 
decapentaplegic protein 4 (SMAD4)-dependent EMT 
hinders the function and causes death in PDAC [246]. 
However, ECM-associated aberrant TGF-β-induced-
EMT is prevalent observed in various cancers. RAS-
responsive element binding protein 1 (RREB1) is a critical 
partner for TGF-β/SMAD-induced EMT, and fibrosis via 
downstream activating of SNAIL and other mesenchy-
mal genes [247]. When treated with additional TGF-β, 
ovarian cancer cells demonstrate stimulated EMT and 
ECM remodeling [248]. In PDAC, TGF-β treatment trig-
gers fibronectin and collagen I deposition, and metabolic 
variation which is responsible to metastasis [249]. ECM 
components such as the binding between tenascins and 
TGF-β isoforms [250] and EGF-domain of fibronectin 
fibrils [251] stimulate TGF-β signaling pathway and EMT 
process in normal cells, may potentially influence EMT 
in cancer cells (Fig. 3A).

In normal cells, TGF-β activation physiologically trans-
forms myofibroblasts into fibroblast for pro-healing 
homeostasis sustaining [252]. However, the balance of 
this homeostasis will be destroyed under the regulation 
of cancer [32]. For instance, COL11A1 stimulates NK-κB/
insulin-like growth factor binding protein 2 (IGFBP2) to 

induce TGF-β3 activation in ovarian CAFs to promote 
tumor growth [253]. PDAC cells induce TGF-β/SMAD5 
activation in CAFs for branched-chain amino acids sup-
plementation, which supports cancer metastasis [254]. In 
gastric cancer, activation of TGF-β1 in CAFs promotes 
mobility and invasion to lymphatic vessel in vivo [255]. In 
ovarian cancer, the activation of TGF-β2/SMAD upreg-
ulates the expression of CD44, MMP-9, and RHAMM 
via VCAN expression (encoding the chondroitin sulfate 
proteoglycan Versican) in CAFs to promote invasion and 
metastasis [256].

Additionally, transforming growth factor beta-induced 
protein (TGFBI, or βig-H3) is a matrix protein deter-
mined by TGFβ1 and secreted into ECM by various 
cancers [257]. Previous researches unveil that TGFBI 
stabilizes microtubules via FAK and Rho pathways [258]. 
Some researchers consider that TGFBI is a tumor sup-
pressor because of the deficiency of TGFBI favors tumor 
formation [259], and high expression of TGFBI in tumor 
is associated with optimal chemotherapy sensitivity [260, 
261]. However, TGFBI is a trouble maker to push can-
cer far away from primary location. In colorectal cancer, 
TGFBI promotes metastasis via stimulating β5 integrin/
Src and disconnection of VE-cadherin junctions between 
epithelial cells [262]. In melanoma, TGFBI hinders cell 
adhesion to fibronectin, collagen-I, and laminin whereas 
co-localized with fibrillar fibronectin/TNC/periostin 
structures which favors invasive state of cancer [263]. In 
ovarian cancer, β3 integrin, against β1 integrin and syn-
decan-1, facilitates cell adhesion to TGFBI and induces 
migration and paclitaxel resistance [264]. Moreover, 
TGFBI sustains tumor cell survival after radiotherapy 
via stimulating FAK pathway activation in gastric cancer 
[265]. TGFBI also induces androgen deprivation therapy 
resistance, EMT, and bone metastasis in prostate cancer 
[266]. A research finds out that TGFBI causes decreased 
vessel perfusion and sever hypoxia, which favors metas-
tasis in breast cancer [267]. Nevertheless, another 
research considers that TGFBI induce angiogenesis in 
colorectal cancer, indicating the organ-specific func-
tion of TGFBI in angiogenesis [268]. Intriguingly, TGFBI 
derived from non-cancer cells such as TAM in ovarian 
cancer also promotes cell invasion and metastasis [269, 
270]. And the positive feedback loop of TGFBI secre-
tion among TAMs/CAFs/TAMs constructs immunosup-
pressive TME [270], implying that the concentration of 
TGFBI in ECM is critical for metastasis but ignores its’ 
derivation (Fig. 3A).

By the way, ECM stiffness transduces mechani-
cal signal to TWIST1, then destroys the interaction 
between TWIST1 and Ras-GTPase activating protein 
SH3 domain-binding protein 2 (G3BP2), which induces 
nuclear import of TWIST1 and EMT in tumor [271]. 
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Mechanosensory receptor such as Ephrin type-A recep-
tor 2 (EPHA2)/LYN protein also stimulates TWIST1 
to induce EMT and invasion in responding ECM stiff-
ness [272]. Other mechanosensors promoting EMT via 
several pathways such as transient receptor potential 
melastatin 7 (TRPM7)/SOX4 in breast cancer [273], 
CXCR4/ubiquitin domain containing 1 (UBTD1)/YAP 
in hepatoma [141] and EGFR in glioblastoma [274] have 
been reported. Attentionally, different tumor types rely 
on discrete EMT effectors [275]. A pan-genomic analy-
sis links EMT phenotype with gene-coding proteins 
involved in the degradation of the ECM, supporting the 
oponin [276]. Because of different ECM program (gen-
erating acellular components in varying proportions) 

favors specific cancer progression, targeting character-
ized EMT biomarker is necessary.

ECM‑induced metabolism reprogramming: fueling 
the metastasis
Metabolic reprogramming facilitates the basic require-
ment for cancer cell survival and progression by provid-
ing energy and specific products to synthesize proteins 
[277]. Warburg effect, a phenomenon marked by over-
whelming glucose uptake and a disproportionate utili-
zation of glycolysis for energy production, could rapidly 
generates adenosine triphosphates (ATPs) and nicotina-
mide adenine dinucleotide phosphate (NADPH) to sup-
port malignant biosynthesis [278]. Aberrant metabolism 

Fig. 3  The process and regulatory network during tumor invasion and metastasis within ECM. The metastatic process of cancer cells is similar to 
a distant journey. EMT, which triggers decreased cell adhesion, confers the initiation of invasion (A). Then cancer cells with anoikis resistance show 
multiple changes in metabolic process to support energy requirement for cell survival and invasion (B). Thus, a gradient directionality constructed 
by several ECM components guides them to penetrate through the tissue for hematogenous and/or lymphatic metastasis (C), the activation of 
which has been stimulated by ECM components (D)
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pattern in cancer also correlated with ECM remodeling. 
Glycolytic enzyme uridine diphosphate (UDP)-glucose 
6-dehydrogenase in cancer promotes the secretion of HA 
during the EMT process [279]. Targeting rate-limiting 
enzymes, such as phosphofructokinase-2/fructose-2, 
6-bisphosphatase 3 (PFKFB3) of glycolysis is sufficient 
to suppress tumor migration and fibrosis [280, 281]. 
Additionally, ECM can shape metabolic reprogramming 
of cancer cells, thus enhance their aggressiveness. HA 
digestion stimulates glycolytic metabolism and glucose 
transporter protein type 1 (GLUT-1) translocation on the 
membrane of various cancer cell lines in vitro and in vivo 
[282]. To respond to HA degradation, zinc finger protein 
36 (ZFP36) is rapidly upregulated and induces the deg-
radation of thioredoxin-interacting protein (TXNIP), fol-
lowed by enrichment of GLUT1 at the plasma membrane 
and enhanced tumor migration [282]. Signals of mech-
ano-transduction from ECM stiffness to hepatoma trig-
gers activation of MAPK/YAP pathway and accelerated 
aerobic glycolysis [283]. Intriguingly, increased collagen 
density sheds metabolic program of triple negative breast 
cancer (TNBC) cells from glycolysis to oxidative phos-
phorylation (OXPHOS), the metabolic pathway relies on 
mitochondria [284]. Another research investigates the 
impact of ECM stiffness on cancer cells in a 3D culture, 
demonstrating that softer ECM favors YAP pathway acti-
vation, glycolytic metabolism and proliferation [285]. By 
contrast, stiffer ECM induces upregulation of fibronectin 
1 and MMP-9 expression, OXPHOS and lipid metabo-
lism, and invasion [285]. Though some reviews focus on 
the crosstalk between ECM and metabolism [286], the 
complex relationship between ECM and tumor metabo-
lism is still mysterious, further explorations are needed.

Though Warburg effect decreases the requirement for 
oxygen and relies on glycolysis, acid products such as 
lactate secreted into ECM may hamper tumor cell func-
tion. However, high concentration of lactate facilitates 
immunosuppression and sustains tumor progression via 
stimulating stromal cells [287]. For instance, collagen 
production in ECM dependents on CAFs, and the activa-
tion of pyruvate carboxylase (PC), a rate-limiting enzyme 
of aerobic glycolysis, of CAFs can be detected in TME 
[288]. Lactates fulfilling TME are ideal substrates of PC 
and sustaining non-essential amino acid biosynthesis 
[288]. Thus, secreted amino acids promote cancer pro-
gression in turn. Indeed, mechanical signal from ECM 
stiffness triggers glycolysis and glutamine metastasis in 
CAFs, then CAFs provide aspartate to support cancer 
proliferation and induce ECM remodeling [289]. Intrigu-
ingly, an acid concentration gradient from the center to 
the outside of the tumor tissue, which naturally forms the 
metastatic directionality, mediates cell mobility and inva-
sion [290, 291]. Besides of CAFs, the crosstalk between 

mitochondria and ECM stiffness in cancer has been 
unveiled recently. Softer ECM of distant metastatic niche 
can enhance therapeutic resistance of cancer cells [292]. 
Precisely, cancer cells generate mitochondrial fission, 
which is the state that mitochondria are split into smaller 
components, and triggers the activation of nuclear fac-
tor E2-related factor 2 (NRF2) to enhance glutathione 
metabolism [292]. Therefore, the crosstalk between 
metabolism and mechanotransduction has called more 
attention recently and considered as a potential target for 
anti-cancer therapy (Fig. 3B).

