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Malignant clonal evolution drives multiple 
myeloma cellular ecological diversity 
and microenvironment reprogramming
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Abstract 

Background:  Multiple myeloma (MM) is a heterogeneous disease with different patterns of clonal evolution and a 
complex tumor microenvironment, representing a challenge for clinicians and pathologists to understand and dissect 
the contribution and impact of polyclonality on tumor progression.

Methods:  In this study, we established a global cell ecological landscape of the bone marrow (BM) from MM 
patients, combining single-cell RNA sequencing and single-molecule long-read genome sequencing data.

Results:  The malignant mutation event was localized to the tumor cell clusters with shared mutation of ANK1 and 
IFITM2 in all malignant subpopulations of all MM patients. Therefore, these two variants occur in the early stage of 
malignant clonal origin to mediate the malignant transformation of proplasmacytes or plasmacytes to MM cells. 
Tumor cell stemness index score and pseudo-sequential clonal evolution analysis can be used to divide the evolu-
tion model of MM into two clonal origins: types I and IX. Notably, clonal evolution and the tumor microenvironment 
showed an interactive relationship, in which the evolution process is not only selected by but also reacts to the micro-
environment; thus, vesicle secretion enriches immune cells with malignant-labeled mRNA for depletion. Interestingly, 
microenvironmental modification exhibited significant heterogeneity among patients.

Conclusions:  This characterization of the malignant clonal evolution pattern of MM at the single-cell level provides 
a theoretical basis and scientific evidence for a personalized precision therapy strategy and further development of a 
potential new adjuvant strategy combining epigenetic agent and immune checkpoint blockade.
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Background
Multiple myeloma (MM) is the most common type 
of plasma cell malignancy (93%), characterized by the 
abnormal proliferation of terminally differentiated clonal 
plasma cells in the bone marrow (BM), and accompanied 
by chromosomal instability and cytogenetic abnormali-
ties [1–3]. The progress of MM is a multi-level and multi-
stage dynamic process involving a wide range of clonal 
genetic variation and molecular evolutionary dynamics, 
which drive the heterogeneity of the tumor cell ecological 
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composition and spatial clonal structure, mediating 
treatment resistance and recurrence [4–6]. Efforts to link 
the progress and prognosis of MM with gene resistance 
cloning have motivated further study into identifying the 
drivers of genetic variation in functionally heterogeneous 
cloning [7]. Nonetheless, existing studies on the clonal 
evolution of MM are mainly based on bulk-sequencing 
or computer simulation data at the tissue level of a high-
volume BM aspirate [8–11]. To date, based on single-cell 
sequencing, Amit et  al. identified resistance pathways 
and therapeutic targets in relapsed MM [12], and Lohr 
et  al. revealed metabolic reprogramming as a resistance 
mechanism in BRAF-mutated MM [13]. However, few 
studies reported the clonal evolution trajectory of MM 
malignant cells at the single-cell level. Moreover, such 
analyses ignore the intratumor cell heterogeneity that is 
not only an important result of tumor subclonal evolu-
tion at the cellular level but also the micro-scale basis of 
individual heterogeneity, mediating the diverse prognos-
tic outcomes of patients [14–16].

Existing studies have only focused on myeloma evo-
lution with respect to primary variation and acquired 
secondary variation in longitudinal samples, without 
exploring the interaction mechanism of variation and 
selection [17, 18]. Variation and selection play equally 
important complementary and promotive roles in 
establishing tumor evolutionary patterns. Addition-
ally, there remain many challenges in transforming the 
observational studies of rich heterogeneous cell-state 
phenomenology from single-cell analysis to a mechani-
cal understanding of cancer evolution dynamics and 
causal mechanism patterns [19]. For example, defining 
a common feature to reflect the evolutionary process of 
a tumor would help to obtain more recognizable tumor 
biological characteristics toward developing better inter-
vention strategies.

Therefore, in this study, we combined single-molecule 
long-read genome sequencing with single-cell RNA 
sequencing (scRNA-seq) to identify genomic instability 
events and the single-cell ecological landscape in MM 
patients. Bioinformatics approaches were applied for the 
direct reconstruction and in-depth global description of 
the cloning pattern of MM malignant cells in natural and 
drug-driven states to determine the change and selection 
of the microenvironment during the evolutionary pro-
cess. The main findings were then verified in large-scale 
clinical MM samples, offering significant robustness in 
the potential to obtain a general framework of tumor cell 
evolution, replacing the current coarse-grained, step-
wise, and deterministic cell and tissue models [19].

Materials and methods
Sample collection
Among the seven patients, three had newly diagnosed 
MM (NDMM), three had relapsed and/or refractory MM 
(RRMM), and one had CD20-positive RRMM (CD20+ 
RRMM). Among the three RRMM patients, RRMM1 
was resistant to thalidomide and melphalan; RRMM2 
received bortezomib, pegylated liposomal doxorubicin, 
cyclophosphamide, and dexamethasone but failed to 
respond; and RRMM3 received lenalidomide, borte-
zomib, pegylated liposomal doxorubicin, cyclophospha-
mide, and dexamethasone but relapsed after all regimens. 
Additionally, a patient was previously diagnosed with 
primary central nervous system lymphoma without BM 
invasion and had been in complete remission for 1 year 
without any treatment at the time of BM sampling and 
was considered as a control.

BM aspirates were collected from seven MM patients 
and one control donor who agreed to a multiplex library 
and sequencing protocol that covered all study proce-
dures, which were approved by the Ethics Review Com-
mittee of Beijing Tongren Hospital and Sun Yat-sen 
University Cancer Center. All patients provided written 
informed consent. The clinical data of all patients are 
shown in Supplementary Table  1. All sequencing was 
performed at Biomarker Technologies Corporation (Bei-
jing, China).

Single‑cell transcriptome profiling
Sample preparation and cDNA library construction were 
performed with the 10× Genomics Single Cell 3’v3.1 kit 
according to the manufacturer’s instructions. Based on 
microfluidic technology, individual cells and reagents 
required for the reaction were wrapped in GEM droplets 
with a bead (containing a cell barcode) on the microchip, 
and the droplets containing the cells were collected. The 
cells were lysed to release mRNA, which binds to the cell 
barcode primer on the bead to complete the reverse tran-
scription reaction. The GEMs were broken, and cDNA 
was recovered and amplified by polymerase chain reac-
tion to construct the cDNA library. The cDNA product 
and library concentration were detected using a Qubit 
4.0 fluorescence quantification instrument, and the insert 
size was detected using a Qseq400 Bioanalyzer to ensure 
a single peak type, no spurious peak, no junction, and no 
primer dimer. Finally, the sample library was sequenced 
using the NovaSeq 6000 instrument on the Illumina 
platform. After identifying the cassava base, the original 
image file was converted into a sequence file and stored 
in FASTQ format.
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Single‑molecule long‑read sequencing and Nanopore 
sequencing
The sequencing procedure was performed according 
to standard Oxford Nanopore Technologies protocols 
[20]. First, high-molecular-weight genomic DNA was 
extracted from the BM aspirate using HiPure Tissue & 
Blood DNA Kit (D3018–03, Magen), and Nanodrop, 
Qubit, and 0.35% agarose gel electrophoresis were used 
for purity, concentration, and integrity quality inspec-
tion. Next, 2 μg of high-quality nucleic acid was prepared 
and fragmented with a G-TUBE tube, thereby break-
ing the genomic DNA to an average of approximately 
8-kb fragments. The genomic DNA ligation reaction kit 
(SQK-LSK109) was used to construct the library. NEB-
Next FFPE DNA Repair Mix and NEBNext Ultra II End 
Repair/dA-Tailing Module were used to repair the dam-
age of nucleic acid fragments, end repair, and to add A 
bases to the end of the fragments, thereby purifying the 
magnetic beads. After adding the barcode sequences and 
ligating the sequencing junction using Amplification Free 
Barcode Expansion Kit 1–12 (EXP-NBD104, Nanopore), 
the beads were purified to complete the library construc-
tion. Finally, the library was quantified and sequenced 
based on the Qubit fluorometer. For the original electri-
cal signal obtained by sequencing, Guppy software [21] 
was used for neural network base calling (https://​github.​
com/​rrwick/​Basec​alling-​compa​rison) to obtain the origi-
nal sequence file, which was stored in FASTQ format.

Flow cytometry
Cell-surface labeling was performed using flow cytom-
etry to identify and verify MM malignant plasma cells. 
To detect the expression of cell antigens, cell size, and 
intracellular particle content, a 100 μL sample of fresh 
BM with EDTA was collected and mixed with fluores-
cein-labeled monoclonal antibodies (BD and Beckman 
Coulter Company) to the cell-surface markers including 
CD45, CD38, CD56, CD138, CD20, and CD19. Then, the 
mixture was incubated for 15 min at room temperature 
and protected from light. Red blood cell lysate (2 mL) was 
added, and incubated for 10 min at room temperature in 
the dark, followed by the addition of 2 mL phosphate-
buffered saline (PBS), and the sample was centrifuged 
at 352 g for 5 min. After removing the supernatant, 3 mL 
PBS was added to wash and discard the supernatant, 
and then 300 μL PBS was added for machine detection. 
Finally, the results were analyzed on the FACSCanto II 
flow cytometer (BD) with BD FACSDiva software.