When cancer cells are detached from ECM, increasing 
production of ROS is lethal for tumor cell survival [293]. 
Thus, elimination of ROS is critical for cancer metastasis. 
A systemic review has discussed metabolic mechanisms 
suppressing ROS generation, including the activation 
of pentose phosphate pathway (PPP), NRF2-induced 
catalase and superoxide dismutase 2 (SOD2), glutamine 
metabolism, and AMPK pathway-induced autophagy 
[294]. Warburg effect could stimulate PPP pathway and 
NADPH production, which suppress ROS generation.

Intriguingly, several researches of pro-metastatic role 
of glutamine in ECM remodeling have been reported. 
Physiologically, HIF-1α controls chondrocyte prolif-
eration under hypoxia during endochondral ossification 
whereas prolonged HIF-1α stimulation replaces aerobic 
glycolysis by glutamine metabolism. During the process, 
chondrocytes alter their function from collagen produc-
tion into collagen proline and lysine hydroxylation, which 
leads to skeletal dysplasia [295]. In cancer, the sustain-
ing of proliferation of detached cells depends on AMPK/
Nrf2-induced glutamine metabolism when detached 
from ECM [296]. Tumor cells also enhance their aggres-
siveness via several glutamine-associated mechanisms 
such as upregulation of glutamine receptor [297], tissue 
transglutaminase [298] and glutaminolysis [299]. Besides, 
cancer cell clustering triggers mitophagy activation, 
which can decrease the generation of ROS, to support 
tumor survival during metastasis [300]. The activation of 
mitophagy in cancer during the detachment from ECM 
depends on the expression of receptor-interacting pro-
tein kinase 1 (RIPK-1) [301], and secretion of ECM pro-
tein decorin [302, 303].

Collagen orientation and CAFs: the fingerposts
Here, cancer cells are prepared for a long distant journey. 
The question is, where should they go? During normal 
development of organs, programs of cells have been well 
set from embryonic period to differentiation. Within a 
differentiated organ facing injury, cells just need to per-
form their duty to proliferation and migration which lim-
ited under a range of ECM [304]. The program will be 
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shut off when everything becomes normal or cells meet 
their death. Nevertheless, cancer cells generating ECM 
create a gradient from primary loci of cancer to extravas-
cluation site, then guide themselves’ migration in a cer-
tain direction. The organization of collagen, the most 
prevalent component in ECM, is critical for cancer pro-
gression [305, 306]. Clinical examinations have detected 
a profound association of collagen fiber orientation dis-
order to poor prognosis in breast cancer [307–309], 
Gastric cancer [310], and salivary gland cancer [311]. 
Pathological examination also detects prevalent disor-
dered collagen orientation in various cancers [312–314]. 
A laboratory study demonstrates that high-density col-
lagen co-culture transforms normal breast tissue into 
premalignancy [315]. Aged ECM transplantation also 
stimulates oncogenesis in breast cancer [316].

Importantly, collagen I-Matrigel composite extracel-
lular matrix featured collagen orientation or less wave-
forms in ECM provides a contact guidance to typically 
induce directional migration of cancer cells [317, 318]. 
Several studies indicate that tumors prefer to invade 
and disseminate along radially aligned fibers rather than 
circumferentially oriented fibers [319, 320]. Moreover, 
collagen-rich environment mostly stimulates integrin 
signaling pathway and favors pre-metastasis niche [321]. 
In breast cancer, the balance between intracellular and 
cell–matrix adhesion determines ECM dynamics and 
the invasion of cancer cells [322]. Collagen I/α2β1 inte-
grin triggers PI3K/Akt/SNAIL pathway to promotes 
metastasis in colorectal cancer [323]. In squamous cell 
carcinoma, ECM stiffness triggers collective invasion 
via mechanical sensing EGFR pathway-induced calcium 
absorption [324]. Additionally, when cancer cell invasion 
on aligned collagen fibers, the structure will lead cancer 
cell to invasion by sensing focal adhesion-mediated con-
tact guidance [325]. In a 3D culture demonstrates that 
glycation enhances ECM stiffness and reduces direction-
ality in aligned collagen gel, highlights the significance of 
posttranslational modification of collagen on tumor inva-
sion [326]. These features together push cancer cells inva-
sion, migration and metastasis in a certain direction.

CAFs are the primary derivation of acellular compo-
nents including collagens in ECM [327]. Cancer stimu-
lates CAFs proliferation and activation to facilitate ECM 
remodeling [328]. A ROCK-dependent paracrine axis 
has been recently identified and is responsible to breast 
cancer stimulated reprogramming of CAFs [329]. In 
PDAC, ECM stiffness induced by CAFs activates ERK 
pathway and promotes cancer metastasis [330]. In squa-
mous cell carcinoma, IL-6 plays the same role by target-
ing STAT3/ERK pathway in CAFs [331]. Components 
derived from CAFs also provides bioactive signals for 
cancer progression. For instance, CAFs derived lumican 

promotes progression of gastric cancer via stimulating 
β1 integrin/FAK signaling pathway [228]. In breast can-
cer, CAFs expressing Hic-5 stimulates ECM remodeling 
and induces lung metastasis [332]. Matrix components 
laminin-5γ2 (LN-5γ2) triggers tumor budding, which 
defined as isolated single cancer cells or clusters of up 
to four cancer cells located at the invasive tumour front, 
of colorectal cancer cells [333, 334]. Mechanistically, 
LN-5γ2 interacts with β1 integrin to stimulate FAK and 
YAP activation in colorectal cancer [333], while increases 
density of stromal myofibroblasts in oral squamous cell 
carcinoma [335]. By contrast, decreased hyaluronan 
cross-linking mediated by CAFs favors invasion in breast 
cancer [336]. Attentionally, by using single cell high-
throughput sequencing, specific CAF clones and their 
distinguished functions are precisely identified in PDAC 
[337, 338]. Intriguingly, a specific clone of CAFs associ-
ated with ECM (eCAFs) is identified in pancreatic can-
cer [339] and gastric cancer [340], and recently identified 
Endo180 and paired related homeobox 1 (Prrx1) may be 
significant genes associated with the function and plas-
ticity of eCAFs [341, 342]. However, the precise role of 
eCAFs in cancer progression have yet to be elucidated.

Intriguingly, the orientation of fibers also contributes 
to the long-range distribution of CAFs [343]. Radially 
aligned ECM fibril constructed by cancer cells stimu-
lates exosome secretion from CAFs to normal fibroblasts, 
therefore induces pro-oncogenic transformation of fibro-
blasts and tumor metastasis [344–346]. Moreover, acti-
vation of TWIST in CAFs at the tumor invasive front is 
associated with the expression of palladin and collagen 
α1, which facilitates arrangement of CAFs [347]. The 
concentration gradient of oxygen may also contribute 
to guide cancer cell metastasis. For instance, Hypoxia-
induced Malic enzyme 1 expression and stimulates 
tumor budding, lactate production and YAP activation in 
oral squamous cell carcinoma [348]. Stress relaxion trig-
gers procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 
(PLOD2) expression and results in migration according 
to oxygen concentration [349]. In tumor tissue, hypoxia 
suppresses collagen I deposition, while a gradient deposi-
tion of collagen I may be associated to the oxygen supple-
ment, which needs further studies (Fig. 3C) [350].

Other factors point out the direction of metastasis
To adapt signals from ECM, changes on membrane-
receptor in cancer cells are necessary to invade through 
the direction. DDRs are receptor tyrosine kinases that 
bind with collagen in an integrin-independent way [351, 
352], and DDR1 can supplement the collagen-induced 
tumor progression when β1 integrin was eliminated 
[353]. Physiologically, DDR1 controls Mammary mor-
phogenesis [354]. By contrast, DDRs play dual role to 
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cancer cells. Downregulation of DDR1 triggers TGFBI 
secretion and tumor progression [355]. Collagen XV-
mediated DDR1 suppression inhibits tumor invasion in 
PDAC [356, 357]. While activation of DDR1a/MMP2 
promotes cell invasion in glioblastoma [358]. Collagen IV 
binds with DDR1 and mediates Src-dependent MMP2/9 
secretion in TNBC invasion [359] and EMT in epithelial 
breast cell line [360]. Attentionally, the regulatory feed-
back between DDR1 and MMP secretion contributes 
to sustain the homeostasis in local ECM, highlights the 
significant role of DDR1 in ECM remodeling [361, 362]. 
For invasive directionality regulation, DDR1-induced 
Rho-GTPase member Cdc42 and its specific guanine 
nucleotide-exchange factor (GEF), Tuba is needed for 
ECM protein degradation [363]. Furthermore, inhibition 
of DDR2 induces decreased invasion of murine mela-
noma via ERK/NF-κB-mediated MMP secretion [364]. 
K14+ breast cancer cells expression DDR2 and CXCR4 
and CAFs expressing DDR2 guides metastasis from pri-
mary tumor organoids to polarize to the leading edge and 
direct migration [365, 366]. Intriguingly, DDR2 mediates 
cell cycle arrest under the treatment of collagen, whereas 
deglycosylation of collagen can overcome the suppres-
sion in melanoma, implying the significance of collagen 
glycosylation [367].

Besides expression of ECM signaling receptors such as 
integrin and DDRs, expression of HA/CD44-mediated 
motility receptor RHAMM at the invasive front of colo-
rectal cancer cells is necessary for invasion and metasta-
sis [368]. It also mediates chemoresistance via activating 
TGF-β/Smad2 pathway [369]. Previous research dem-
onstrates that HA/CD44 is essential for cancer cell bone 
metastasis [370]. After radiotherapy, a HA-rich environ-
ment constructed by activation of IL-1α/NF-κB/HAS2 
pathway in cancer cells promotes glioblastoma metasta-
sis [371]. These reports emphasize that the distribution 
of CAFs, together with cancer cells, is depends on the 
mechanical and bioactive signaling pathways (Fig. 3C).

Non-CAFs stromal cells also pave the way to invade 
ECM and guide cancer cells to metastasis. For instance, 
PSCs change the alignment of collagen fibers and induce 
ECM remodeling via Endo180 [372] and SPARC-depend-
ent TGF-β/ROCK activation [129] to support cancer 
metastasis. In the omental environment of ovarian can-
cer, omental adipocytes, mesothelial cells and CAFs 
provides signals for cancer progression [373]. TAM polar-
ization induces microtubules coherent within cancer 
cell and TAM and enhance tumor cell elongation [374]. 
Moreover, TAM-derived granulin stimulates hepatic stel-
late cells (HSCs) to secret periostin resulting in fibrotic 
microenvironment [375]. Bone-derived mesenchymal 
stromal cells (MSCs) secreted ECM components con-
tribute to the metastasis [376]. The deficiency of stromal 

cell-secreted decorin stimulates colorectal cancer ini-
tiation and triggers ECM remodeling [377]. Other factor 
such as blood derived neural Wiskott-Aldrich syndrome 
protein (N-WASP) regulates lysophosphatidic acid recy-
cling in a self-generated gradient and promotes PDAC 
metastasis [378]. Though a profound regulatory network 
within various cell types makes trouble to unveil precise 
therapeutic target, the program of ECM is the sally port 
for treatment designation, especially the identification of 
expression of ECM-associated enzymes.

Matrix‑related enzymes: crossing the red sea
LOX family, including LOX and LOXLs, plays a signifi-
cant role in cancer-associated ECM stiffness by crosslink-
ing extracellular matrix proteins, collagen and elastin 
[379]. LOX increases stiffness and stimulates FAK/Src 
pathway in colorectal cancer [380]. Hypoxia stimulates 
LOX expression and increase collagen crosslinking and 
tumor invasion in ovarian cancer [381]. Among LOX 
family, the profound association between LOXL2 and 
cancer progression has been reported. High expression 
of LOXL2 in CAFs is correlated with poor prognosis in 
colorectal cancer [382], prostate cancer [383]. And High 
expression of LOXL2 in tumor tissues predicts poor sur-
vival in cervical cancer [384], neck squamous cell carci-
noma [385], hepatoma carcinoma [386] and other cancer 
patients [387].

Mechanistically, HIF-1α stimulates LOXL2 expres-
sion and tumor progression in hepatoma [388]. Addi-
tional LOXL2 treatment increases PI3K/Akt-dependent 
fibronectin deposition and lung metastasis in hepatoma 
[389]. A positive feedback loop between stiffness-induced 
zinc finger E-box binding homeobox  1 (ZEB1) expres-
sion and ZEB1/LOXL2-induced ECM stiffness remains 
tumor cells in a mesenchymal state [390]. Moreover, 
the competition between miR-200 and ZEB1 regulates 
collagen deposition and crosslinking, which stimulates 
β1 integrin/FAK/Src pathway, to promote invasion and 
metastasis [391]. Proinflammatory cytokines oncostatin 
M stimulates LOXL2 expression and collagen I crosslink-
ing and invasion [390]. While overexpression of LOXL2 
increases lung metastasis possibly via SNAIL1 upregu-
lation in breast cancer [392]. Anti-LOXL2 treatment is 
sufficient to suppress tumor progression in breast can-
cer [393]. However, inhibition of LOXL2, which causes 
decreased matrix context and stiffness, promotes cancer 
progression in PDAC, suggests the organ specificity of 
ECM stiffness in oncogenesis [394]. Other LOX family 
proteins also participate in tumor progression whereas 
less results have been reported. For instance, LOXL1 
supports intraductal xenograft of lobular breast carci-
noma cells survival [395]. LOXL4 stimulates activation 
of programmed death ligand 1 (PD-L1), which induces 
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immunosuppressive phenotype in macrophage, and facil-
itates an immunosuppressive microenvironment to pro-
mote hepatocarcinogenesis [396].

MMPs, the matrix-proteinases mediate generation 
of fragments from acellular components, and have long 
been associated with cancer invasion, metastasis and 
angiogenesis [397]. The role of MMPs in cancer progres-
sion and inhibitors of MMPs have been well reviewed 
recently [398]. Heat shock protein (HSP) family partici-
pates protein folding and maturation intracellular and 
associated with tumor progression [399]. Intriguingly, 
some researchers suggest that extracellular HSPs are 
critical to assist MMPs and promote tumor progression 
via ECM remodeling [400]. For instance, extracellular 
HSP70 and HSP90 are critical to interact with MMP2 
and enhance migration in breast cancer [401]. The func-
tion of HSP90 and MMP2 interaction is under controlled 
by tissue inhibitors of metalloproteinase 2 (TIMP2) 
and ATPase homolog 1 (AHA1) co-chaperones [402]. 
AUY922, an inhibitor of HSP90, decreases fibronectin 
secretion into ECM and hampers invasion in prostate 
cancer [403]. Interestingly, inhibition of HSP90 facilitates 
decreased contractility and increased TGF-β2 expres-
sion of CAFs in prostate cancer [404]. Moreover, HSP47 
regulates TGF-β to mediate ECM remodeling in glioblas-
toma [405]. In breast cancer, HSP47 interacts with non-
muscle myosin IIA (NMIIAH) to promote contractile 
force of actin filaments [406]. HSP47 also promotes cell-
platelet adhesion to mediate tumor invasion and metas-
tasis via collagen I [407, 408]. Extracellular HSPs have 
demonstrate the potential to act as a therapeutic target 
for ECM-associated cancer treatment, whereas lacking 
enough evidences.

ECM remodeling and angiogenesis in cancer
Unlimited expanding of cancer and increasing genera-
tion of ECM finally results in insufficient nutrients and 
oxygen, even impedes metastasis of cancer cells, theo-
retically. Angiogenesis is the process to form new blood 
vessels from pre-existing vessels, and it is essential to pro-
vide nutrients and oxygen for promoting tumor growth 
and hematogenous metastasis [409]. Besides, fibroblasts 
are critical in angiogenesis, while their function can be 
seriously controlled by cancer cells. A thorough review 
has concluded the role of CAFs and extracellular compo-
nents generated from CAFs in tumor angiogenesis [410]. 
Briefly, ECM is essential for vascular integrity whereas 
sustaining pro-angiogenic signaling in tumors impairs 
the subsequent steps of vascular morphogenesis, namely 
the acquisition of a quiescent EC phenotype and the 
development of an intact and selectively permeable vas-
cular barrier. In another word, in cancer, vascular base-
ment membrane and ECM is destroyed and become less 

conjunctive with ECs. These features facilitate the advan-
tage for cancer metastasis whereas enhance a potential 
permeability of immune cells, such as TAM (Fig.  3D) 
[410]. The influence of immune cells on ECM will be dis-
cussed latter.

Integrin signaling facilitates the basic stimulation of 
ECM-induced angiogenesis. For instance, β3 integrin 
induces VEGFR2 in ECs [411]. α6β1 integrin stimu-
lated by VEGFA in ECs is essential for the formation of 
endothelial podosome rosettes, which promotes new ves-
sel formation in tumor tissue, while laminin of the vessel 
basement membrane hampers the fucntion of α6β1 inte-
grin [412]. Additionally, syndecan-1 is essential for new 
blood vessel maturation in cancer [413]. Chitinase-3-like 
protein 1 (CHI3L1/YKL-40), a glycoprotein secreted by 
various cancer cells and stromal cells, enhances the syn-
ergic effect of syndecan-1 and β3 integrin and activation 
of FAK/ERK pathway in ECs to promote angiogenesis in 
breast and colon cancer [414, 415]. Moreover, in glio-
blastoma, YKL-40 induces the synergic effect of synde-
can-1 and β5 integrin and FAK/ERK-dependent VEGF 
secretion and VEGFR2 expression [416, 417]. In TNBC, 
β5 integrin facilitates cancer angiogenesis in  vivo [418]. 
Syndecan-4 may also participate in the YKL-40-induced 
vessel formation [419]. Furthermore, tumor-derived 
ECM transforms normal endothelial cell and stimulate 
VEGF2 expression via β3 integrin/FAK/Src pathway in 
melanoma [420]. Low expression of β3 integrin in mural 
cells of blood vessel is associated with cancer progres-
sion [421]. Mechanically, losing β3 integrin in mural cells 
triggers phosphorylate FAK/HGFR/p65 and upregulation 
of CXCL1, C–C motif chemokine ligand 2 (CCL2) and 
TIMP-1, while CCL2 stimulates tumor progression via 
MAP/ERK kinase 1 (MEK1)-ERK1/2-ROCK2 pathway 
[421].