Sequence alignment and gene quantification
Cell Ranger 5.0.1 software was used for sequence com-
parison and quantification of the sequencing data (per 

official recommendation of 10× Genomics), and the 
sequence read was mapped and aligned to the reads of the 
reference human genome reference (Hg38) using STAR 
software [22]. All unique gene names of the transcripts 
were recorded, the cells were labeled by the barcode, and 
the transcripts were labeled by unique molecular identifi-
ers (UMIs) to quantify the number of cells and genes after 
comparison with the reference. All reads that mapped 
to the same gene and had the same UMI sequence were 
folded and different UMIs corresponding to the same 
gene were quantified, which produced a digital matrix for 
cell gene expression quantification. For all downstream 
analyses, we selected cells that have at least 1000 UMIs 
(indicating the number of captured transcripts) mapped 
to at least 200 unique genes and ensured that each gene 
is expressed in more than three cells. We excluded cells 
with poor viability and quality by removing more than 
10% of the cells whose gene counts reflected mitochon-
drial genes or ribosomal RNA.

Construction of a single‑cell atlas
The IntegrateData function in the R Seurat package [23] 
was used to merge single-cell data, and cell clustering 
analysis was performed according to default parameters 
(http://​satij​alab.​org/​seurat/). Principal component anal-
ysis and t-distributed stochastic neighbor embedding 
(t-SNE) methods were used for dimensionality reduction 
and visualization of the clustering results, and the results 
were projected to a two-dimensional image, which was 
defined as a single-cell atlas. The “FindAllMarkers” func-
tion in the Seurat package was performed to identify the 
specific genes expressed in each cell cluster, with P < 0.05 
considered statistically significant.

Identification of cell types
For control donor BM cells, we used the SingleR pack-
age in R [24] to annotate the cell types. SingleR assigns 
cell identities to single-cell transcriptomes by compari-
son with the reference datasets of pure cell types for 
microarray or RNA-seq sequencing. Here, we used the 
previously defined single-cell transcriptome expres-
sion profile as a reference system [25]. We identi-
fied and extracted malignant plasma cells based on 
clinical and laboratory features of immunophenotypes 
in MM (CD38+CD56+CD138+CD19−CD20−). For 
non-classical CD20+ RRMM patients, a phenotype of 
CD38+CD56+CD138+CD19−CD20+ was used as the 
screening condition for malignant plasma cells. The 
extracted malignant plasma cells were verified using flow 
cytometry. Clusters were annotated based on the expres-
sion of known marker genes (Supplementary Table 2).

https://github.com/rrwick/Basecalling-comparison
https://github.com/rrwick/Basecalling-comparison
http://satijalab.org/seurat/
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Gene signatures
For label scoring of the cell cycle and cell characteristics, 
we adopted non-parametric and unsupervised scoring 
assumptions based on the expression patterns of char-
acteristic genes, similar to a previously described gene 
set scoring strategy [26]. For scoring of the cell cycle and 
cell characteristics, an unlabeled sample gene expression 
matrix was used as input, which included the scRNA-
seq count expression profile and log2-standardized chip 
expression profile of large-scale clinical MM patients or 
a bulk-seq count expression profile. First, the algorithm 
performed a non-parametric nuclear density estimation 
test on the overall gene expression profile. Second, based 
on the kernel density estimation results, the samples 
were sorted according to their expression levels. Next, 
the samples were ranked for expression levels based on 
the results of the nuclear density estimation, and the 
cell cycle and the rank statistic for each cell characteris-
tic were calculated, similar to the Kolmogorov–Smirnov 
test. Finally, the cell cycle and enrichment scores of each 
cell feature were obtained and the output was provided as 
a data matrix corresponding to each sample.

The stemness score of the single-cell atlas was obtained 
using the TCGAanalyze_Stemness function in the R 
package TCGAbiolinks [27], which evaluates the degree 
of carcinogenic differentiation by extracting a series of 
marker genes to quantify the characteristics of stem cells 
from the transcriptional expression and epigenetic pat-
terns of non-transformed pluripotent stem cells and their 
differentiated offspring using a publicly available molecu-
lar atlas [28]. Subsequently, one-class logistic regression 
machine learning algorithm (OCLR) was used for multi-
platform analysis of these transcriptomic, methylomic, 
and transcription factor (TF) binding sites to obtain two 
independent indices of stem cell characteristics: DNA 
methylation-based stemness index (mDNAsi), which 
reflects epigenetic characteristics, and gene expression-
based stemness index (mRNAsi), which reflects gene 
expression patterns. We applied a stemness score on gene 
expression patterns (mRNAsi) to the single-cell atlas 
of MM malignant subclones and control donor BMs to 
identify the evolutionary patterns of malignant origin 
and intratumor molecular heterogeneity in MM.

Pseudotime analysis
The stemness score can determine the origin of the clonal 
evolution of MM malignant plasma cells, and pseudo-
time analysis can infer the trajectory of its evolution and 
development. We used the R package Monocle 3 [29] to 
reconstruct the developmental trajectory of the control 
donor BM single-cell atlas and simulate the evolutionary 
trajectory of the malignant subclone of MM. Monocle 2 
was applied to simulate the developmental trajectory of 

the immune cells of the BM microenvironment subjected 
to evolutionary reprogramming of the MM malignant 
clone. Subsequently, Moran’s I statistic was used to iden-
tify genes expressed in complex trajectories under the 
malignant clonal evolution of MM. These genes may be 
the molecular driving force for the natural development 
of MM from a malignant origin and the evolution of drug 
resistance under drug selection. Additionally, we calcu-
lated the RNA rate (time derivative of the gene expres-
sion state) to predict the future state and final fate of a 
single cell, and to analyze its developmental lineage and 
cell dynamics using velocyto. R [30] by distinguishing 
between unspliced and spliced mRNAs in the single-cell 
atlas.

Gene regulatory network
Single cell regulatory network inference and clustering 
(SCENIC) [31] was used to infer gene regulatory net-
works based on single-cell expression profiles and iden-
tifying cell states, providing important biological insight 
of the mechanism driving cell heterogeneity. To identify 
the internal transcriptional regulation driving force of 
control donor BM cell development and MM malignant 
clone evolution, we used the python module tool pySCE-
NIC to analyze and reconstruct the gene regulatory net-
work with TFs as the core.

The workflow starts by describing the input single-cell 
expression abundance spectrum matrix and applying a 
regression per-target approach (GRNBoost2) to infer the 
co-expression module, from which the indirect targets 
were pruned based on cis-regulatory motif discovery 
(cisTarget). Subsequently, AUcell was used to quantify 
the activity of these regulators by enriching and scoring 
the target genes of the regulators to obtain the regulon 
activity score (RAS). The single-cell data were further 
downscaled using the RAS matrix, and the regulon-spe-
cific score (RSS) was calculated based on Jensen–Shan-
non divergence (JS) to determine the cell cluster-specific 
regulon. The most specific and significant regulon was 
mapped to the single-cell cluster atlas and verified using 
massively parallel sample sequencing. Finally, the con-
nection specificity index (CSI) matrix was calculated and 
the regulon was hierarchically clustered based on the CSI 
to define the regulon module to obtain the relationship 
between the regulon module and regulon and visualized 
based on the R package ComplexHeatmap [32].

Intercellular communication
Three intercellular communication event identification 
tools were used to identify high-confidence ligand-recep-
tor interactions between cells: CellPhoneDB [33], iTALK 
[34], and our newly developed tool CellCrosstalk. Based 
on the joint expression of multi-subunit ligand-receptor 
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complexes to infer intercellular communication, Cell-
PhoneDB emphasizes joint positive expression but 
neglects the importance of interaction in single-arm 
expression and marker genes. The R package iTALK 
compensates for this defect by prioritizing the identifica-
tion of highly expressed or differentially expressed genes 
(DEGs) in cell clusters, which are matched through the 
ligand-receptor database to identify important intercel-
lular communication events. However, when genes with 
high or differential expression are mapped to the ligand-
receptor network, the lack of corresponding significance 
identification may result in a large number of false-
positive events. Therefore, we developed an innovative 
tool for recognizing intercellular communication events 
named CellCrosstalk (original code: https://​github.​com/​
ydlife/​CellC​rosst​alk), which prioritizes the identifica-
tion of highly expressed genes or DEGs to ensure that 
independent ligands or receptors are positive in the cor-
responding cell clusters. Notably, the built-in ligand-
receptor interaction network database of CellCrosstalk 
summarizes the built-in data of CellPhoneDB and 
iTALK. These genes were mapped to real and 1000 ran-
dom walk ligand-receptor networks; the ligand-receptor 
interaction pair mapped between two cell clusters was 
recorded each time, and the relevant cells were identified 
based on hypergeometric tested intercellular communi-
cation events. Finally, combining the results of the three 
tools, the ligand-receptor interaction pair identified by 
any two tools was considered a high-confidence intercel-
lular communication event.

Biological process and pathway enrichment analysis
The R package clusterProfiler [35] was used to perform 
functional enrichment analysis on Gene Ontology bio-
logical processes and Kyoto Encyclopedia of Genes and 
Genomes pathways for related genes (P < 0.05).

Genome chromosome structure variation and copy 
number variation (CNV)
Based on minimap2 software [36], clean sequencing data 
of BM aspirates from the control donor and MM patients 
were compared to the reference genome (Hg19) to obtain 
the comparison SAM file. Using open-source samtools 
software (https://​sourc​eforge.​net/​proje​cts/​samto​ols/), 
the files were converted into BAM format and sorted. 
Sniffles software [37] was used to identify genomic chro-
mosome structural variations of multiple samples, which 
were merged using SURVIVOR software. The CNV of 
whole-genome sequencing data in the BAM file was 
detected using the R package QDNAseq (https://​github.​
com/​ccagc/​QDNAs​eq).