Recently, basement membrane multidomain heme per-
oxidase human peroxidasin 1 (hsPxd01) has been identi-
fied as a pivotal regulator to promotes angiogenesis via 
ERK, Akt and FAK pathway [422]. Peroxidasin crosslinks 
collagen IV and releases bromide to sustain ECs survival 
[423, 424]. Nevertheless, high expression of peroxida-
sin could be detected in invasive melanoma cells rather 
than non-invasive cells and generates hypobromous acid, 
suggests the additional reaction with other biomolecules 
which have yet to be elucidated [425]. ECM component 
elastin microfibrillar interface protein 2 (EMILIN2) binds 
on EGFR and stimulates angiogenesis, mediates sensitiv-
ity to chemotherapy [426]. The absence of Multimerin-2 
(MMRN2), a member of EMILIN family expressed by 
ECs, hampers VEGFA/VEGFR2 activation and angio-
genesis in xenograft model [427, 428]. The expression of 
matrix protein CLEC14A combines with MMRN2 and 
reactivate angiogenesis in cancer [429, 430]. MMP-9 
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mediates MMRN2 degradation and enhances tumor 
angiogenesis [431]. Intriguingly, blocking CD93-MMRN2 
interaction in ECs favors angiogenesis and metasta-
sis in tumor [432]. MMRN2 combines with and stabi-
lizes CD93, therefore stimulates downstream pathways 
including β1 integrin, FAK and fibronectin expression 
[433]. Thus, MMRN2 is a potential biomarker for anti-
angiogenesis therapy.

ECM remodeling and lymphangiogenesis in cancer
The lymphatic system is indispensable for the collection 
and cycling of tissue-extravasated fluids, macromolecules 
and immune cells into the bloodstream, especially for 
tumor metastasis through lymphatic vessel [434]. The 
canonical pathway for lymphangiogenesis in cancer is the 
combination of VEGF-C/D and VEGFR-3. The interac-
tion would trigger activation of downstream pathways 
including Akt phosphorylation [435]. Factors and signal-
ing pathways associated with lymphatic formation have 
been introduced whereas ECM role in lymphangiogen-
esis is unclear [436].

During wounding healing and inflammation, a fibrin-
binding variant of VEGF-C induces lymphangiogenesis 
and ECM deposition [437]. ECM stiffness stimulates 
GATA binding protein 2 (GATA2) and GATA2-depend-
ent VEGFR-3 expression, which mediates lymphatic 
endothelial cell growth and migration in vivo [438]. HA 
increases expression of VEGF-C and VEGF-D in tumor-
stromal interfaces to mediate lymphangiogenesis [439, 
440]. Soluble factors such as heparanase stimulates 
VEGF-C expression in cancer [441, 442], while TGFBI 
induces activation of FAK signaling pathway in lym-
phatic endothelial cells (LECs), and increased expression 
of CCL21 on the surface of LECs to induce the disso-
ciation of VE-cadherin junctions between LECs [443, 
444]. Additionally, expression of membrane glycopro-
tein podoplanin increases lymphatic vessel formation 
in oral squamous cell carcinoma [445]. Podoplanin also 
expressed on the membrane surface of TAM, links TAM 
and LECs to mediate ECM deposition and lymphangi-
ogenesis via β1 integrin activation in breast cancer [446].

Another potential target associated with malignant 
lymphatic formation is a collagen-associated binding 
protein: collagen- and calcium-binding EGF domains 1 
(CCBE1), an indispensable regulator for embryonic lym-
phangiogenesis [447]. Physiologically, CCBE1 promotes 
VEGF-C expression in a posttranslational layer to trans-
form inactive form of VEGF-C into a mature form [448]. 
Further research unveils that the activation of CCBE1-
induced VEGF-C is depend on the EGF domain of 
CCBE1, whereas collagen domain is essential for CCBE1 
activation [449]. Precise mechanism of CCBE1-induced 
VEGF-C activation is the enhancing of cleavage activity 

of a disintegrin and metalloproteinase with thrombos-
pondin motifs 3 (ADAMTS3) and the facilitating of the 
colocalization of VEGF-C and ADAMTS3 [450]. Indeed, 
both cancer- and CAF-secreted CCBE1 mediates activa-
tion of VEGF-C within ECM and induce lymphangiogen-
esis and tumor progression [451]. Expression of TGF-β 
in cancer cells and CAFs transcriptionally suppresses 
CCEB1 expression by activating downstream SMAD 
[451]. Besides, high expression of CCBE1 is associated 
with tumor progression and drug resistance in gastroin-
testinal stromal tumor [452] and colorectal cancer [453]. 
Suppression of CCBE1 by miR-330-3p hampers breast 
cancer metastasis [454]. However, the downregulation 
of CCBE1 expression could be detected in ovarian can-
cer and associated with metastasis, implying a potential 
organ specific role of CCBE1 (Fig. 3D) [455].

Generally, tumor lymphatic metastasis can benefit 
from enhanced lymphatic vessel formation, whereas the 
process can also provide more chances for immunocytes 
to migrate through the lymphatic vessel. Nevertheless, 
immunosuppressive environment commonly identified 
to be accompanied with abnormal ECM remodeling, 
which hampers the function of immune cells to recognize 
and eliminate cancer cells. Thus, it is crucial to uncover 
the precise mechanism of ECM-mediated immunosup-
pressive microenvironment.

ECM remodeling and immunosuppression 
in cancer
A pro-oncogenic ECM featured by collagen crosslink 
and glycoprotein-presented bioactivators transduce sig-
nals to regulate functions of immune cells. These fac-
tors not only mediate cytoplasmic signaling to promote 
tumor progression and suppress immunoreaction, an 
impenetrable shield constructed by remodeled ECM 
also hampers immuno-infiltration. Collagen density and 
tissue stiffness is pivotal for the infiltration of immuno-
cytes. For instance, a 3D culture constituted by various 
density of collagen unveils the changes in for T cell com-
position, while high collagen favors high ratio of CD4/
CD8 T cells and lower activity of CD8 T cells [456]. Dif-
ferent colonies of infiltrating T lymphocytes are changed 
in number, surface markers, subsets and gene expression 
under the stress from ECM stiffness [457]. Addition-
ally, tumor-modified arrangement of collagen, which 
also known as collagen orientation, hinders the infiltra-
tion of immunocytes. A real-time microscopy motoring 
the trace of CD8 T in ovarian tumor tissue demonstrates 
that the mechano-gradient formed by peritumoral col-
lagens guides CD8 T cells moving lingering in a certain 
direction whereas waken their infiltration to intrude 
the tumor islets [458]. Therefore, similar to cancer cells, 
previous discoveries suggest that migration of immune 
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cells in ECM depends on the distribution and interaction 
among ECM components, especially among fibril col-
lagen network [459]. Additionally, the influence of ECM 
stiffness on other immune cells such as dendric cells 
maturation [460] and macrophages [461, 462] have been 
recently reported. These remodeled ECM composite a 
maze, with impenetrable wall and winding roads, makes 
immune cells lost their way. To precisely explore the vari-
ation in immune cells surrounded by ECM is essential for 
further understanding of immune-oncology. Here, the 
relationship between ECM stiffness or ECM components 
with immune cells will be discussed.

ECM remodeling and immune cell migration
Collagen crosslink and orientation constructs a stiff and 
parallel fibril alignment around tumor cells. It’s need to 
be emphasized that the architecture of collagen fibril 
shows less impact on immune cell infiltration within 
tumor tissue, but hamper immune cell migration into the 
inside, or the islets in another word, of tumor. The phe-
nomenon could be observed in several results [313, 463, 
464]. A possible hypothesis is that the proliferation of 
tumor cell is unlimited, matrix stiffness derived from col-
lagen crosslink contributes to retain the pressure inside 

the tumor tissue and constructs a pressure gradient, 
which push not only immune cell but also agents away 
from cancer cells. While at least, new vascular and lym-
phatic vessels induced by tumor would not be collapsed 
by interstitial fluid pressure, but by ECM remodeling 
[465]. Thus, matrix stiffness conducts both mechanical 
and contact signaling to mediate immune cell migration 
(Fig. 4).

In ovarian cancer, ECM stiffness hampers migration of 
T cell from peritumoral stroma into tumor islets, while 
degradation of matrix overcomes the situation [313]. This 
research, together with a discovery from PDAC, which 
demonstrates that expression of T-cell-active chemokines 
and β-integrin pathway is irresponsible to the intertu-
moral T cell-infiltration, highlights the pro-migration 
role of collagen density on T lymphocytes [466]. Moreo-
ver, matrix stiffness increases the CD4/CD8 T cell ratio, 
and decreases their activation [456, 467]. Mechanisti-
cally, CD4 T cell can form a mechanically complex with 
stiff matrix surface, this interaction modulates T cell 
cytoskeletal organization which may suppress T cell acti-
vation [468]. Another research using hydrogel-integrated 
culture unveils that stiffer ECM triggers IL-2 secretion 
whereas reduced proliferation of Jurket T cell (a human 

Fig. 4  ECM hampers activation and migration of immune cells. ECM constructed immunosuppressive environment demonstrate various 
mechanisms to induce immune escape in TME. Firstly, increasing density and modification of ECM components strikingly enhance the stiffness, 
then hamper immune cell migration into tumor islets by composing a physical barrier or directly cell-ECM surface inhibition (via interaction or 
receptors such as DDRs and LAIR-1). Moreover, tenascin-C immobilizes T cells with immunosuppressive cells and stromal cell, thus immune cells are 
fixed in the ECM. Finally, OPN stimulates PD-1/PD-L1 expression in immune cells, thus induce immunosuppression
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T lymphocyte cell line) [469]. Therefore, ECM remodeled 
by tumor shows immunosuppressive function on T lym-
phocytes, not only by suppressing their activation, but 
also by changing their composition.

For antigen-presenting cells, such as macrophages and 
dendritic cells (DCs), ECM stiffness acts as a disparate 
role. Increasing stiffness of ECM enhances M2 polariza-
tion and HIF-1α-induced LOXL2 expression via β5 integ-
rin/FAK/MEK/ERK pathway of macrophage in hepatoma 
[470]. Intriguingly, soft matrix physiologically induces 
mitochondrial ROS generation in a Rho-GTPase-depend 
way and M1 polarization in macrophage [471]. These 
results suggest that matrix stiffness may enhance the acti-
vation and M2-like polarization of macrophage, which 
tends to support tumor progression. For DCs, matrix 
stiffness enhances expression of C-type lectin, which 
mediates antigen internalization [472]. Stiff matrix stim-
ulates glycolytic metabolism and YAP/TAZ pathway to 
enhance proliferation and activation of DC [460]. By the 
way, HA, another widely expressed protein to construct 
ECM stiffness, also transforms macrophages into M2-like 
polarization via targeting CD44, and induces apoptosis 
of neutrophil even activation of DCs via binding with 
TLR-4 [473]. Thus, unlike T cell, antigen-presenting cells 
respond positively to ECM stiffness, whereas the func-
tion is advantageous for tumor progression.

Additionally, though less research targets the role of 
ECM stiffness in regulating Treg, some clues are worthy 
of reference. For example, activation of α4β1 integrin, an 
ECM-associated receptor, enhances immunosuppressive 
function of Treg [474]. High expression of leukocyte-
associated Ig-like receptor 2 (LAIR-2), an inhibitor of 
immune inhibition receptor LAIR-1, in Treg is corre-
lated with poor outcome in lung adenocarcinoma [475]. 
A significant observation demonstrates that losing of 
hyaluronan and proteoglycan link protein 1 (HAPLN1), 
a hyaluronic and proteoglycan link protein, in skin could 
trigger collagen alignment in melanoma, which ham-
pers CD8 T cell migration whereas enhances infiltration 
of myeloid-derived suppressor cells (MDSCs) and Treg 
in melanoma [476]. Besides, Treg influence local immu-
noreaction via interaction with CAFs. In breast cancer, 
CAFs secrets IL-6 and enhances adenosine generation 
from CD73 + γδT cells by stimulating STAT3 activation. 
Then, adenosine stimulates IL-6 secretion by CAFs via 
adenosine/ adenosine A2 receptor (A2BR)/p38MAPK 
pathway and constructs a positive feedback loop between 
Treg and CAFs [477]. A single-cell RNA sequencing 
about the heterogeneity of fibroblasts in TNBC also 
indicates the significant correlation between Treg and 
CAFs [478]. It’s worth to further explore the relationship 
between Treg and CAFs in various cancers.

However, in PDAC, collagen seems as a trouble maker 
for cancer survival. The breakthrough of stromal cells 
role in pancreatic cancer immunosuppression is the 
identification of different subtypes of CAFs, which pre-
liminarily classified into αSMA-expressing myCAFs, 
associated with desmoplastic stroma generation, and 
IL-6/leukemia inhibitory factor (LIF)-expressing inflam-
matory fibroblasts (iCAFs), associated with inflammation 
[337]. myCAFs located adjacent to tumor cells whereas 
iCAFs located more distantly. After that, MHC class II-
expressing antigen presenting CAFs (apCAFs) have been 
identified, and their role in stimulating activation of CD4 
T cells via antigen-specific manner has been uncov-
ered [338]. Further investigation finds out that IL-1 and 
TGF-β oppositely regulate IL-1R/JAK/STAT activation 
and induce differentiation of CAFs into iCAFs (IL-1), or 
myCAFs (TGF-β) [32]. Importantly, when generation of 
collagen I from spinal muscular atrophy (SMA)+ CAFs 
is reduced, spontaneous PDAC formation mice incline 
to meet poor survival and immunosuppressive environ-
ment [33]. Collagen I depletion in tumor tissue results in 
enhanced oncogenesis and increased expression of Cxcl5, 
which causes recruitment of myeloid-derived suppres-
sor cells and suppression of CD8 + T cells in a CXCR2/
CCR2-dependent manner [33]. Further investigation 
using 3D matrices and time-lapse microscopy unveils 
the distribution of T cell within pancreatic tumor tissue 
doesn’t correlate to the orientation of collagen alignment 
[479]. These results depict a distinguish role of collagen 
in PDAC compared to other cancers.

DDRs and LAIRs: collagens’ best friends
As previously discussed, DDRs are critical recep-
tors sensing collagen and mediates tumor progression. 
Expression of DDRs in immune cells is also pivotal for 
cell migration and cell-ECM adhesion. Under the stim-
ulation of collagen, in renal cancer, high expression of 
DDR1a in monocytes mediates infiltration and migration 
in ECM [480], while DDR1b triggers MAPK/NF-κB path-
way to activate macrophage during inflammation [481]. 
In a 3D collagen culture, DDR2 expression in neutrophils 
induces MMP secretion and local generation of collagen-
derived chemotactic peptide gradients to regulates direc-
tionality [482]. In addition, suppressing DDRs in cancer 
contributes to the immunoactivity. A pan-cancer in vivo 
model verifies the efficiency of suppression on DDR2, 
which significantly enhances the efficacy of anti-PD-1 
immunotherapy [483]. Recently, a novel discovery unveils 
that DDR1 extracellular domain (DDR1-ECD) mechani-
cally binds with collagen and mediates collagen fiber 
alignment, which hampers T cell infiltration, suggests as 
a potent therapeutic target for immunotherapy [484].
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LAIR-1 (or CD305) is an immune inhibitory recep-
tor prevalently expressed by almost all types of immune 
cells and its’ activation triggers immunosuppression. In 
chronic lymphocytic leukemia, oral squamous cell carci-
noma, breast cancer and hepatoma, expression of LAIR-1 
is negatively correlated with severity of illness [485–489]. 
In ovarian cancer, CD11c+CD11b−CD103+ DCs could 
be observed in tumor tissues, while PD-1 expression is 
positively correlated with LAIR-1high in DC [490]. Colla-
gen is the ligand of LAIR-1 in ECM. In melanoma, col-
lagen mediates CD8 + T cell exhaustion through LAIR1/
Src homology 2 domain-containing protein tyrosine 
phosphatase 1 (SHP1) pathway while combination of 
programmed death 1 (PD-1) blockades with overex-
pression of LAIR2, a soluble homologue of LAIR-1 with 
higher affinity for collagen and thereby acts as a decoy 
receptor, significantly overcome tumor growth and lung 
metastasis [491, 492]. MMP1/9-mediated collagen I frag-
ment production targets LAIR-1 to suppress CD3 path-
way and interferon gamma (IFN-γ) secretion in T cells 
[493]. A LAIR-2-Fc recombinant protein also suppresses 
tumor progression and re-activate anti-tumor immune 
response [491, 493, 494]. Especially, double blockage of 
LAIR-1 and TGF-β can support totally tumor elimination 
by PD-L1 [495]. However, A research reports that over-
expression of LAIR-1 suppresses ovarian tumor growth 
via inhibiting PI3K/Akt/mTOR pathway [496]. While the 
in  vivo experiments of this research are based on nude 
mice, which lacks specific immunity. Thus, LAIR-1 pri-
marily acts as an immunosuppressor rather than a tumor 
inhibitor.

TNC and Osteopotin: immune cells shall not pass!
Proteins secreted by cancer cells and stroma cells are 
seductive traps to immune cells. Some are neighborly 
while some are vicious. The role of collagen [497] and 
other ECM components [498] in immunoreaction in can-
cer has been well reviewed. Among them, TNC and oste-
opotin act as the rising stars for immunotherapy.

TNC
Overexpression of TNC could be specifically detected 
and associated with immunosuppression and sever pro-
gression in various cancers, such as NSCLC [499], breast 
cancer [500] and oral tongue squamous cell carcinoma 
[501]. ECM from glioblastoma cell line culture expressing 
TNC shows suppressive function on Jurkat T cell migra-
tion [502]. During the formation of PDAC in vivo model 
with normal immune function, the existence of TNC pro-
motes oncogenesis and activation of Wnt singling path-
way in cancer cells [503]. Further investigation finds out 
that TNC interacts with α5β1 integrin and suppresses 
cytoskeleton reorganization of T cells, then supports the 

survival of lymph node metastatic prostate cancer [504]. 
In glioblastoma, cancer cells secrets TNC-expressing 
exosome, then TNC targets α5β1 and αvβ6 integrins to 
suppresses mTOR singling and activation of T cells [505].

Intriguingly, another research suggests that CD47, 
which mediates immune evasion via hampering phago-
cytosis, negatively controls TNC secretion in glioblas-
toma cells [506]. While the increasing expression of TNC 
enhances tumor necrosis factor alpha (TNFα) secretion 
from TAMs via TLR-4/STAT3 pathway [506]. The simi-
lar function on TLR-4 could be observed in microglial, 
the specific type of macrophage in neuro system [507]. 
It seems like TNC enhances immunoactivities of mac-
rophage. However, more studies demonstrate that TNC 
triggers immunosuppression via regulating macrophage 
in the TME. 