Single‑nucleotide variant (SNV) analysis
Four different GATK framework processes were used 
to identify SNVs (https://​gatk.​broad​insti​tute.​org/​hc/​en-​
us). First, the germline short variant discovery (SNPs + 
Indels) process of the GATK framework was performed 
on clean Nanopore sequencing data from control donor 
BM aspirates (https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​
artic​les/​36003​55359​32-​Germl​ine-​short-​varia​nt-​disco​
very-​SNPs-​Indels-) to obtain a list of SNVs used as con-
trols. Second, the sequencing data of BM aspirates from 
MM patients were subject to the somatic short variant 
discovery (SNVs + Indels) process of the GATK frame-
work (https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​
les/​36003​58947​31-​Somat​ic-​short-​varia​nt-​disco​very-​
SNVs-​Indels-) to screen MM disease-associated somatic 
mutation information using control SNVs as a refer-
ence. Third, single-cell transcriptional profiles of control 
donors and MM patient BM tumor microenvironment 
(TME) cells were subject to the short variant discovery 
(SNPs + Indels) process (https://​gatk.​broad​insti​tute.​org/​
hc/​en-​us/​artic​les/​36003​55311​92-​RNAseq-​short-​varia​nt-​
disco​very-​SNPs-​Indels-) to obtain a list of SNVs of con-
trol single cells and information on germline mutations 
in MM patients. Fourth, single-cell transcriptional pro-
files of malignant plasma cells from MM patients were 
applied to the RNA-seq short variant discovery (SNPs 
+ Indels) process of on somatic mutation calling. The 
SNVs detected in MM patients and single-cell transcrip-
tional profiles of malignant plasma cells, but not detected 
in control donors were considered to be MM malignant 
subclone-associated SNVs.

First, STAR was applied to map the scRNA-seq FASTQ 
format clean data of malignant plasma cells to the ref-
erence. Second, MergeBamAlignment MarkDuplicates 
was performed for data cleanup, and the data were pro-
cessed using SplitNCigarReads. Subsequently, base qual-
ity recalibration was completed using BaseRecalibrator, 
Apply Recalibration, and AnalyzeCovariates. Mutect2 
was applied to all candidate variants instead of the RNA-
seq short variant discovery (SNPs + Indels) process for 
BM TME cells of control donors and MM patients, where 
HaplotypeCaller was applied for all variants. Next, Get-
PileupSummaries and CalculateContamination were 
applied to calculate contamination and Learn Orienta-
tion Bias Artifacts was completed based on the LearnRe-
adOrientation Model. Finally, FilterMutectCalls was used 
to filter variants, and the implementation of annotated 
variants was based on Funcotator.

Some SNVs only existed in some malignant subclones, 
indicating their involvement in the malignant clonal 
evolution of MM. Although similar strategies for SNV 
detection have been reported previously [38–40], several 
false-positive and false-negative results were obtained. 

https://github.com/ydlife/CellCrosstalk
https://github.com/ydlife/CellCrosstalk
https://sourceforge.net/projects/samtools/
https://github.com/ccagc/QDNAseq
https://github.com/ccagc/QDNAseq
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035894731-Somatic-short-variant-discovery-SNVs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035894731-Somatic-short-variant-discovery-SNVs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035894731-Somatic-short-variant-discovery-SNVs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
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Therefore, we adopted the latest process recommended 
by the GATK framework to obtain reliable results. Based 
on these high-confidence SNVs, we calculated the tumor 
mutational burden (TMB) of MM patients at the BM 
aspirate and malignant subclonal levels based on the 
number of somatic variants per megabase in the genome 
[41]. The high concordance of the TMB at both levels 
suggests high reliability and robustness of our SNV-call-
ing strategy.

Estimation of CNV in single cells
Single-cell CNV was estimated using the inferCNV 
package (inferCNV of the Trinity CTAT Project, http://​
github.​com/​broad​insti​tute/​infer​CNV), which compares 
the gene expression of each tumor cell with the average 
expression or “normal” reference cell gene expression to 
determine its expression intensity, and displays the rela-
tive gene expression on each chromosome in the form of 
a heatmap. Compared with normal cells, MM malignant 
subclones always have over- or under-expression of local 
genome fragments. The resulting inferred malignant sub-
clonal CNV events were highly consistent with the true 
CNV events detected by Nanopore sequencing of BM 
aspirates from MM patients, which not only validated 
the feasibility and reliability of the inferCNV strategy but 
also localized the CNV in patients to specific malignant 
subclones.

Analysis of clonal evolution based on malignant cell 
clusters
A total of 11 MM malignant clonal clusters were identi-
fied in this study. Subsequently, based on the proposed 
temporal analysis, we preliminarily established that these 
malignant clonal clusters had two potential malignant 
origins. The R package fishplot was applied to trace the 
clonal structural evolution of these malignant plasma cell 
clusters (https://​github.​com/​chris​amill​er/​fishp​lot).

Survival analysis
To predict the prognostic potential of clonal profiles, 
we extracted specific marker genes with log fold change 
(logFC) > 1, which were used as cell characteristics to 
obtain non-parametric and unsupervised scores in a 
large-scale clinical cohort of 9574 patients with 24 inde-
pendent datasets to determine the relative abundance 
of malignant progenitor cells. The difference in relative 
abundance was used as a standard score for MM malig-
nant origin dominance to classify patients into origin 
types. Patients were also staged according to the relative 
abundance of malignant origin progenitor cells: type I 
and IX double positive, double negative, type I-specific 
positive, and type IX-specific positive. The R package 
survminer (https://​github.​com/​kassa​mbara/​survm​iner) 

was used to determine the prognostic significance of the 
relative abundance of progenitor cells of malignant ori-
gin, the advantage score of malignant origin, and the clas-
sification of malignant origin.

Prognostic model for MM drug resistance‑related markers
Drug resistance evolution-related markers were extracted 
in the evolutionary pattern of MM malignant clones that 
were significantly highly expressed in the large-scale 
datasets of patients. These drug resistance markers were 
used for univariate Cox regression analysis of overall 
survival (OS) in the training cohort GSE136400, and the 
characteristic genes significantly correlated to prognosis 
were obtained (P < 0.01). These prognostic characteris-
tic genes were included in multivariate Cox regression 
analysis for OS and relapse-free survival (RFS) to estab-
lish a prognostic model, which was tested using the R 
package survminer, and externally validated in independ-
ent GSE9782 and MMRF-CoMMpass cohorts (https://​
themm​rf.​org/). Time-independent receiver operator 
characteristic (ROC) curves were then conducted to 
assess the prediction performance of the prognostic 
model.

Self‑organizing mapping (SOM) analysis
The contribution of malignant subclones to the molecu-
lar heterogeneity of BM aspirates from MM was quanti-
fied by SOM analysis [42]. First, patient-specific marker 
genes in malignant subclones were identified using the 
R package Seurat, and their expression matrices were 
extracted. Each malignant subclone was divided for dif-
ferential expression analysis, respectively.

A matrix of Pi values was used as the standard input 
to the SOM, where the row represents genes and the 
columns represent malignant subclones, where Pi = −
log10 (adjusted P (P.adj)) × logFC. Next, the R package 
Kohonen (https://​github.​com/​iamci​era/​SOMex​ample) 
was applied for SOM analysis, resulting in marker gene–
MM patient-specific association patterns and malignant 
subclonal contributions of patient heterogeneous mol-
ecules. The Kohonen topology-preserving map creates 
a multidimensional continuous representation of “per-
ceptual space” on a neuronal grid, where input by vector 
x = (× 1,..., x d). Exemplars of these vectors were repeat-
edly presented to the two-dimensional neuronal network 
organization to simulate the various stimuli experienced 
by the senses, which in turn condensed the labeled genes 
into the corresponding neural units. Thus, genes with 
similar patient heterogeneity contributions were organ-
ized in the same SOM grid neural unit and similar neural 
units were clustered in close proximity.

http://github.com/broadinstitute/inferCNV
http://github.com/broadinstitute/inferCNV
https://github.com/chrisamiller/fishplot
https://github.com/kassambara/survminer
https://themmrf.org/
https://themmrf.org/
https://github.com/iamciera/SOMexample
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Heterogeneity score
According to the strategy of Ma et al. [43], the degree of 
intratumor heterogeneity was measured by calculating 
diversity scores with gene expression profiles of malig-
nant cells within the tumor. First, the intratumoral heter-
ogeneity of each tumor was measured based on principal 
components (PCs) rather than the original gene expres-
sion profile to obtain the primary information and reduce 
noise. The top 30 PCs were selected for subsequent cal-
culations based on the alignment of eigenvalues and were 
significant. This criterion was determined after using dif-
ferent numbers of PCs to determine the robustness of the 
diversity score calculation. Subsequently, the diversity 
score for each patient was calculated.

Data availability
Expression profile data analyzed in this study were 
obtained from the Gene Expression Omnibus database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) and EMBL-EBI 
database (http://​www.​ebi.​ac.​uk) with accession numbers 
GSE136400, GSE9782, and E-TABM-1138. RNA-seq 
parallel sequencing data were obtained from the Multi-
ple Myeloma Research Foundation CoMMpass Study 
(https://​resea​rch.​themm​rf.​org/).

The raw data of scRNA-seq and single-molecule long-
read genome sequencing have been deposited in the 
Genome Sequence Archive in National Genomics Data 
Center (GSA: HRA001335) and are publicly accessible at 
https://​ngdc.​cncb.​ac.​cn/​gsa.

Results
Single‑cell landscape of control BM
From scRNA-seq, 64,718 cells were obtained, includ-
ing 5238 from the control donor BM aspirate and 59,480 
from MM patients after quality control (Fig. 1A, Supple-
mentary Table  3). The t-SNE approach captured 16 cell 
types, including hematopoietic lineages, myeloid lineage 
cells, and lymphoid cells, all of which belong to com-
mon cell groups in the BM (Fig. 1B), consistent with the 
established phenotypic characteristics of immune cells 
(Fig. 1C). The pseudotime trajectory of cell development 
revealed the continuous process of myeloid development 
and hematopoiesis, that hematopoietic stem cells (HSCs) 
differentiate into promonocytes to monocytes to finally 
dendritic cells (DCs), and that HSCs differentiate into 
erythroblasts to post erythroblasts (Fig. 1D). The pseudo-
sequential differentiation trajectory was negatively cor-
related with the stemness and cycle scores of BM cells, 
which is in line with the physiological changes of cell dif-
ferentiation (Fig. 1E).

The single-cell profile of the control donor was con-
structed to reveal the ecological composition of different 
hematopoietic cell types in the normal BM, suggesting 

differentiation trajectory and fate choice, which is con-
sistent with the current hematopoietic concept. Thus, 
this concept can be applied as a training cohort and refer-
ence system for the cellular ecological landscape of MM.

Cellular ecosystem landscape in MM
The malignant plasma cells extracted from NDMM and 
RRMM patients (CD38+CD56+CD138+CD19−CD20−; 
Supplementary Fig.  1A, B and Fig.  2A-C) were fur-
ther clustered, with 11 malignant plasma cell clus-
ters obtained, whereas six malignant plasma cell 
subsets were obtained for CD20+ RRMM patients 
(CD38+CD56+CD138+CD19−CD20+; Supplementary 
Fig.  1C and Fig.  2D, E). Malignant cell clusters shared 
cancer characteristics and widely significantly overex-
pressed HLA-A, HLA-B, MCL1, HDAC1, LCK, HSPB1, 
and IL6R (Fig.  2F), indicating a common tumor origin. 
Corresponding specific markers were also identified 
between different malignant cell clusters (Fig.  2G, Sup-
plementary Table  4), providing direct evidence for the 
formation of different subpopulations.

We identified and annotated the major cell types within 
the microenvironment in MM patients by investigating 
the expression patterns of known marker genes, which 
enabled to accurately define the specific identity of the 
microenvironment cells in MM patients (Fig. 2H, I, Sup-
plementary Table 5). There was complex and active com-
munication between different BM cells in MM patients, 
regardless of newly diagnosed and relapsed patients 
(Supplementary Fig. 1D, E and Fig. 2J). Consequently, the 
global cell ecological landscape of BM from MM patients 
can thus be characterized and clarified.

Variation events related to cell clonal evolution
Chromosomal instability is a hallmark of human can-
cer and tumor heterogeneity. The structural variations 
catalog (Supplementary Fig.  2A) in the present study 
showed significant genomic instability in the major-
ity of chromosomes, except for chr4, including dele-
tion (DEL), duplication, inversion, and insertion (INS). 
Genes related to DEL and INS events were expressed 
and played a major role in driving malignant cell clus-
tering (Fig.  3A). Furthermore, malignant CNV events 
(Fig.  3B) and the corresponding transcripts (Fig.  3C), 
such as TNFSF13B, CD79A, TNFRSF13B, PARP1, 
IMPDH2, and MYC, were identified, expressed either 
alone or in combination in different malignant cell sub-
populations and contributing to polyclonality. IFITM2 
has been proven as an effector gene of the type I inter-
feron response that protects cells against invading 
viral pathogens [44]; the shared mutation of IFITM2 
(chr11:309127:A > G) in all malignant subpopulations 
was detected at both the bulk and the single-cell levels, 

https://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk
https://research.themmrf.org/
https://ngdc.cncb.ac.cn/gsa
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with high expression activity in most malignant cells 
(Fig. 3D), suggesting its potential as a candidate muta-
tion of malignant origin. Similarly, the shared muta-
tion of ANK1 (chr8:41510767:T > G) was detected in 
all malignant subpopulations, but only expressed in 
type I malignant subpopulation. These mutations were 
concentrated in the patterns of C > T and T > C (Sup-
plementary Fig. 2B), which is consistent with the basic 
genetic concept that C in CpG dinucleotides tends 
to mutate to T after methylation [45, 46]. Further 
analysis showed that other patients had higher TMB 

levels than that of the CD20+ RRMM patient and had 
enriched type IX malignant cell clusters (Supplemen-
tary Fig. 2C). TMB was consistent at the bulk and the 
single-cell levels (Supplementary Fig.  2D). In addition 
to genomic variation, the gene regulatory network with 
TFs as pivots was organized into six modules (Fig. 3E), 
such as BCL6, FOXO1, E2F7, and FOXP2, to regulate 
the specific gene expression (Fig.  3F) and RNA tran-
scription rate (Fig. 3G) of MM malignant cell subpopu-
lations to guide cellular fate choice. This promotes the 
transformation and differentiation of the core state 

Fig. 1  Cell population of control donor BM samples. A Overview of the study workflow. BM aspirates were collected and processed from control 
donors and MM patients for scRNA-seq and Nanopore sequencing to characterize the global single-cell ecological landscape and clonal evolution 
model of MM. B Single-cell profiles of the control donor BM based on t-SNE approach. Each color represents a cell identity, including hematopoietic 
lineages such as hematopoietic stem cells and juvenile red blood cell lineages, myeloid cells such as pro-monocytes and monocyte dendritic cells, 
and lytic cells such as T cells, B cells, and NK cells, for 16 cell types. C Tracks plots showing known marker genes specific to the identity of control 
donor BM cells. The cluster modules in the columns indicate the cell identity of the control donor BM, while the rows indicate the expression of 
the marker genes, along with cell abundance and cell ratio. D Single-cell atlas based on t-SNE showing the cell cycle score, stemness score, and 
pseudotime score of control donor BM cells. E Correlation between stemness score, cell cycle score, and pseudotime score (p < 0.001). MM, multiple 
myeloma; t-SNE, t-distributed stochastic neighbor embedding; TF, transcription factor; BM, bone marrow; GRN, gene regulation network; RSS, 
regulon specificity score
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(Supplementary Fig. 3A), ultimately mediating the for-
mation of a series of clonal phenotypes [30].

The pseudo-sequential clonal evolution atlas of MM 
malignant cells was finally constructed (Fig.  3H), which 
is consistent with the trend of the cell stemness index and 
cell cycle score (Supplementary Fig.  3B, C), whose cor-
responding gene expression, signaling pathways, and bio-
logical functions are shown in Fig.  3I. According to the 
cell stemness index score and pseudo-sequential clonal 
evolution analysis, the malignant origins of the cells were 
divided into type I and type IX malignant progenitor 
cell origins with the highest level of cell stemness index 
score (Fig.  3J). During the natural development of MM 
cells (Fig.  3K), type I and type IX malignant progenitor 
cells evolved into type II, III, and IV and type VIII, X, VII, 
and V malignant cells, respectively, with different drug 
sensitivity profiles; thus, type IV, VIII, VII, and V sub-
populations explosively grew to an occupied advantage. 
However, with the selection of drugs and the occurrence 
of chemical carcinogenic variants, new cloned type VI 
malignant plasma cells were formed and became a supe-
rior subpopulation.

Multi‑omics abnormal program identification of primitive 
MM malignant progenitor cells
Subsequently, we focused on primitive MM cell sub-
populations, including type I and IX malignant pro-
genitor cells, which promote the occurrence and growth 
of tumors with high stemness and cell cycle activity 
(Fig.  4A). Type IX malignant progenitor cells showed 
higher stem cell characteristics, resulting in a higher 
degree of malignancy in patients. Their cell markers 
with logFC > 1 were extracted to verify the expression 

and relative abundance in a large-scale clinical cohort 
of 9574 patients with 24 independent datasets (Supple-
mentary Table 6) and the MM pathological classification 
of malignant origin was performed (Fig. 4B, Supplemen-
tary Table  7). A higher relative abundance of malignant 
progenitor cells was associated with a worse prognosis 
(P < 0.0001; Fig.  4C) for both types I and IX, especially 
for the latter (P < 0.0001). We observed similar results at 
the single-cell level with high robustness. Patients with 
a double-positive origin of type I and IX had the worst 
prognosis, followed by those with a double-negative ori-
gin (P < 0.0001). Consistent with the relative abundance 
analysis, the prognosis of patients positive only for type 
IX origin was worse than that for only type I origin.