Breast cancer-derived TNC transforms TAMs into 
M2-like polarization and triggers immune-suppressive 
phenotype whereas inhibition of TLR-4 enhances PD-L1 
immunotherapy [508]. In oral squamous cell carci-
noma, TNC/TLR-4 increases the expression of CCR7 in 
CD11c+ myeloid cells [509]. Meanwhile, TNC/α9β1 inte-
grin induces CCL21 expression and binds on CCL21 in 
LECs [509]. Thus, CD11c + myeloid cells and LECs are 
co-located and hijacked by TNC and construct a lym-
phoid immune-suppressive stromal environment [509]. 
The similar function of the anchoring effect of TNC has 
been reported recently. In TNBC, TNC/TLR-4 induces 
CXCL12 expression in CD8 T cells and retains CD8 
T cells within the ECM and decreases immunoreac-
tion via CXCR4/CXCL12 (Fig. 4) [510]. The two reports 
hightlight the novel role of TNC in limiting immune 
cell within peritumoral stoma, and the function further 
hampers immune cell migration and provides a immu-
nosuppressive environment. For the upstream factors of 
TNC, JNK role in stimulating TNC expression has been 
discussed. In addition, TNBC with autophagy-deficiency 
could ubiquitinate TNC and sustain TNC expression by 
SKP2, therefore induce immunosuppression [511]. TNC 
may also combine with secreted TGF-β and stimulate 
activation of TGF-β, whereas the precise mechanism is 
still unclear [250].

Osteopotin (OPN, or SPP‑1)
Previous research has unveiled that OPN is the ligand 
to CD44 and integrin, and contributes to the anoikis 
resistance and promoting adhesion in ECM [512]. Some 
reports targeting the role of intracellular OPN in immune 
regulation. For instance, expression of intracellular 
OPN is controlled by T-bet signaling pathway and regu-
lates migration of T cells [513], as well as induces IFN-α 
expression via TLR-9 in plasmacytoid DCs [514]. In 
macrophage, intracellular OPN interacts with MyD88 to 
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suppress TLR singling pathway, therefore inhibits inflam-
mation-stimulated formation of hepatoma [515]. Further 
investigation demonstrates that both intracellular and 
secreted isoforms of OPN are dispensable to stimulate 
activation of DCs [516]. Intriguingly, DCs under hypoxia, 
which is commonly detected in TME, shows increasing 
secretion of OPN and impaired immune activation to 
support tumor immune escape [517]. Another research 
in a spontaneous breast metastasis model suggests that 
secreted OPN is mostly derived from cancer cells and 
supports tumor survival during metastasis, while high 
expression of intracellular OPN in MDSCs induces 
immunosuppression around metastatic site [518].

Indeed, additional investigations highlight the role of 
secreted OPN in immunosuppression. Secreted OPN 
form tumor cells contributes to the accumulation of 
MDSCs via targeting CD44 and stimulating downstream 
ERK/MAPK pathway to induce extramedullary mye-
lopoiesis and immune escape [519]. Similar result could 
be detected in helicobacter pylori-induced gastric cancer, 
another inflammation-associated cance [520]. Precisely, 
high expression of intracellular OPN results in increased 
expression of PD-1 in macrophage and lung cancer cells 
via NK-κB pathway [521, 522]. Whereas in glioblastoma, 
tumor secreted OPN targets αvβ5 integrin to recruit and 
induce M2-like polarization of macrophage [523]. Inter-
feron regulatory factor 8 (IRF8) transcriptionally sup-
press secreted OPN expression in CD11b+Ly6ClowLy6G+ 
myeloid cells, which caused decreased interaction 
between OPN and CD44 receptor in T cell and sup-
presses immune escape in colon cancer [524]. High 
expression of secreted OPN in hepatoma stimulates 
colony-stimulating factor 1 (CSF1)/CSF1R activation in 
macrophage which further increases PD-1 expression 
in hepatoma cells [525]. While in PDAC, WD repeat 
domain 5 (WDR5), a histone methyltransferase, mediates 
H3K4me3 on promoters of OPN and CD44 and enhances 
their expression to promote PD-L1 expression in tumor 
cells and MDSCs [526]. Thus, OPN links expression of 
PD-1/PD-L1 expression in both cancer cells and immune 
cells to induce immunosuppression.

By the way, specific transcripts from secreted phos-
phoprotein 1 (SPP-1) are critical for distinguished func-
tion of OPN. Overexpressed three different transcripts 
of OPN in breast cancer unveils similar oncogenic role 
but different immunosuppressive role in three trascripts 
[527]. Importantly, orally OPN administration suppresses 
tumor growth in mice with normal immune function, 
highlights the significance of endogenous OPN in pro-
moting tumor progression [528]. Indeed, some results 
have proven the hypothesis. The isoform of secreted 
OPN from glioblastoma could not be observed from 
normal human astrocytes [529]. This isoform triggers 

macrophage M2-like polarization and tumor progression 
[529]. Another research suggests that the specific frag-
ment of OPN cleaved by MMP-9 is sufficient to trigger 
MDSC infiltration and immune suppression [530]. The 
expression of membrane-anchored protein a disintegrin 
and metalloproteinase domain 8 (ADAM8) in glioblas-
toma cells and macrophages mediates OPN secretion and 
suppresses angiogenesis via JAK/STAT3 pathway, may 
also contributes to the formation of the specific isoform 
of OPN in ECM [531]. Thus, antibody targeting specific 
OPN in cancer could be an optimal option [532].

TAM‑induced ECM remodeling: the betrayer
TAMs are accompanied with tumor cells to compos-
ite pro-oncogenic environment. Under the stimulation 
from cancer cells or ECM environment, TAMs medi-
ate matrix remodeling and contributes to the migration 
of cancer cells in a certain direction. TAM shapes ECM 
remodeling by high-rate degradation of the matrix and 
generation of ECM proteins [533]. In colorectal cancer, 
depletion of TAM results in a huge variation of expres-
sion of ECM components. ECM fragments from TAM-
sufficient tumors triggers tumorigenesis compared with 
TAM-deficient tumors [73]. Deficiency of TAM strikingly 
decreases density and crosslink of collagen, especially 
reduces collagen I and XIV expression in CAFs [73].

Additionally, the secretion of MMPs from TAMs acts 
as a pivotal role in carving out cancer cells’ way to metas-
tasis. High expression of MMP-11 in TAMs is associ-
ated with poor outcomes in breast cancer patients [534]. 
Overexpression of MMP-11 in macrophages, but not in 
cancer cells, increase monocyte recruitment and migra-
tion of Her-2+ breast cancer cells via CCL2/CCR2/
MAPK pathway [534]. Furthermore, aberrant expres-
sion of genes in TAMs controls ECM remodeling to 
provide the advantage for tumor migration. Overexpres-
sion of B7-H3 in TAM shows fewer collagen fibers and 
enhanced angiogenesis in breast cancer [71]. In TNBC, 
high podoplanin expressing TAMs has been identified to 
adhere to LECs [446]. The combination of glycosylated 
podoplanin from TAMs with galectin 8 on LECs stimu-
lates the activation of β1 integrin. This function facilitates 
angiogenesis and lymphangiogenesis via localized ECM 
remodeling [446]. Disabled homolog 2 mitogen-respon-
sive phosphoprotein (DAB2) positive TAMs, which local-
ized at the tumor-invasive front, promotes metastasis via 
matrix remodeling [535]. Precisely, knockdown of DAB2 
impairs integrins’ surface distribution and their ability to 
internalize ECM fragments, under the expression of α5β1 
integrin and stiffer ECM [535]. By contrast, ECM stiffness 
stimulates DAB expression via mechanically upregulating 
YAP/TAZ pathway, triggers ECM remodeling and integ-
rin-dependent migration, which assists tumor invasion 
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[535]. Therefore, TAMs act as tour guides, pointing out 
the way out for them from primary tumor tissue to dis-
tant metastatic sites.

Other immune cells also participate to the forma-
tion of ECM remodeling. Increasing stimulation from 
tobacco will sustain a lung inflammation, neutrophils 
response to the inflammation and secrets neutrophil 
elastase and MMP-9 [536]. Unfortunately, laminin 
would be cleaved by MMPs and remodeled laminin 
then awakens quiescent cancer cells via stimulating 
α3β1 integrin signaling pathway [536]. Besides, BMDC 
derived ECM miR-92a induces activation of HSCs, 
subsequently increasing ECM deposition [537]. Roles 
of other immune cells, such as NKp46-expressing NK 
cells [538], LOX-expressing T cells [539] and TGF-β/
CD73/adenosine-dependent Myeloid cells [540] in 
ECM remodeling and tumor progression are recently 
reported. After all, the profound regulatory network 
between ECM and immune system is the treasure, 
which provides targets to us to validate their potential 
in anti-tumor treatment.

Anti‑cancer therapy targeting ECM
Raising morbidity of cancer worldwide demonstrates 
the emergency of precise treatment strategy design and 
the discovery of novel therapeutic targets [541]. Canon-
ical therapeutic strategies including chemotherapy, 
radiotherapy, as well as biomarker-based therapies such 
as endocrinotherapy and targeted therapy significantly 
increase cancer patients’ prognosis. Nevertheless, aber-
rant gene expression and disordered signaling pathway 
of tumor cells shape pro-tumorigenic ECM remodeling, 
which forms the tough environment to impede infiltra-
tion of anti-tumor immune cells and agents, as well as 
sustaining cancer cell survival under the stress from 
anti-tumor agents [542].