We evaluated the malignant forerunner events that 
were preferentially highly expressed by two malig-
nant origin progenitor cells, including DNA damage 
repair, cell cycle, proliferation, migration, invasion, and 
stemness (Supplementary Fig.  3D). In this regard, they 
showed extensive similarities, with many previously 
reported hematological tumor-related genes, such as 
HMGB1, CCND2, CDK1, CDKN2A, and MYC [47–51]. 
These genes were more significantly dysregulated in type 
IX malignant cells, which explains the higher stem cell 
characteristics and malignant degree in the type IX ori-
gin. The similarity of malignant origin plasma cells also 
lies in their significantly dysregulated signaling path-
ways (Supplementary Fig.  3E). It is noteworthy that the 
type I malignant origin was significantly enriched in both 
base excision repair and DNA damage repair to reduce 
random variation events in the process of malignant 
proliferation, while type IX only activated the base exci-
sion repair, causing more random variation events in 

Fig. 2  Cellular ecosystem of the BM of MM patients. A Clinical data and single-cell profiles of MM patients. Cell counts indicate the single-cell 
transcriptome that passed the quality threshold for each patient. The proportions of malignant plasma cells detected in smears, flow cytometry, and 
scRNA-seq in BM aspirates for each patient are demonstrated in pie charts. The two pie charts for scRNA-seq in CD20+ RRMM patients represent the 
proportion of CD20+ malignant plasma cells and the proportion of all malignant plasma cells, respectively. B-D Identification of malignant plasma 
cells in patients with NDMM (B), RRMM (C), and CD20+ RRMM (D). Left: Single-cell atlas of t-SNE-visualized malignant cells of the microenvironment 
in patients. Top right: Identification of malignant plasma cells with clinical and laboratory markers of MM malignancy such as CD38, CD56 (NCAM1), 
CD138 (SDC1), and CD20. Bottom right: Flow cytometry plot for validation of malignant plasma cell identification. E Malignant plasma cell 
subpopulations in patients with MM. Left: t-SNE single-cell atlas visualizing malignant plasma cell subpopulations in the BM of patients with NDMM 
and RRMM. The top panel shows the cell cycle score and stemness score of these malignant plasma cell subpopulations. Right: t-SNE single-cell 
atlas visualizing malignant plasma cell subpopulations in CD20+ RRMM patients. F Malignant marker genes shared by malignant plasma cell 
subpopulations in patients with NDMM and RRMM. Cluster modules in columns indicate malignant plasma cell subpopulations, while rows indicate 
expression of marker genes, cell abundance, and cell ratio are also shown. G Specific expressed marker genes for malignant plasma cell sub-clusters. 
H Microenvironment cells in the BM of patients with MM. A single-cell atlas based on t-SNE showing cells in the microenvironment in NDMM, 
RRMM (left), and CD20+ RRMM (right). I Expression patterns of known cell identity-specific markers in MM patient myeloid tumor microenvironment 
cells. Relevant marker genes were specifically expressed in the corresponding cell identity. J High-confidence communication network between 
malignant plasma cells and cells of the microenvironment in the BM of patients with MM. The Circos plot demonstrates each high-confidence 
ligand-receptor interaction pair of malignant plasma cell subpopulations and microenvironmental cells. The arrowheads are oriented from the 
ligand of the source cell toward the receptor of the target cell, while the thickness of the arrowheads represents the mean value of expression 
of the ligand-receptor interaction pair. NDMM, newly diagnosed multiple myeloma; RRMM, refractory or recurrent multiple myeloma; t-SNE, 
t-distributed stochastic neighbor embedding; BM, bone marrow

(See figure on next page.)
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the process of clonal proliferation with a richer clonal 
pattern. Related dysregulated genes were clustered 
into co-expression modules according to expression 
similarity, which are mainly regulated by CNV events, 
involving SNVs and TFs (Fig.  4D), resulting in a shared 
carcinogenic initiation program and its own specific 

carcinogenic regulation mechanisms in two malignant 
origins of MM (Fig. 4E). Homogeneity and specificity are 
reflected not only in the carcinogenic processes of these 
origin types but also in the change in the expression pat-
tern of their evolution (Supplementary Fig. 3F) with joint 
high expression of HBG2, MYC, CD79B, and MCL1 

S
S
C
-A

G

H I J

A B

C

D E

F
CD38

S
S
C
-A

CD56

C
D
13

8

CD138

C
D
38

CD20

Fig. 2  (See legend on previous page.)



Page 11 of 22Liang et al. Molecular Cancer          (2022) 21:182 	

(Supplementary Fig.  3G). By contrast, the type I origin 
will reduce the expression of CDK6, ITGB1, BCL2L1, and 
STAT1 during evolution, whereas the type IX origin will 
promote their expression. Additionally, the type IX ori-
gin shows precursory potential for further evolution, in 
which the local cell population takes the lead in showing 
the gene expression pattern of subclone type VIII, with 
higher evolution efficiency. In contrast, the type I origin 
maintained a similar expression pattern in some cell pop-
ulations cloned by the offspring, resulting in relatively 
slower evolution. These different evolutionary transition 
forms and efficiency indicate that the type IX origin can 
evolve more cell subclonal clusters than the type I origin 
within the same timeframe.

We further explored early immune escape mecha-
nisms, as the foundation for immune resistance and eva-
sion, throughout the malignant process of MM. Immune 
checkpoints PD-1, PD-L1, and CTLA4 were negatively 
expressed in malignant plasma and microenvironment 
cells (Fig.  4F). The expression pattern of genes related 
to tumor immune killing in the microenvironment cells 
(Fig.  4G) was used to build a high-confidence immune 
escape intercellular communication network in the early 
stage of MM malignant transformation (Fig. 4H), provid-
ing insight into the potential mechanism (Fig.  4I) from 
innate to specific immunity. Among them, HLA-DMA 
and HLA-DRA were generally missing in antigen-pre-
senting cells (B cells, classical dendritic cells (cDCs), and 
monocytes), which is the first weakness in the immune 
response cascade against MM (P.adj < 0.0001). CCL5 
expression was also inhibited in CTLs and NK cells 
(P.adj < 0.0001), which significantly reduces the efficiency 
of recruiting DCs and more CTLs into the nidus [52]. 
Additionally, defective expression of the perforin PRF1 

and the granzyme GZMB in NK cells is the main reason 
for the inherent antitumor immune inactivation in MM 
patients (P.adj < 0.0001). Moreover, the expression of 
CD38 and CD27 in the B cell lineage (B, ProgB-I, ProgB-
II, and plasma) was inhibited (P.adj < 0.0001), indicat-
ing deficiency of humoral immunity, while low levels of 
CCL3L1 also suggest low immune activity of monocytes 
(P.adj < 0.0001) [53].

Relapse and drug resistance in MM patients 
at the single‑cell level
We evaluated the inhibitory effect of drugs on the 
expression of the established target genes at the patient 
level (Fig.  5A) to infer the part of the drug action that 
failed. The expression levels of target genes for tha-
lidomide, melphalan, lenalidomide, and cyclophos-
phamide in the RRMM group did not show significant 
differences from those of the NDMM group, whereas 
those for dexamethasone, bortezomib, and doxorubicin 
decreased in sectional cell subpopulations. It is clear 
that the drug resistance of RRMM1 mainly occurs prior 
to the action on target genes, whereas the drug resist-
ance of RRMM2 mainly occurs after interaction with the 
target gene. RRMM3 shares these two drug resistance 
mechanisms due to the extensive application of drugs. 
The characteristics of drug sensitivity at the patient 
level are also reflected at the cell subpopulation level, 
as demonstrated by systematic comparison between the 
cell subpopulations of the RRMM and NDMM groups 
(Fig. 1A, Fig. 5B). In addition, we observed the increased 
expression of genes such as IGHG3, IGLC2, and IGHG2 
and the decreased expression of genes such as IGHG4, 
ITM2C, and IGHA1, which mediates the formation and 
development of malignant clones, causing heterogeneity 

(See figure on next page.)
Fig. 3  Relationship between the malignant progression of MM and the evolution of cell clones. A Gene transcriptional activity of SV event 
genes in MM malignant subclones. Left: SV spectrum of patients with MM. These SVs occur only in patients with MM, but not in control donors. 
Right: Expression pattern of SV genes in malignant plasma cell clusters. B CNV atlas of MM patients at the large-volume BM tissue level and 
at the single-cell level. C Transcriptional activity of CNV event genes in MM malignant subclones. Genes identified to be associated with the 
development of MM in previous studies have been highlighted. D Transcriptional activity of SNV event genes in MM malignant subclones. The 
SNV events detected simultaneously by the single-molecule long-read genome sequencing and single-cell transcriptome are demonstrated. Left: 
SNV mapping of patients with MM at the level of large-volume BM tissue. Middle: SNV atlas of MM patients at the level of BM monocytes. Right: 
Corresponding SNV gene expression patterns in the malignant plasma cell clusters. E Co-expression modules of transcription factors in malignant 
subclones of BM from patients with MM. Left: Identification of regulator modules based on the regulator’s CSI matrix. Middle: Representative 
transcription factors and their binding motifs in the module. Right: association of modules with malignant subclones. F t-SNE single-cell atlas 
mapping of MM malignant subclone-specific GRN. G RNA rate flow of MM malignant subclones mapped in t-SNE single-cell profiles. H Proposed 
chronological clonal evolutionary trajectory of MM malignant plasma cells mapped on the t-SNE single-cell atlas. The proportion of NDMM 
and RRMM cells characterizing the drug sensitivity of malignant cell subclones demonstrated using pie charts. The clonal evolution landscape 
characterizes the core state of MM malignant subclones in the malignant process with phenotypic transition differentiation. I Expression patterns 
of genes associated with the proposed chronological clonal evolution of MM malignant plasma cells and their biological signaling and cascade 
activation. J Structural changes in MM malignant plasma cells. Fish plots demonstrate the structural changes in MM malignant plasma cells from 
their origin through natural development, drug selection, and eventual relapse. K Global clonal evolutionary patterns of MM malignant plasma 
cells. Pie chart showing the cell proportion of NDMM and RRMM cells characterizing the drug sensitivity of malignant cell subclones. SV, structural 
variation; CNV, copy number variations; MM, multiple myeloma; BM, bone marrow; SNV, single nucleotide variation; CSI, connection specificity 
index; t-SNE, t-distributed stochastic neighbor embedding; GRN, gene regulation network
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Fig. 3  (See legend on previous page.)
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in patients. The signal score of malignant cells was 
applied to estimate the pathway activity (Fig.  5C), in 
which apoptosis and the FOXO/p53 signaling path-
ways were inhibited in RRMM, while the calcium/Rap1/
JAK-STAT/VEGF/mTOR signaling pathways related to 
survival, proliferation, migration, and stem cell charac-
teristics were activated, which are mainly driven by CNV 
events supplemented by SNVs and TFs (Fig.  5D). This 
is similar to the pattern of the malignant origin. During 
clonal evolution of malignant cells to acquire drug resist-
ance, the transformation of gene expression (Fig. 5E) was 
clustered into two gene expression modules, involving 
four evolutionary patterns. The acquisition and main-
tenance of the drug resistance phenotype of malignant 
cells require high expression of gene expression module 
1 (related to drug sensitivity) and relatively low expres-
sion of gene expression module 2 (related to the devel-
opment advantage in the natural state). The genes of 
both modules are related to the above-mentioned drug 
resistance signals, which are significantly regulated by 
CNV events as the main driving force for the clonal evo-
lution of drug resistance.

The global regulatory network of intercellular com-
munication (Fig. 5F) showed that activation of the drug 
metabolism signal pathway in B cells and cDCs may be 
reprogrammed by malignant cells, whereas the drug 
resistance evolution of malignant cells may involve 
microenvironment cells such as B cells, plasma cells, T 
cells, and cDCs. Genes in the drug resistance global regu-
latory network also showed significant prognostic poten-
tial in the training cohort (Fig. 5G). Among them, IL5RA, 
KRAS, and PPP2R5C were independently linked to 

prognosis (Fig. 5G); thus, a drug resistance-related prog-
nostic model for MM based on multivariate Cox regres-
sion analysis was established for OS and RFS, which was 
verified in an independent cohort (Fig.  5H). Time-inde-
pendent ROC curves demonstrated that the prognostic 
model enabled to accurately predict MM patients’ OS 
and RFS (Fig. 5I).

Intratumoral cellular heterogeneity in MM patients
We applied the tumor cell-specific transcriptional diver-
sity score to measure the intratumoral heterogeneity of 
MM (Supplementary Fig. 4A), detailed in the single-cell 
profile map of malignant cells from each patient (Sup-
plementary Fig.  4B), which demonstrates diverse and 
specific ecological components with vague traces of 
two malignant origins. Most of the malignant cells in 
MM patients exhibited the activated antigen processing 
and presentation (Fig.  6A), although the genes involved 
were different, indicating that malignant plasma cells 
retained incomplete antigen presentation ability to a cer-
tain extent. In particular, compared with other patients, 
for patient RRMM3, more distinctive malignant cell eco-
logical components were found, regulated by TFs such 
as E2F7, E2F8, and SAP30 (Supplementary Fig. 4C) and 
leading to greater heterogeneity. SOM analysis showed 
the contribution (Fig.  6B) and concrete manifestations 
(Supplementary Fig.  4D) of malignant cell subpopula-
tions to patient heterogeneity, of which NDMM and 
RRMM patients showed distinct SOM neural units, sug-
gesting that different gene clusters respond differently to 
the drug sensitivity of MM. Compared with malignant 
cells, patient heterogeneity of microenvironment cells 

Fig. 4  Multi-omics anomaly procedure for MM malignant origin. A Expression pattern characteristics of MM malignant origin. The bottom heatmap 
shows the expression pattern of type I and IX malignant progenitor marker genes, while the top annotations represent the GSVA score, cell cycle 
score, and tumor stemness score of type I and IX malignant origin. B Verification and typing of malignant origins in a large-scale clinical MM patient 
cohort. Top: malignant origin advantage score of the MM clinical patient cohort. The yellow bar represents the type I origin advantage and the blue 
bar represents the type IX origin advantage. Middle: abundance score of type I and type IX malignant progenitor cells in the clinical patient cohort 
of MM. The advantage score of malignant origin at the top = type I malignant progenitor cell abundance score - type IX malignant progenitor 
cell abundance score. Bottom: expression patterns of type I and type IX malignant progenitor marker genes in the MM clinical patient cohort. C 
Clinical prognostic value of MM malignant origin. Survival curves demonstrating the survival prognostic potential (OS and RFS) of type I and IX 
malignant progenitor abundance score, malignant origin predominance score, and malignant origin predominance typing in a cohort of patients 
with MM. D Variation in the malignant origin of MM drives a global gene expression regulatory network. The associated genes were regulated by 
GRN, SNV, and CNV, and clustered into four modules based on expression correlation to activate or inhibit seven biological signaling pathways. E 
Molecular mechanism of malignant origin mediated by early carcinogenic drivers. F Expression patterns of immune checkpoints PD-1, PD-L1, and 
CTLA4 in malignant plasma cells and tumor microenvironment cells in patients with MM. The negative expression of immune checkpoint-related 
genes in malignant plasma cells and tumor microenvironment cells provides molecular insight at the single-cell level for the poor efficacy of 
immune checkpoint blocker therapy. G Expression pattern of antitumor immune response cascade-related genes in microenvironment cells. 
H Communication network with high confidence between early malignant progenitor cells and tumor microenvironment cells in patients 
with MM. The Circos diagram illustrates each high-confidence ligand-receptor interaction of type I and type IX malignant progenitor cells and 
microenvironment cells. The direction arrow is from the ligand of the source cell to the receptor of the target cell, and the thickness of the arrow 
represents the average expression level of the ligand-receptor interaction. I Immune escape mechanism of early malignant progenitor cells in 
MM. MM, multiple myeloma; GRN, gene regulation network; CNV, copy number variation; SNV, single nucleotide variation; OS, overall survival; RFs, 
relapse-free survival

(See figure on next page.)
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was relatively obscure (Supplementary Fig.  4E), which 
was also observed at the molecular level (Fig. 6C).

Immune cell subpopulation atlas of MM
The single-cell profiles (Fig. 6D) of B, plasma, CTLs, T, 
and NK cells were obtained by clustering the immune 
cell subpopulations, so that the heterogeneity of the 
immune microenvironment in MM patients was ampli-
fied at the subpopulation level. Interestingly, we found 
that plasma, CTLs, T, and NK cells highly expressed 
markers of MM malignant clonal evolution as subpop-
ulation-specific markers, reflecting the immune cell 
heterogeneity of patients. Among them, IGHG3 was 
mainly expressed in lymphocytes of RRMM1, involv-
ing plasma-1, CTL-0, T-2, and NK-0, whereas IGLC2 
was specifically expressed only in RRMM2 lympho-
cytes, related to CTL-1, T-5, and NK-2. Alternatively, 
IGHG2 was specifically expressed in the lymphocytes 
of CTL-2 and NK-4 in RRMM3. IGHG4 was specifi-
cally expressed in the lymphocytes of NDMM1 and 
NDMM3, touching upon CTL-3, T-4, and NK-4. The 
molecular specific markers of these microenvironment 
lymphocyte subpopulations are consistent with the 
distinctive expression of patient heterogeneous malig-
nant single cells (Supplementary Fig.  4D). This pro-
vides strong evidence that clonal evolution of MM can 
reprogram lymphocyte-mediated patient heterogeneity, 
inspiring the novel strategy of individualized treatment 
in clinics. As this is an unprecedented discovery, we 

ruled out the possibility of wrong cell type identifica-
tion for the sake of caution. The CTLs, T, and NK cells 
showed positive expression of their corresponding spe-
cific marker genes, which have significant cell co-local-
ization with the corresponding patient heterogeneous 
malignant marker immunoglobulins (Supplementary 
Fig.  5A-C). Importantly, the same phenomenon was 
observed in cDCs, monocytes (Fig.  6E), and HSCs 
(Supplementary Fig.  5D). The transformation of these 
cell phenotypes from normal to depleted was accom-
panied with transformation of a series of gene expres-
sion patterns (Supplementary Fig.  5E, F) with various 
degrees of cell death signal activation, involving fer-
roptosis, necroptosis, and apoptosis (Fig.  6F, G). This 
raises the question of how malignant plasma cell mark-
ers appear in microenvironment cells to reprogram the 
microenvironment. By reviewing the biological signals 
activated by these depleted cells, we found that they not 
only activated various cell death signals, but also acti-
vated phagocytosis-related pathways, such as phago-
some, Fc gamma, R-mediated phagocytosis (Fig.  6F, 
G). Correspondingly, during the clonal evolution of 
MM malignant cells, the key gene of exosome synthesis 
CD63 was expressed and a series of biological pathways 
related to vesicle synthesis and secretion were activated 
to varying degrees (Supplementary Fig.  5G, Fig.  3I). It 
is axiomatic that the MM malignant cells reprogram-
ming microenvironment to augment immune escape is 
involved in vesicle synthesis and secretion of malignant 