ECM shaped by cancer cells links multiple drug 
resistance. Hydrogel constructed matrix mimics ECM 
stiffness and unveils enhanced chemoresistance in 
breast cancer [543, 544], and glioblastoma [545]. A 
reasonable model constructed by breast cancer patient 
derived scaffold which perfectly mimic acellular struc-
ture of ECM and unveiled enhanced drug resistance in 
cultured cancer cells [546]. Cancer cells 3D culture of 
HA also shows severe chemoresistance, especially for 
glioblastoma cells [547, 548]. On the other hand, chem-
otherapy can push remodeling of acellular matrix com-
ponents, stiffness and matrix adhesion, which results 
in chemoresistance. For instance, after chemotherapy 
treatment, a positive feedback loop between THBS2-
deficient CD133+ liver CSCs and local soft ECM 

induces cell metastasis in hepatoma [549]. In ovarian 
high-grade serous carcinoma, cells with high upregu-
lated expression of collagen VI strikingly stiffen ECM 
and induce chemoresistance via enhancing integrin-
based cancer cell adhesion on stiff collagen VI substrate 
after cisplatin-based chemotherapy [550]. Intriguingly, 
soluble laminin-322 secreted by HSCs in conditional 
medium of hepatoma can induce sorafenib resistance 
by sustaining activation of α3 integrin/FAK pathway, 
implying is that the components of ECM that matter, 
not their location [551]. Another research finds out 
that a short-time contact between placenta ECM and 
Erα+ breast cancer cells stimulate α5 integrin-depend-
ent autophagy and paclitaxel resistance in cancer cells, 
highlights the critical role of ECM in chemoresist-
ance [552]. Thus, targeting ECM is an optimal method 
assisting chemotherapy, even enhancing the efficacy of 
other therapies, and several strategies will be discussed 
here (Fig. 5).

ECM signature as predictive biomarker
Each tumor tissue featured by unique gene signature con-
tains particular ECM composition. ECM gene signature 
may help to identify the sensitivity of cancer to therapy. 
Several attempts have been made by previous studies. For 
example, specific stromal-related gene signature is cor-
related with prognosis of large-B-cell lymphoma patients 
receiving chemotherapy [553]. Similar association 
between ECM gene signature and outcomes of patients 
could be observed in other cancer [554–557]. Besides 
gene signature, proteomic analysis of ECM proteins in 
cancer also contributes to identify cancer and normal 
tissues [558]. Recently, a study demonstrates that matrix 
components released in blood after anti-PD-1 treatment 
in melanoma is associated with prognosis of patients 
[559]. Among them, collagen III and vimentin contribute 
to the prediction of the efficacy of PD-1 inhibitor [559].

Multiple predictive signatures may provide a method to 
analyze patient outcomes. While the designation of treat-
ment based on these results is difficult to decide. Fortu-
nately, ECM gene expression is commonly correlated 
with genes that has been well studied. Detection of these 
genes would contribute to the designation of treatment. 
For instance, ECM signature genes are identified under 
the control of TGF-β1, and expression of COL11A1, one 
of the signature genes, is upregulated during ovarian can-
cer progression [560]. Moreover, B-Raf proto-oncogene 
(BRAF) mutation (BRAFV600) in melanoma favors col-
lagen-rich environment generated by CAFs, while dual 
targeting DDR1 and DDR2 contributes to the efficacy of 
imatinib in vivo [561]. Thus, identification of pivotal gene 
in ECM remodeling is critical for therapeutic designation.
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ECM degradation
A reasonable treatment to increase migration of anti-
tumor immune cells and agents is normalizing ECM 
remodeling. Matrix-associated enzymes, including 
MMPs, LOX and LOXLs, are primary factors modify 
ECM structure. Targeting these enzymes to medi-
ate mechanical signals and enhance the efficacy of 
immunotherapy in cancer shows great potential [562]. 
Though suppressing of MMPs could suppress cancer cell 

migration and invasion, it also hampers infiltration of 
other cells and agents. Thus, other factors inducing ECM 
degradation such as nitric oxide (NO) [563] and HSP70 
[564] are potential targets. A recent study indicates that 
even through an intertumoral injection, ECM stiffness 
strikingly hampers drug delivery compared with soft 
one [565]. Thus, LOX and LOXs, which mediates colla-
gen crosslink in tumor cell, are optimal targets to allevi-
ate ECM stiffness. Suppression of LOXL2 is effective for 

Fig. 5  The diagram of ECM-targeting treatment. Several strategies targeting ECM could be optimal selections for anti-cancer therapy. However, 
these strategies are far from the clinical application. Further investigation is needed to verify the therapeutic effect of these strategies
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tumor suppression. Beta-aminopropionitrile (BAPN) is 
the pan LOX inhibitor. Several research has proved that 
BANP treatment can suppress proliferation and inva-
sion of tumor cells [395, 566, 567]. In osteosarcoma, a 
positive feedback loop between c-Fos/AP-1/Wnt path-
way and LOXL2-induced matrix crosslink, while BAPN 
destroys the feedback loop [568]. A monoclonal antibody 
(AB0023) targeting LOXL2 inhibits stoma generation 
and TGF-β activation in cancer and shows more efficacy 
and safety than BANP [569]. Moreover, aminomethyl-
enethiophenes (AMTs) is a potent oral bioavailable anti-
tumor agent targeting dual LOX and LOXL2 and exhibit 
improved pharmacokinetic properties and excellent anti-
tumor efficacy in vivo [570].

Besides, HA is one of the most prevalent ECM com-
ponents and contributes to the formation and progres-
sion of cancer. 4-methylumbelliferone (4-MU), the HA 
synthesis inhibitor, significantly decreases HA expres-
sion and tumor progression in ER-negative breast cancer 
[571] and hepatoma [572], it also overcomes chemore-
sistance in ovarian cancer [573]. Oral dietary supple-
ment of 4-MU is effective to suppress prostate cancer 
progression via abrogating HA signaling in  vivo [574]. 
Intriguingly, targeting metabolic metabolism associated 
with HA synthesis may be another selection. A small 
molecule glutamine analog targeting glutamine-fructose 
amidotransferase 1 (GFAT1), the rate-limiting enzyme 
of HA synthesis, decreases renewal and metastatic abil-
ity of tumor cell, and increases sensitivity to anti-PD-1 
treatment [575]. The combination of 4-MU and anti-met-
abolic therapy (dichloroacetate, the pyruvate dehydroge-
nase kinase inhibitor) strikingly suppresses esophageal 
cancer progression in vitro and in vivo [576]. Moreover, 
the combination treatment of 4-MU and trametinib, the 
MEK inhibitor, significantly inhibits ERK phosphoryla-
tion and PD-1/PD-L1 expression in malignant pleural 
mesothelioma [577]. Thus, 4-MU is a promising anti-can-
cer agent.

Other treatments such as normalization of ECM stiff-
ness by photothermal depletion of cancer-associated 
fibroblasts in desmoplastic cholangiocarcinoma [578], 
and stiffness-based anti-angiogenic therapy in hepatoma 
[579] suggest that soften ECM stiffness is critical. Addi-
tionally, TNFα-CSG fusion protein, which interacts with 
laminin-nidogen complexes, decreases ECM stiffness 
and upregulates immuoinfiltration [580]. However, cho-
lesterol depletion treatment could induce cancer stiff-
ness and enhance T-cell immunotherapy [581]. Another 
research also demonstrates that softer ECM favors che-
mosensitivity in TNBC (via elevating NF-κB activity and 
compromising JNK activity) [582]. Thus, different strate-
gies targeting ECM stiffness should be considered.

Receptor surface domain blockage and drug delivery
Antibodies targeting ECM-associated receptors on the 
membrane of cancer cells can shut down the signal trans-
duction from ECM to cancer cells, thus inhibit tumor 
progression. As previous introduced, RGDs are designed 
to recognize specific integrin and abrogates the function 
of integrin [175]. Besides, RGD-motif is an ideal guide to 
link anti-tumor agents, thus transport agents to target 
cells overexpressing specific integrins [583]. Moreover, 
RGDs can be used as developing agent such as a posi-
tron-emission tomography (PET) tracer to demonstrate 
the edge and volume of tumor, suggesting a potential role 
of ECM-associated monoclonal antibodies in oncogenic 
imaging [584, 585].

Similar to integrin, other receptors such as DDRs, 
CD44 [586] and syndecans are potential target for anti-
cancer therapy. The ECD in DDRs interacts with colla-
gen and stimulates activation of downstream signaling 
pathways. In DDR2, ECD domain suppress collagen 
I expression and mediates fibrillogenesis [587, 588]. 
Soluble DDR-ECD plays the same role [589]. Recently, 
a critical discovery unveils the role of DDR1-ECD in 
immunosuppression [484]. Precisely, ECD domain of 
DDR1 mediates collagen fibril alignment by interact-
ing with collagen, then impede immune cell infiltration 
[484]. Other research indicates that methyl (CH3) and 
amino (NH2) mechanisms facilitated surface modifica-
tion induce apoptosis in breast cancer [590]. Poly pep-
tide of NH2-terminal fragment of zinc finger FYVE-type 
containing 21 (ZF21), which is the binding region of 
FAK, reduces metastasis progression [591]. These studies 
emphasize the strategy of domain blockage for impeding 
cell-ECM interaction.

For secreted proteins in ECM, blocking interaction 
domain of proteins to receptors by monoclonal antibody 
is an optimal selection. Fibrinogen-like globe (FBG) is a 
conserved domain in tenascins and mediates cytoskeletal 
re-organization by binding to fibronectin [592]. Mono-
clonal antibody targeting FBG can suppress tumor pro-
gression and enhance immunotherapy [508]. By the way, 
FBG domain on tenascin-X, a member of tenascins, sup-
ports its mechanic interaction with TGF-β, then induce 
maturation of TGF-β, highlights the potential role of FBG 
domain on other tenascins in TGF-β maturation [250, 
593]. Additionally, extra-domain B (EDB) of fibronectin 
is an ideal target for drug delivery [594, 595]. A nano-
vehicle with a peptide bi-targeting EDB on fibronectin 
and FBG on TNC strikingly suppress tumor growth and 
increase survival of mice in vivo [596]. Thus, domains on 
ECM proteins are also optimal targets for drug delivery.

Though ECM are rich in proteins promoting tumor 
progression and immunosuppression in cancer, these 
proteins are indeed ideal targets for drug delivery. Among 
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them, drug delivery system based on fibronectin has been 
concluded [597]. Nanoparticles featured by targeting 
ECM components are optimal to penetrate tumor tissue 
and deliver drugs. For instance, Collagenase IV modified 
nanoparticles loading doxorubicin can increase penetra-
tion of drug and with weaker side effects compared to 
nanoparticles without collagenase IV [598]. Overexpres-
sion of RHAMM, the specific receptor of HA, in cancer 
cells also provides a perfect target for HA nanogels [599]. 
Additionally, overexpression of ECM-associated enzymes 
in TME provides another strategy. For instance, a novel 
nanovehicle model with potential of hydrogen (pH)/
ROS/MMP-2 triple-responsive will gradually release 
anti-cancer drug when meets MMP-2-rich, low pH and 
high density of intracellular ROS [600]. Then high con-
centration of intertumoral ROS induced by photother-
mal and acidic pH induces precisely delivery of sorafenib 
in vivo [600]. The similar strategy has been reported in a 
lipase-rich TME, which enhance the penetration of doxo-
rubicin/monostearin constructed nanoparticles [601]. 
Importantly, to deal with the complex environment con-
taining mechanic signals in ECM, novel nano materials 
automatically regulating mechanosensing according to 
ECM in cancer are on the way [602].

CAR‑T
Chimeric antigen receptor redirected T cells (CAR-T 
cells) are reengineered T cells from patients and shows 
significant therapeutic effects on cancers, especially on 
hematologic malignancies. Compared to monoclonal 
antibody, CAR-T shows the advantage of infiltration. 
For instance, human epidermal growth factor receptor 
2 (Her-2) specific CAR-T shows a perfect penetration 
in tumor matrix better than Her-2 monoclonal antibod-
ies [603]. However, the low therapeutic effects of CAT-T 
in solid tumor still suggests the emergency to enhance 
the ability of penetration of CAR-T. Thus, reengineered 
CAR-T cell with overexpression of heparinase, which 
can degrade ECM components and increases T-cell 
infiltration, strikingly inhibits tumor growth [604]. A 
therapeutic model with the combination of oncolytic 
adenovirus carried decorin with a CAR-T targeting car-
bonic anhydrase IX (CAIX) has been reported to induce 
ECM remodeling and immunoreaction in cancer recently 
[605]. Moreover, targeting stromal cells which are the pri-
mary cells generating ECM components, may be another 
selection. Fibroblast activation protein (FAD) is overex-
pressed in CAFs and associated with ECM remodeling in 
tumors and wound healing, and it is a potential target for 
ECM degradation and tumor imaging [606]. A study has 
demonstrated that FAP specific CAR-T significantly sup-
presses tumor progression and induce ECM degradation 
in PDAC [607]. Recently, an enhanced-affinity ligand for 

FAP has been developed and shows the potential for clin-
ical application via CAR-T [608]. Additionally, CAR-147 
modified macrophage increases T cell-infiltration by tar-
geting MMPs in matrix [609]. Though less studies focus 
on the role of CAR-T in ECM remodeling, yet the model 
has the potential.

Vitamin D
The role of activated Vitamin D (1,25-dihydroxy vita-
min D3, or 1,25(OH)2 D3) in ECM remodeling has been 
reported that 1,25(OH)2 D3 stimulates generation of 
bone-associated proteins [610], as well as for OPN in 
bone [611] and TNC in mammary cells [612]. Most 
research targets the relationship between 1,25(OH)2 
D3 and uterine leiomyomas. For instance, 1,25(OH)2 D3 
level in plasma is negatively correlated with the risk of 
uterine leiomyomas [613]. TGF-β induces generation of 
fibronectin and collagen I whereas 1,25(OH)2 D3 over-
comes the function in vitro [614, 615]. Long-term treat-
ment of 1,25(OH)2 D3 shows the similar result in  vivo 
[616]. It also inhibits the activation of Wnt4/β-catenin/
mTOR pathway to suppress ECM generation [617], espe-
cially for mediator complex subunit 12 (MED12) muta-
tion uterine leiomyomas [618]. Thus, 1,25(OH)2 D3 is a 
potential fibrosis inhibitor which may play a role in anti-
malignant therapy.

Intriguingly, in  vitro experiments suggest that 
1,25(OH)2 D3 induce apoptosis in malignancy [619, 
620] and differentiation [621] in malignancies. Moreo-
ver, generation of MMP-9 and MMP-13 is controlled by 
1,25(OH)2 D3 in squamous cell carcinoma [622]. Recently, 
several studies focus on the function of 1,25(OH)2 D3 in 
ECM remodeling to suppress cancer progression. The 
interaction between PDAC cells and PSCs, and ECM 
remodeling induced by PSCs can be inhibited by treat-
ment of the combination of Vitamin D receptor modula-
tors and gemcitabine in vitro and in vivo [623]. Moreover, 
treatment of gemini-72, a vitamin D analog, normalizes 
ECM remodeling and induce apoptosis of prostatic pre-
cancerous cells in vivo [624]. However, the precise mech-
anism of Vitamin D-induced ECM remodeling in cancer 
is still unclear. To unveil the regulatory network may con-
tribute to the ECM-based anti-cancer therapy.

Future prospective and conclusion
Solid tumor is a high heterogeneity tissue composited 
by various cells and acellular components. This het-
erogeneity is not limited in the different composition 
of cancer cells and stromal cells, numerous ECM pro-
teins with structural and/or bioactive role are critical 
to contribute to the formation of heterogeneity. Espe-
cially, multiple studies have indicated that the loca-
tion, crosslink and modification of ECM proteins play 
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an increasing role in ECM remodeling. To improve the 
therapeutic effects and outcomes of cancer patients, 
precise treatments targeting heterogeneity is the inevi-
table chosen. Nevertheless, almost all agents or cells 
selected to kill tumor cells are bound to face the resist-
ance from ECM, the fenced wall around malignancy. 
The combination of anti-cancer therapy and anti-ECM 
treatment will be the next generation of ideal anti-
malignancy strategy. This review has summarized the 
interaction between ECM and cancer, especially intro-
duced the role of ECM in multiple hallmarks of cancer, 
including proliferation, anoikis, invasion, metastasis, 
angiogenesis, lymphangiogenesis, and immune escape. 
According to these mechanisms, we emphasize the 
importance of clinical applications targeting ECM to 
increase therapeutic effects and overcome drug resist-
ance. ECM-targeting therapy has been proved to be 
effective in supporting anti-cancer treatment,and it is 
also a treasure which needs further exploration.
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PDAC	� Pancreatic ductal adenocarcinoma
PI3K	� Phosphoinositide 3-kinase
PDO	� Patient-derived organoid
PSC	� Pancreatic stellate cell
PRP4K	� Pre-mRNA splicing factor 4 kinase
PDGFB	� Platelet-derived growth factor-BB
PTPRK	� Receptor-type tyrosine-protein phosphatases kappa
PFKFB3	� Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3
PPP	� Pentose phosphate pathway
Prrx1	� Paired related homeobox 1
PLOD2	� Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2
PD-L1	� Programmed death ligand 1
PD-1	� Programmed death 1
ROS	� Reactive oxygen species
RHAMM/CD168	� Receptor for hyaluronan-mediated motility
ROCK	� Rho-associated coiled-coil containing kinase
RGD	� Arg-Gly-Asp
RREB1	� RAS-responsive element binding protein 1
PC	� Pyruvate carboxylase
RIPK-1	� Receptor-interacting protein kinase 1
SPARC​	� Secreted proteins acidic and rich in cysteine/osteonectin
SKP2	� S-phase kinase associated protein 2
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STAT3	� Signal transducer and activator of transcription 3
SNAIL	� Snail family transcriptional repressor
Setd2	� SET domain containing 2
SOX4	� SRY-Box transcription factor 4
SMAD4	� Small mothers against decapentaplegic protein 4
SOD2	� Superoxide dismutase 2
SHP-1	� Src homology 2 domain-containing protein tyrosine 

phosphatase 1
SMA	� Spinal muscular atrophy
TME	� Tumor microenvironment
THBS/TSP	� Thrombospondin
Treg	� Regulatory T cell
TAM	� Tumor-associated macrophage
TRC​	� Tumor-repopulating cell
TLR-4	� Toll-like receptor 4
TNC	� Tenascin-C
TAZ/WWTR1	� WW domain containing transcription regulator
TGF-β-2	� Transforming growth factor β2
Tet2	� Ten-eleven translocation 2
TWIST	� Twist family basic helix-loop-helix transcription factor
TRIO	� Trio Rho guanine nucleotide exchange factor
TGFBI/βig-H3	� Transforming growth factor beta-induced protein
TRPM7	� Transient receptor potential melastatin 7
TXNIP	� Thioredoxin-interacting protein
TNBC	� Triple negative breast cancer
TIMP2	� Tissue inhibitors of metalloproteinase 2
TNFα	� Tumor necrosis factor alpha
UBTD1	� Ubiquitin domain containing 1
UDP	� Uridine diphosphate
VEGF	� Vascular endothelial growth factor
Vitamin D	� 1,25-dihydroxy vitamin D3
WISP	� WNT1-inducible signaling pathway protein
WDR5	� WD repeat domain 5
YAP	� Yes1 associated transcriptional regulator
ZFP36	� Zinc finger protein 36
ZEB1	� Zinc finger E-box binding homeobox 1
ZF21	� Zinc finger FYVE-type containing 21
4-MU	� 4-methylumbelliferone
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