(See figure on next page.)
Fig. 5  Adverse pathological features of drug resistance recurrence in MM patients observed at the single-cell level. A Expression patterns of 
drug targets in malignant subclones and tumor microenvironment cells. Left: Bubble size represents the number of drugs with resistance in 
patients with RRMM. The connecting lines are colored according to the drug. Middle: Bubbles of different colors represent the tolerance of RRMM 
patients to different drugs, and the size represents the number of targets. Right: Expression of drug targets in malignant subclones and tumor 
microenvironment cells. B Single-cell contribution of DEGs in RRMM patients compared with NDMM patients. DEGs are expressed at the single-cell 
level (left), the average expression pattern at the cell cluster level (middle), and the differential expression (logFC) at the cell cluster level (right) 
in the malignant subclones and tumor microenvironment of NDMM and RRMM patients. C Biological signals related to drug resistance. These 
biological signals were significantly activated and inhibited in RRMM patients compared with NDMM patients in the six shared malignant subclones. 
Inhibitory signals included apoptosis, FoxO, and p53. The activated signals involved signals related to survival, proliferation, migration, and stem cell 
characteristics, such as calcium/Rap1/JAK-STAT/VEGF/mTOR signaling. Each edge represents a comparison of the NDMM and RRMM groups for any 
of the six shared malignant subclones with correlation signal scores in types I, II, III, VIII, IX, X, and XI. D Drug resistance-related genes significantly 
involved in signaling pathways. The DEGs of shared malignant subclones in RRMM patients compared with NDMM patients are identified as 
drug resistance-related genes. Top: DEGs and their significant signaling pathways. Middle: malignant driver of DEGs involving GRN, SNV, and CNV. 
Bottom: DEGs expression changes in six shared malignant subclones. E Clonal evolution mediates the signaling pathways significantly involved 
in drug resistance-related genes. Top: MM malignant clonal evolution mediates drug resistance-related genes and their biological signals. Middle: 
Malignant drivers of malignant clonal evolution of MM involving GRN, SNV, and CNV. Bottom: Drug resistance-related genes clustered into two gene 
expression modules during the evolution of MM malignant clones. F Comprehensive regulatory network of drug resistance in patients with RRMM. 
MM malignant subclones not only inhibit their own apoptosis-related signals and activate their own survival-promoting, proliferation, migration, 
and stem cell characteristics related signals but also reprogram microenvironment immune cells through intercellular communication, driving the 
latter to activate drug metabolism signals, thereby improving the drug microenvironment and survival probability. G Prognostic potential of drug 
resistance-related genes in a large-scale MM clinical patient training cohort. H Prognostic value of drug resistance-related genes in a large-scale 
MM clinical patient cohort based on the multivariate Cox model. I Time-independent ROC curves for evaluating the prediction performance of the 
prognostic model in MM patients’ OS and RFS. NDMM, newly diagnosed multiple myeloma; RRMM, refractory or recurrent multiple myeloma; GRN, 
gene regulation network; CNV, copy number variations; SNV, single nucleotide variation; DEG, differentially expressed gene; OS, overall survival; RFS, 
recurrence-free survival
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Fig. 5  (See legend on previous page.)
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Fig. 6  The MM malignant clonal evolution reprogramming tumor microenvironment mediates tumor heterogeneity in patients. A Patient-specific 
transcriptional patterns of MM malignant subclones. B Malignant subclonal self-organization contribution of specific marker genes in MM patients. 
C Patient-specific transcriptional patterns of MM BM microenvironment cells. D Lymphocyte subsets of the BM microenvironment of control donors 
and MM patients. The atlas involves B cells, plasma cells, CTLs, T cells, and NK cells. Left: Single-cell subpopulation atlas of each cell type. Middle: 
Proportion of each cell subgroup in the control donor and different MM patients. Right: Expression pattern of cell subgroup-specific markers 
mapped in the single-cell atlas. E Atlas of myeloid cell subsets in the BM microenvironment of control donors and MM patients. The atlas involves 
classical dendritic cells (cDCs) and monocyte cells. Left: Single-cell subpopulation atlas of the cell type. Middle: Proportion of each cell subgroup 
in the control donor and different MM patients. Right: Expression pattern of cell subgroup-specific markers mapped in the single-cell atlas. F 
Expression patterns of lymphocyte subset-specific markers and the biological signals involved. G Expression patterns of myeloid cell subset-specific 
markers and the biological signals involved. CTL, cytotoxic T lymphocytes; MM, multiple myeloma; BM, bone marrow
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cells as well as phagocytosis of microenvironment cells 
during the clonal evolution process, resulting in the 
emergence of malignant marker mRNA and mediating 
apoptosis and depletion.

In contrast, the positive expression of GNLY in T-1 
emphasizes the potential malignant events that effec-
tively activate the immune response of T cells. T-1 mainly 
existed in NDMM, concentrated in NDMM2, which 
may be related to the negative expression of malignant 
clonal evolution markers in the lymphocytes of NDMM2 
patients, further indicating that chemoresistance of MM 
not only resists drugs but also inhibits immune killing.

Importantly, we found the negative expression of malig-
nant clonal evolution markers in B cells, implying certain 
defensive means of B cells to resist the reprogramming and 
transformation during malignant cell clonal evolution, sug-
gesting that a cellular immunotherapy strategy may benefit 
MM patients. CCL5 and CCL4 were specifically expressed 
in B-0 (Fig.  6D, F), which activate antigen presentation 
pathways and PD-L1/PD-1 immune checkpoints in cancer 
to recover the adverse effect of low CCL5 expression reduc-
ing the recruitment efficiency for cells in immune killing 
cascades (e.g., cDCs and CTLs). Surprisingly, B-0 were 
widely distributed in MM patients, mostly in the NDMM 
group (concentrated in NDMM2 patients), but not in the 
control, suggesting that an immunotherapy strategy of 
injecting CCL5-positive B cells derived from autologous 
expansion in  vitro may be beneficial. Likewise, T-1 with 
potential immune killing efficacy highly expressed CCL5 
and CCL4, activating antigen processing/presentation and 
chemokine signaling pathways to augment leukocyte trans-
dermal migration. There are similar patterns of molecular 
characteristics and gene expression of T-1 in T-3 that were 
specific to controls, further highlighting the important role 
of CCL5 and CCL4 in the antitumor immunity of MM.

Discussion
The unique challenges of complexity of tumor cell ecol-
ogy have hindered progress in clonal evolution and intra-
tumoral heterogeneity of MM. However, high-resolution 
single-cell sequencing technology has enabled the study 
of tumor evolution. In this study, we characterized the 
tumor cell and microenvironment cell ecosystem for the 
BM of MM patients, clarifying the potential of malig-
nant clonal evolution patterns and their reprogramming 
microenvironment cells.

Moreover, we observed that from the beginning of 
malignant origin, the shared mutation of IFITM2 in 
all malignant subpopulations enhances its expression. 
Highly expressed IFITM2 participates in the type I inter-
feron response to protect cells from viral pathogens and 
activates the expression and secretion of IL-6, which 
promotes the differentiation of B cells into plasma cells, 

mediating the growth of myeloma and stimulating bone 
resorption [44, 54]. Meanwhile, the activation of IFITM2 
and IL-6 forms a reciprocally positive feedback loop to 
make MM malignant progenitor cells act out the expres-
sion pattern with virus infection. This builds a suitable 
host environment and microenvironment for the virus 
that is conducive to viral infection, such as human her-
pesvirus type 8 (HHV-8), thus increasing the suscep-
tibility risk by approximately 10-fold [55–57]. HHV-8 
and other viruses can continuously expand and encode 
the homolog of IL-6 in the host malignant plasma cells, 
which further activates the positive feedback loop to 
promote viral spread and the malignant process of MM 
[58]. Notably, the viral susceptibility caused by this posi-
tive feedback loop is a high-risk factor, leading to the 
serious consequences and high mortality of MM, similar 
to the recent outbreak of SARS-CoV-2 [59, 60]. Likewise, 
ANK1 was also identified to mutate in the early origin 
stage of MM, resulting in the presence of the mutation 
in all malignant subpopulations. ANK1 participates in 
the malignant progression of acute myeloid leukemia 
in the elderly and in children with Down syndrome, 
related to erythropoietin, which provides a potential 
molecular link for MM secondary acute myeloid leu-
kemia and mediating poor prognosis [4, 59, 60]. In 
particular, according to the tumor cell stemness index 
score and pseudo-sequential clonal evolution analy-
sis, the malignant origins were divided into type I and 
IX malignant progenitor cells. Compared with the type 
I origin, more significant stem cell characteristics were 
found in type IX malignant progenitor cells, leading to 
a more severe degree of malignancy and progression. It 
is becoming increasingly clear that MM is not a single 
clonal genome, but rather distinct subclones that evolve 
from one or more origins in the disease period, leading 
to intratumoral heterogeneity and different performance 
in environmental adaptability. The increase in clonality 
also depends on the accumulation of gene mutations in 
offspring cells to regulate the environmental adaptive 
competition between malignant cell subpopulations. A 
portion of malignant cells maintain the ability for self-
renewal and long-term clonal maintenance, becoming 
the dominant population in the current state, while oth-
ers are in a dormant state [61, 62].

Significantly, the clonal evolution of MM malignant 
plasma cells is not only under natural selection from 
the microenvironment, but also capable of reacting to 
the TME to create more suitable conditions for sur-
vival, including the reprogramming of immune cells to 
inhibit immune killing and promote drug metabolism 
through vesicle synthesis and secretion of malignant 
plasma cells as well as the phagocytosis of microenvi-
ronment cells, which has been reported in other tumors 
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[63, 64]. Interestingly, the microenvironment reprogram-
ming produced by clonal evolution showed significant 
patient specificity, mediating the tumor heterogeneity 
of patients, which is an unprecedented discovery that 
warrants full consideration of personalized and accu-
rate treatment in clinical immune salvation therapy for 
MM. Specifically, the BM microenvironment of NDMM2 
patients with abundant CCL5-positive B and T cells can 
be protected from reprogramming with an antagonistic 
response; thus, relevant drugs and cell therapy schemes 
may be of great benefit. According to previous studies, 
CCL5 should also be expressed in malignant cells to pro-
mote the secretion of CXCL9 by immune cells through 
epigenetic regulation, thus jointly recruiting T cells, 
whose infiltration and activation exert immune killing 
effects to inhibit tumor progression [65]; ligand-receptor 
interaction between CCL5 and CCR1 is notably active in 
the monocyte-plasma communication in MM patients 
with stage III [66]. However, we found negative expres-
sion of CCL5 in almost all of the malignant plasma cells 
of MM patients, which proved to be the main cause of 
insufficient CD8+ T cell infiltration and exhaustion, 
rather than the role of classical immune checkpoints, 
such as PD-1, PD-L1, and CTLA4. This emphasizes that 
the immune escape mediated by the downregulation of 
CCL5 expression occurs not only in solid tumors but also 
in MM, offering a new biomarker and candidate target of 
MM immunotherapy. As a result, a new adjuvant strategy 
to improve the sensitivity of immune checkpoint inhibi-
tors for MM by jointly reversing CCL5 silencing drugs 
such as decitabine may be effective [65]. The new adju-
vant strategy extends the indications of therapy combined 
with epigenetic agent and immune checkpoint blockage 
in MM for further treatment of RRMM. Decitabine com-
bined with PD-1/PD-L1 inhibitors has recently entered 
clinical trials for patients with hematological tumors such 
as relapsed/refractory classic Hodgkin lymphoma, which 
achieved satisfactory benefits with high safety [67]. Alter-
natively, B cells have not been reprogrammed as other 
microenvironment immune cells with potential defen-
sive measures, which warrants further research as a novel 
immunotherapy strategy.

Conclusion
In summary, we explored the clonal evolution of MM 
occurrence and development, mediating intratumoral cell 
heterogeneity, and the connectivity from initial treatment 
to drug resistance. We then identified the interaction and 
response between malignant plasma cells and the microen-
vironment during clonal evolution. Furthermore, this study 
broadens the cognitive boundary of MM; however, due 
to the limited sample size, a larger prospective cohort is 
required to obtain more universal and versatile conclusions.
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Additional file 1: Supplementary Fig. 1. BM intercellular communica-
tion events in patients with NDMM and RRMM. (A and B) Expression 
patterns of CD19 and CD20 in single cells from NDMM (A) and RRMM 
(B) patients. Top: t-SNE single-cell atlas showing the expression of CD19 
and CD20 in BM single cells from MM patients. Bottom: Verification of the 
expression of CD19 and CD20 in BM cells by flow cytometry. (C) Expres-
sion pattern of CD19 in single cells from CD20+ RRMM patients. Top: t-SNE 
single-cell atlas showing the expression of CD19 in BM single cells from 
CD20+ RRMM patients. Bottom: Verification of CD19 expression in BM 
cells from CD20+ RRMM patients by flow cytometry. (D) High-confidence 
receptor-ligand interaction for BM intercellular communication events in 
patients with NDMM and RRMM. Bubbles represent the average expres-
sion of high-confidence ligand-receptor interaction pairs in the source 
and target cells. (E) Overview of high-confidence intercellular commu-
nication networks in BM patients with NDMM and RRMM. Each bubble 
represents a cellular identity of the BM in NDMM and RRMM patients, and 
the coloring is consistent with that of the corresponding single-cell atlas. 
Bubble size represents active cell communication with other cells. Each 
arrow represents the interaction between the source cell ligand and the 
target cell receptor, and its thickness represents the number of ligand-
receptor interaction pairs. All communication events were detected 
using any two tools among CellPhoneDB, iTalk, and CellCrosstalk, which 
represent the confidence of the reciprocal pair. BM, bone marrow; NDMM, 
newly diagnosed multiple myeloma; RRMM, relapsed and/or refractory 
MM; t-SNE, t-distribution and stochastic neighbor embedding.

Additional file 2: Supplementary Fig. 2. Nanopore sequencing com-
bined with single-cell transcriptome to identify malignant driving events. 
(A) Diagram of genomic SVs in patients with NDMM and RRMM. “INS” and 
“INV” of patients with counts > 5 are displayed, and colors on chromo-
somes represent the number of patients with DEL (green to yellow) and 
DUP (green to blue). (B) Patterns of gene mutations in MM patients. (C) 
Volume and single-cell levels of the TMB in the BM of MM patients. Top: 
TMB levels of different malignant subclones. Middle: Gene mutation pat-
terns in different malignant subclones. Bottom: TMB horizontal curve of 
patients with MM. (D) Correlation of TMB in MM patients at the bulk and 
single-cell levels. The BM TMB of MM patients was significantly correlated 
at the bulk level and at the single-cell level (P < 0.001), demonstrating the 
feasibility and reliability of detecting the SNV spectrum and TMB level 
at the single-cell level. SV, structural variation; INS, insert; INV, inversion; 
DEL, deletion; DUP, duplication; CNV, copy number variation; SNV, single 
nucleotide variation; TMB, tumor mutational burden.

Additional file 3: Supplementary Fig. 3. Exploring malignant origins 
from the perspective of clonal evolution. (A) Pseudotime trajectory of 
myeloid malignant subclones in NDMM and RRMM patients mapped 
in the t-SNE–based single-cell atlas. (B, C) Stemness score (B) and cell 
cycle score (C) of myeloid malignant subclones in patients with NDMM 
and RRMM. Top: Comparison of stemness and cell cycle scores between 
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myeloid malignant subclones from patients with NDMM and RRMM. 
Bottom: Stemness and cell cycle scores of myeloid malignant subclones 
in NDMM and RRMM patients mapped using the t-SNE single-cell atlas. 
(D) Dysregulated expression patterns of malignant leader genes in type 
I and IX malignant origins compared to normal B cells. (E) Type I and IX 
malignant origin expression dysregulated genes are significantly involved 
in malignant precursor biological signals. These biological signals of 
malignant precursors can be grouped into five modules according to 
shared gene members. Each module was assigned an independent color. 
(F) Gene expression patterns of the evolution of malignant origins toward 
dominant subclones during natural development. (G) Expression patterns 
of dysregulated genes across Type I, IV, VIII and IX.

Additional file 4: Supplementary Fig. 4. Cellular heterogeneity in the 
myeloma of MM patients. (A) Heterogeneity score of the myeloma in 
NDMM and RRMM patients. (B) Single-cell atlas based on t-SNE show-
ing heterogeneity of malignant subclonal ecological components in 
different MM patients. (C) Specific markers of malignant subclones in 
patients with NDMM and RRMM. Left: Expression pattern of malignant 
subclonal-specific marker genes in patients. Right: TFs that regulate 
malignant subclonal-specific markers. (D) Contribution of cell subsets with 
malignant subclone-specific markers in patients. Left: Expression patterns 
of malignant subclonal-specific marker genes in patients. The malignant 
subclonal marker genes illustrated are those that are the most significant 
and associated with subsequent MM malignant plasma cell clonal evolu-
tion reprogramming of immune cells in the microenvironment. Right: 
Contribution of cell subsets specifically labeled by the top specific marker 
malignant subclones in patients. (E) The single-cell atlas based on t-SNE 
showing the heterogeneity of cell ecological components in the myeloma 
microenvironment in different MM patients. TF, transcription factor.

Additional file 5: Supplementary Fig. 5. Expression patterns of immune 
cell subpopulations in MM. (A-C) Expression patterns of known cell 
identity-specific markers and their co-location with malignant markers in 
lymphocytes provide evidence for MM reprogramming of microenviron-
ment cells. The pie chart shows the co-location between known cell iden-
tity-specific markers and corresponding patient heterogeneous malignant 
marker immunoglobulins. (D) HSC subset profiles of control donor BM and 
the MM patient BM microenvironment. Left: Single-cell subpopulation 
atlas of HSCs. Middle: Proportion of HSCs in control donors and different 
MM patients. Right: Expression patterns of cell subset-specific markers 
mapped on the HSC single-cell atlas. (E, F) MM malignant clonal evolution 
reprograms pseudotime trajectories and expression pattern changes in 
lymphoid (E) and myeloid cells (F). Lymphocytes include B cells, plasma, 
CTLs, T cells, and NK cells, whereas myeloid cells include cDCs and mono-
cytes. For each cell type, the pseudotime trajectory (left), pseudotime 
value change (middle), and expression pattern change (right) from normal 
cells to MM during MM malignant clonal evolution reprogramming are 
shown for lymphocyte and myeloid cell subsets. (G) Expression patterns 
of the exosome-specific marker gene CD63 in malignant cells. HSCs, 
hematopoietic stem cells; CTLs, cytotoxic T lymphocytes; NK cells, natural 
killer cells; cDCs, conventional dendritic cells.

Additional file 6: Supplementary Table 1. Demographic, clinical, 
molecular, and diagnostic information of all patients in this study.

Additional file 7: Supplementary Table 2. The known marker genes 
used for annotating cell clusters.

Additional file 8: Supplementary Table 3. Specific marker genes of 
control donor BM cells. BM, bone marrow.

Additional file 9: Supplementary Table 4. Specific marker genes of malig-
nant plasma cell subclones in NDMM and RRMM patients. NDMM, newly 
diagnosed multiple myeloma; RRMM, relapsed and/or refractory MM.

Additional file 10: Supplementary Table 5. Specific marker genes of BM 
tumor microenvironment cells in patients with NDMM and RRMM.

Additional file 11: Supplementary Table 6. Characterization of specific 
marker genes for type I and type IX malignant progenitors.

Additional file 12: Supplementary Table 7. Relative abundance estimation 
and typing of type I and IX malignant progenitors in a large clinical cohort.
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